
Towards a Science
of

Parallel Programming

Keshav Pingali

Problem Statement
•  Community has worked on parallel

programming for more than 30 years
–  programming models
–  machine models
–  programming languages
–  ….

•  However, parallel programming is still a
research problem

–  matrix computations, stencil computations,
FFTs etc. are well-understood

–  few insights for irregular applications
•  each new application is a “new

phenomenon”
•  Thesis: we need a science of parallel

programming
–  analysis: framework for thinking about

parallelism in application
–  synthesis: produce an efficient parallel

implementation of application “The Alchemist” Cornelius Bega (1663)

Analogy: science of electro-magnetism

Seemingly
unrelated phenomena Unifying abstractions

Specialized models
that exploit structure

Organization of talk
•  Seemingly unrelated parallel algorithms

and data structures
–  Stencil codes
–  Delaunay mesh refinement
–  Event-driven simulation
–  Graph reduction of functional languages
–  ………

•  Unifying abstractions
–  Operator formulation of algorithms
–  Amorphous data-parallelism
–  Galois programming model
–  Baseline parallel implementation

•  Specialized implementations that exploit
structure

–  Structure of algorithms
–  Optimized compiler and runtime system

support for different kinds of structure
•  Ongoing work

Seemingly unrelated
algorithms

Examples
Application/domain Algorithm

Meshing Generation/refinement/partitioning

Compilers Iterative and elimination-based
dataflow algorithms

Functional interpreters Graph reduction, static and dynamic
dataflow

Maxflow Preflow-push, augmenting paths
Minimal spanning trees Prim, Kruskal, Boruvka
Event-driven simulation Chandy-Misra-Bryant, Jefferson

Timewarp
AI Message-passing algorithms

Stencil computations Jacobi, Gauss-Seidel,
red-black ordering

Data-mining Clustering

Stencil computation: Jacobi iteration
•  Finite-difference method for solving pde’s

–  discrete representation of domain: grid
•  Values at interior points are updated using values at

neighbors
–  values at boundary points are fixed

•  Data structure:
–  dense arrays

•  Parallelism:
–  values at next time step can be computed simultaneously
–  parallelism is not dependent on runtime values

•  Compiler can find the parallelism
–  spatial loops are DO-ALL loops

//Jacobi iteration with 5-point stencil
//initialize array A
for time = 1, nsteps
 for <i,j> in [2,n-1]x[2,n-1]
 temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))
 for <i,j> in [2,n-1]x[2,n-1]:
 A(i,j) = temp(i,j)

Jacobi iteration, 5-point stencil

At At+1

Delaunay Mesh Refinement
•  Iterative refinement to remove badly

shaped triangles:
 while there are bad triangles do {

Pick a bad triangle;
Find its cavity;
Retriangulate cavity;
 // may create new bad triangles
}

•  Don’t-care non-determinism:
–  final mesh depends on order in which bad

triangles are processed
–  applications do not care which mesh is

produced
•  Data structure:

–  graph in which nodes represent triangles and
edges represent triangle adjacencies

•  Parallelism:
–  bad triangles with cavities that do not overlap

can be processed in parallel
–  parallelism is dependent on runtime values

•  compilers cannot find this parallelism
–  (Miller et al) at runtime, repeatedly build

interference graph and find maximal
independent sets for parallel execution

Mesh m = /* read in mesh */	
WorkList wl;	
wl.add(m.badTriangles());	
while (true) {	
 if (wl.empty()) break;	

	Element e = wl.get(); 	
	 if (e no longer in mesh) continue;	
	Cavity c = new Cavity(e);//

determine new cavity	
	c.expand();	
	c.retriangulate();//re-triangulate

region	
	m.update(c);//update mesh	
	wl.add(c.badTriangles());	

}	

Event-driven simulation
•  Stations communicate by sending

messages with time-stamps on FIFO
channels

•  Stations have internal state that is
updated when a message is processed

•  Messages must be processed in time-
order at each station

•  Data structure:
–  Messages in event-queue, sorted in time-

order
•  Parallelism:

–  activities created in future may interfere
with current activities

 ! static parallelization and interference graph
technique will not work

–  Jefferson time-warp
•  station can fire when it has an incoming

message on any edge
•  requires roll-back if speculative conflict is

detected
–  Chandy-Misra-Bryant

•  conservative event-driven simulation
•  requires null messages to avoid deadlock

2

5

A
B

3
4

C
6

Remarks on algorithms
•  Algorithms:

–  parallelism can be dependent on runtime values
•  DMR, event-driven simulation, graph reduction,….

–  don’t-care non-determinism
•  nothing to do with concurrency
•  DMR, graph reduction

–  activities created in the future may interfere with current activities
•  event-driven simulation…

•  Data structures:
–  relatively few algorithms use dense arrays
–  more common: graphs, trees, lists, priority queues,…

•  Parallelism in irregular algorithms is very complex
–  static parallelization usually does not work
–  dependence graphs are the wrong abstraction
–  finding parallelism: most of the work must be done at runtime

Organization of talk
•  Seemingly unrelated parallel algorithms

and data structures
–  Stencil codes
–  Delaunay mesh refinement
–  Event-driven simulation
–  Graph reduction of functional languages
–  ………

•  Unifying abstractions
–  Operator formulation of algorithms
–  Amorphous data-parallelism
–  Baseline parallel implementation for

exploiting amorphous data-parallelism
•  Specialized implementations that exploit

structure
–  Structure of algorithms
–  Optimized compiler and runtime system

support for different kinds of structure
•  Ongoing work

12

Unifying abstractions

•  Should provide a model of parallelism in irregular
algorithms

•  Ideally, unified treatment of parallelism in regular
and irregular algorithms
–  parallelism in regular algorithms should emerge as a

special case of general model
–  (cf.) correspondence principles in Physics

•  Abstractions should be effective
–  should be possible to write an interpreter to execute

algorithms in parallel

Operator formulation of algorithms
•  Algorithm formulated in data-centric terms

–  active element:
•  node or edge where computation is needed

–  DMR: nodes representing bad triangles
–  Event-driven simulation: station with incoming

message
–  Jacobi: nodes of mesh

–  activity:
•  application of operator to active element

–  neighborhood:
•  set of nodes and edges read/written to perform

computation
–  DMR: cavity of bad triangle
–  Event-driven simulation: station
–  Jacobi: nodes in stencil

•  distinct usually from neighbors in graph
–  ordering:

•  order in which active elements must be executed in a
sequential implementation

–  any order (Jacobi,DMR, graph reduction)
–  some problem-dependent order (event-driven

simulation)
•  Amorphous data-parallelism

–  active nodes can be processed in parallel, subject to
•  neighborhood constraints
•  ordering constraints

: active node

: neighborhood

Galois programming model (PLDI 2007)

•  Joe programmers
–  sequential, OO model
–  Galois set iterators: for iterating over

unordered and ordered sets of active
elements

•  for each e in Set S do B(e)
–  evaluate B(e) for each element in set S
–  no a priori order on iterations
–  set S may get new elements during

execution
•  for each e in OrderedSet S do B(e)

–  evaluate B(e) for each element in set S
–  perform iterations in order specified by

OrderedSet
–  set S may get new elements during

execution

•  Stephanie programmers
–  Galois concurrent data structure library

•  (Wirth) Algorithms + Data structures =
Programs

–  (cf) database programming

Mesh m = /* read in mesh */	
Set ws;	
ws.add(m.badTriangles()); //
initialize ws	

for each tr in Set ws do { //unordered
Set iterator 	if (tr
no longer in mesh) continue;	

	Cavity c = new Cavity(tr);	
	c.expand();	
	c.retriangulate();	
	m.update(c);	
	ws.add(c.badTriangles()); //bad

triangles 	
}	 DMR using Galois iterators

Concurrent
Data structure

main()
….
for each …..{
…….
…….
}
.....

Master

Joe Program

•  Parallel execution model:
–  shared-memory
–  optimistic execution of Galois

iterators
•  Implementation:

–  master thread begins execution of
program

–  when it encounters iterator, worker
threads help by executing
iterations concurrently

–  barrier synchronization at end of
iterator

•  Independence of neighborhoods:
–  logical locks on nodes and edges
–  implemented using CAS operations

•  Ordering constraints for ordered set
iterator:

–  execute iterations out of order but
commit in order

–  cf. out-of-order CPUs

Galois parallel execution model

i1

i2

i3

i4

i5

Parameter tool (PPoPP 2009)
•  Measures amorphous data-parallelism in

irregular program execution
•  Idealized execution model:

–  unbounded number of processors
–  applying operator at active node takes one time step
–  execute a maximal set of active nodes
–  perfect knowledge of neighborhood and ordering

constraints
•  Useful as an analysis tool

17

Example: DMR
•  Input mesh:

–  Produced by Triangle
(Shewchuck)

–  550K triangles
–  Roughly half are badly

shaped
•  Available parallelism:

–  How many non-conflicting
triangles can be expanded
at each time step?

•  Parallelism intensity:
–  What fraction of the total

number of bad triangles
can be expanded at each
step?

Example:Barnes-Hut
•  Four phases:

–  build tree
–  center-of-mass
–  force computation
–  push particles

•  Problem size:
–  1000 particles

•  Parallelism profile of tree
build phase similar to that
of DMR
–  why?

Organization of talk
•  Seemingly unrelated parallel algorithms

and data structures
–  Stencil codes
–  Delaunay mesh refinement
–  Event-driven simulation
–  Graph reduction of functional languages
–  ………

•  Unifying abstractions
–  Operator formulation of algorithms
–  Amorphous data-parallelism
–  Galois programming model
–  Baseline parallel implementation

•  Specialized implementations that exploit
structure

–  Structure of algorithms
–  Optimized compiler and runtime system

support for different kinds of structure
•  Ongoing work

Structure in irregular algorithms

•  Baseline implementation is general but usually inefficient
–  (eg) dynamic scheduling of iterations is not needed for stencil codes

since grid structure is known at compile-time
–  (eg) hand-written parallel implementations of DMR do not buffer

updates to neighborhood until commit point
•  Efficient execution requires exploiting structure in algorithms and

data structures
•  How do we talk about structure in algorithms?

–  Previous approaches: like descriptive biology
•  Mattson et al book
•  Parallel programming patterns (PPP): Snir et al
•  Berkeley motifs: Patterson, Yelick, et al
•  …

–  Our approach: like molecular biology
•  structural analysis of algorithms
•  based on amorphous data-parallelism framework

Structural analysis of irregular algorithms

irregular
algorithms

topology

operator

ordering

morph

local computation

reader

general graph

grid

tree

unordered

ordered

refinement

coarsening

general

topology-driven

data-driven

Jacobi: topology: grid, operator: local computation, ordering: unordered
DMR, graph reduction: topology: graph, operator: morph, ordering: unordered
Event-driven simulation: topology: graph, operator: local computation, ordering: ordered

Cautious operators (PPoPP 2010)

•  Cautious operator implementation:
–  reads all the elements in its neighborhood

before modifying any of them
–  (eg) Delaunay mesh refinement

•  Algorithm structure:
–  cautious operator + unordered active

elements
•  Optimization: optimistic execution w/o

buffering
–  grab locks on elements during read phase

•  conflict: someone else has lock, so release
your locks

–  once update phase begins, no new locks
will be acquired

•  update in-place w/o making copies
•  zero-buffering

–  note: this is not two-phase locking

Eliminating speculation

•  Coordinated execution of activities:
–  if we can build dependence graph
–  early binding of scheduling decisions

•  Binding times
–  Run-time scheduling:

•  cautious operator + unordered active elements
•  execute all activities partially to determine neighborhoods
•  create interference graph and find independent set of activities
•  execute independent set of activities in parallel w/o synchronization

–  Just-in-time scheduling:
•  local computation + topology-driven (eg) tree walks, sparse MVM
•  inspector-executor approach

–  Compile-time scheduling:
•  previous case + graph is known at compile-time (eg) Jacobi
•  make all scheduling decisions at compile-time time

DMR Results

24

Problem size: 0.5M triangles, 0.25M bad triangles
Machine: Intel Nehalem, 2 Quad-core processors

• Serial time: 17002 ms
• Best // time: 3745 ms
• Best speedup: 4.5X

25

DMR Statistics

Barnes-Hut

•  Optimization
–  static parallelization of particle-

pushing
•  90+ % of execution time

–  Galois runtime system but
conflict-checking is turned off

•  SPLASH-2 C implementation:
•  same scaling
•  roughly twice as fast (Java vs. C)

•  Shows that static parallelization
can be viewed as early-binding
of scheduling decisions

Sun Niagara-2

Nehalem

Andersen-style points-to analysis

•  Algorithm formulation
–  solution to system of set

constraints
–  3 graph rewrite rules
–  speedup algorithm by

collapsing cycles in
constraint graph

•  State of the art C++
implementation
–  Hardekopf & Lin
–  red lines in graphs

•  “Parallel Andersen-style
points-to analysis” Mendez-
Lojo et al (OOPSLA 2010)

Ongoing work

•  System building
–  current version of Galois, Lonestar, ParaMeter: http://iss.ices.utexas.edu/galois
–  ordered algorithms

•  Algorithm studies:
–  other kinds of structure
–  intra-operator parallelism
–  locality

•  Application studies
–  case studies of hand-optimized codes

•  Compiler analysis
–  analyze and optimize code for operators

•  Specializing data structure implementations to particular algorithms
–  can this be done semi-automatically?

n1

n2

n4

n3

h4

h3

h2

n1

n2

n4

n3

h4

h3

h2

n1

n2

n4

h1

n3

h2

h4

h3

Ongoing work (contd.)

•  Kali project (with David
Padua, UIUC)
–  system for exploiting

•  conventional data-parallelism
•  amorphous data-parallelism

Related work
•  Transactional memory (TM)

–  Programming model:
•  TM: explicitly parallel (threads)

–  transactions: synchronization mechanism for threads
–  mostly memory-level conflict detection

•  Galois: Joe programs are sequential OO programs
–  ADT-level conflict detection

–  Where do threads come from?
•  TM: someone else’s problem
•  Galois project: focus on sources of parallelism in algorithm

•  Thread-level speculation
–  Programming model:

•  Galois: separation between ADT and its implementation is critical
–  permits separation of Joe and Stephanie layers (cf. relational databases)
–  permits more aggressive conflict detection schemes like commutativity relations

•  TLS: FORTRAN/C, so no separation between ADT and implementation

–  Programming model:
•  Galois: don’t-care non-determinism plays a central role
•  TLS: FORTRAN/C, so only ordered algorithm

30

Summary

•  Current approach
1.  Static parallelization is the

norm
2.  Inspector-executor, optimistic

parallelization, etc.
•  needed only for weird

programs, crutch for dumb
programmers

•  they are expensive: (eg) high
abort ratio

3.  Dependence graphs are the
right abstraction for
parallelism
•  program-centric abstraction

•  Galois approach
1.  Optimistic parallelization is the

baseline
2.  Static parallelization,

inspector-executor etc.
•  possible only for weird

programs, early-binding of
scheduling decisions,

•  overheads of optimistic
parallelization can be
controlled

3.  Operator formulation of
algorithms is the right
abstraction
•  data-centric abstraction

Science of Parallel Programming

Seemingly
unrelated algorithms

Unifying abstractions
Specialized models

that exploit structure

2 A B

……..

i1

i2

i3

i4

i5

