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Problem Statement 
•  Community has worked on parallel 

programming for more than 30 years 
–  programming models 
–  machine models 
–  programming languages 
–  …. 

•  However, parallel programming is still a 
research problem  

–  matrix computations, stencil computations, 
FFTs  etc. are well-understood 

–  few insights for irregular applications  
•  each new application is a “new 

phenomenon” 
•  Thesis: we need a science of parallel 

programming  
–  analysis: framework for thinking about 

parallelism in application 
–  synthesis: produce an efficient parallel 

implementation of application “The Alchemist” Cornelius Bega (1663) 



Analogy: science of electro-magnetism  

Seemingly  
unrelated phenomena Unifying abstractions 

Specialized models 
that exploit structure 



Organization of talk 
•  Seemingly unrelated parallel algorithms 

and data structures 
–  Stencil codes 
–  Delaunay mesh refinement 
–  Event-driven simulation 
–  Graph reduction of functional languages 
–  ……… 

•  Unifying abstractions 
–  Operator formulation of algorithms 
–  Amorphous data-parallelism 
–  Galois programming model 
–  Baseline parallel implementation  

•  Specialized implementations that exploit 
structure 

–  Structure of algorithms 
–  Optimized compiler and runtime system 

support for different kinds of structure 
•  Ongoing work 



Seemingly unrelated  
algorithms 



Examples 
Application/domain Algorithm 

Meshing Generation/refinement/partitioning 

Compilers Iterative and elimination-based 
dataflow algorithms 

Functional interpreters Graph reduction, static and dynamic 
dataflow 

Maxflow Preflow-push, augmenting paths 
Minimal spanning trees Prim, Kruskal, Boruvka 
Event-driven simulation Chandy-Misra-Bryant, Jefferson 

Timewarp 
AI Message-passing algorithms 

Stencil computations Jacobi, Gauss-Seidel,                    
red-black ordering 

Data-mining Clustering 



Stencil computation: Jacobi iteration 
•  Finite-difference method for solving pde’s 

–  discrete representation of domain: grid 
•  Values at interior points are updated using values at 

neighbors 
–  values at boundary points are fixed  

•  Data structure:  
–  dense arrays 

•  Parallelism:  
–  values at next time step can be computed simultaneously 
–  parallelism is not dependent on runtime values 

•  Compiler can find the parallelism 
–  spatial loops are DO-ALL loops 

//Jacobi iteration with 5-point stencil 
//initialize array A 
for time = 1, nsteps 
    for <i,j> in [2,n-1]x[2,n-1] 
         temp(i,j)=0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)) 
    for <i,j> in [2,n-1]x[2,n-1]: 
         A(i,j) = temp(i,j) 

Jacobi iteration, 5-point stencil 

At At+1 



Delaunay Mesh Refinement 
•  Iterative refinement to remove badly 

shaped triangles: 
  while there are bad triangles do { 

Pick a bad triangle; 
Find its cavity; 
Retriangulate cavity;  
     // may create new bad triangles 
} 

•  Don’t-care non-determinism: 
–  final mesh depends on order in which bad 

triangles are processed 
–  applications do not care which mesh is 

produced 
•  Data structure:  

–  graph in which nodes represent triangles and 
edges represent triangle adjacencies 

•  Parallelism:  
–  bad triangles with cavities that do not overlap 

can be processed in parallel 
–  parallelism is dependent on runtime values 

•  compilers cannot find this parallelism  
–  (Miller et al) at runtime, repeatedly build 

interference graph and find maximal 
independent sets for parallel execution 

Mesh m = /* read in mesh */	
WorkList wl;	
wl.add(m.badTriangles());	
while (true) {	
              if ( wl.empty() ) break;	

	Element e = wl.get();     	
	 if (e no longer in mesh) continue;	
	Cavity c = new Cavity(e);//

determine new cavity	
	c.expand();	
	c.retriangulate();//re-triangulate 

region	
	m.update(c);//update mesh	
	wl.add(c.badTriangles());	

}	



Event-driven simulation 
•  Stations communicate by sending 

messages with time-stamps on FIFO 
channels 

•  Stations have internal state that is 
updated when a message is processed 

•  Messages must be processed in time-
order at each station 

•  Data structure: 
–  Messages in event-queue, sorted in time-

order 
•  Parallelism:  

–  activities created in future may interfere 
with current activities  

 ! static parallelization and interference graph 
technique will not work 

–  Jefferson time-warp 
•  station can fire when it has an incoming 

message on any edge 
•  requires roll-back if speculative conflict is 

detected 
–  Chandy-Misra-Bryant 

•  conservative event-driven simulation 
•  requires null messages to avoid deadlock 

2 

5 

A 
B 

3 
4 

C 
6 



Remarks on algorithms 
•  Algorithms: 

–  parallelism can be dependent on runtime values 
•  DMR, event-driven simulation, graph reduction,…. 

–  don’t-care non-determinism 
•  nothing to do with concurrency 
•  DMR, graph reduction 

–  activities created in the future may interfere with current activities 
•  event-driven simulation… 

•  Data structures: 
–  relatively few algorithms use dense arrays 
–  more common: graphs, trees, lists, priority queues,… 

•  Parallelism in irregular algorithms is very complex 
–  static parallelization usually does not work 
–  dependence graphs are the wrong abstraction 
–  finding parallelism: most of the work must be done at runtime 



Organization of talk 
•  Seemingly unrelated parallel algorithms 

and data structures 
–  Stencil codes 
–  Delaunay mesh refinement 
–  Event-driven simulation 
–  Graph reduction of functional languages 
–  ……… 

•  Unifying abstractions 
–  Operator formulation of algorithms 
–  Amorphous data-parallelism 
–  Baseline parallel implementation for 

exploiting amorphous data-parallelism 
•  Specialized implementations that exploit 

structure 
–  Structure of algorithms 
–  Optimized compiler and runtime system 

support for different kinds of structure 
•  Ongoing work 
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Unifying abstractions 

•  Should provide a model of parallelism in irregular 
algorithms 

•  Ideally, unified treatment of parallelism in regular 
and irregular algorithms 
–  parallelism in regular algorithms should emerge as a 

special case of general model 
–  (cf.) correspondence principles in Physics 

•  Abstractions should be effective 
–  should be possible to write an interpreter to execute 

algorithms in parallel 



Operator formulation of algorithms 
•  Algorithm formulated in data-centric terms 

–  active element:  
•  node or edge where computation is needed 

–  DMR: nodes representing bad triangles 
–  Event-driven simulation: station with incoming 

message 
–  Jacobi: nodes of mesh 

–  activity: 
•  application of operator to active element 

–  neighborhood: 
•  set of nodes and edges read/written to perform 

computation 
–  DMR: cavity of bad triangle 
–  Event-driven simulation: station 
–  Jacobi: nodes in stencil 

•  distinct usually from neighbors in graph 
–  ordering:  

•  order in which active elements must be executed in a 
sequential implementation 

–  any order (Jacobi,DMR, graph reduction) 
–  some problem-dependent order (event-driven 

simulation) 
•  Amorphous data-parallelism 

–  active nodes can be processed in parallel, subject to 
•  neighborhood constraints 
•  ordering constraints 

: active node 

: neighborhood 



Galois programming model (PLDI 2007) 

•  Joe programmers  
–  sequential, OO model  
–  Galois set iterators: for iterating over 

unordered and ordered sets of active 
elements 

•  for each e in Set S do B(e) 
–  evaluate B(e) for each element in set S 
–  no a priori order on iterations 
–  set S may get new elements during 

execution 
•  for each e in OrderedSet S do B(e) 

–  evaluate B(e) for each element in set S 
–  perform iterations in order specified by 

OrderedSet 
–  set S may get new elements during 

execution 

•  Stephanie programmers 
–  Galois concurrent data structure library  

•  (Wirth) Algorithms + Data structures = 
Programs 

–  (cf) database programming 

Mesh m = /* read in mesh */	
Set ws;	
ws.add(m.badTriangles()); // 
initialize ws	

for each tr in Set ws do { //unordered 
Set iterator                	if (tr 
no longer in mesh) continue;	

	Cavity c = new Cavity(tr);	
	c.expand();	
	c.retriangulate();	
	m.update(c);	
	ws.add(c.badTriangles()); //bad 

triangles 	
}	 DMR using Galois iterators 



Concurrent  
Data structure 

main() 
…. 
for each …..{ 
……. 
……. 
} 
..... 

Master 

Joe Program 

•  Parallel execution model: 
–  shared-memory 
–  optimistic execution of Galois 

iterators 
•  Implementation: 

–  master thread begins execution of 
program  

–  when it encounters iterator, worker 
threads help by executing  
iterations concurrently 

–  barrier synchronization at end of 
iterator 

•  Independence of neighborhoods: 
–  logical locks on nodes and edges 
–  implemented using CAS operations 

•  Ordering constraints for ordered set 
iterator: 

–  execute iterations out of order but 
commit in order 

–  cf. out-of-order CPUs 

Galois parallel execution model 
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Parameter tool (PPoPP 2009) 
•  Measures amorphous data-parallelism in 

irregular program execution 
•  Idealized execution model: 

–  unbounded number of processors 
–  applying operator at active node takes one time step 
–  execute a maximal set of active nodes 
–  perfect knowledge of neighborhood and ordering 

constraints 
•  Useful as an analysis tool 
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Example: DMR 
•  Input mesh: 

–  Produced by Triangle 
(Shewchuck) 

–  550K triangles 
–  Roughly half are badly 

shaped 
•  Available parallelism: 

–  How many non-conflicting 
triangles can be expanded 
at each time step? 

•  Parallelism intensity: 
–  What fraction of the total 

number of bad triangles 
can be expanded at each 
step? 



Example:Barnes-Hut 
•  Four phases: 

–  build tree 
–  center-of-mass 
–  force computation 
–  push particles 

•  Problem size: 
–  1000 particles 

•  Parallelism profile of tree 
build phase similar to that 
of DMR 
–  why? 



Organization of talk 
•  Seemingly unrelated parallel algorithms 

and data structures 
–  Stencil codes 
–  Delaunay mesh refinement 
–  Event-driven simulation 
–  Graph reduction of functional languages 
–  ……… 

•  Unifying abstractions 
–  Operator formulation of algorithms 
–  Amorphous data-parallelism 
–  Galois programming model 
–  Baseline parallel implementation  

•  Specialized implementations that exploit 
structure 

–  Structure of algorithms 
–  Optimized compiler and runtime system 

support for different kinds of structure 
•  Ongoing work 



Structure in irregular algorithms 

•  Baseline implementation is general but usually inefficient 
–  (eg) dynamic scheduling of iterations is not needed for stencil codes 

since grid structure is known at compile-time 
–  (eg) hand-written parallel implementations of DMR do not buffer 

updates to neighborhood until commit point 
•  Efficient execution requires exploiting structure in algorithms and 

data structures 
•  How do we talk about structure in algorithms? 

–  Previous approaches: like descriptive biology 
•  Mattson et al book 
•  Parallel programming patterns (PPP): Snir et al  
•  Berkeley motifs: Patterson, Yelick, et al 
•  … 

–  Our approach: like molecular biology 
•  structural analysis of algorithms 
•  based on amorphous data-parallelism framework 



Structural analysis of irregular algorithms 

irregular 
algorithms 

topology 

operator 

ordering 

morph 

local computation 

reader 

general graph 

grid 

tree 

unordered 

ordered 

refinement 

coarsening 

general 

topology-driven 

data-driven 

Jacobi: topology: grid, operator: local computation, ordering: unordered  
DMR, graph reduction: topology: graph, operator: morph, ordering: unordered 
Event-driven simulation: topology: graph, operator: local computation, ordering: ordered 



Cautious operators (PPoPP 2010) 

•  Cautious operator implementation: 
–  reads all the elements in its neighborhood 

before modifying any of them 
–  (eg) Delaunay mesh refinement 

•  Algorithm structure: 
–  cautious operator + unordered active 

elements 
•  Optimization: optimistic execution w/o 

buffering  
–  grab locks on elements during read phase 

•  conflict: someone else has lock, so release 
your locks 

–  once update phase begins, no new locks 
will be acquired  

•  update in-place w/o making copies 
•  zero-buffering 

–  note: this is not two-phase locking 



Eliminating speculation 

•  Coordinated execution of activities:  
–  if we can build dependence graph  
–  early binding of scheduling decisions 

•  Binding times 
–  Run-time scheduling:  

•  cautious operator + unordered active elements 
•  execute all activities partially to determine neighborhoods 
•  create interference graph and find independent set of activities 
•  execute independent set of activities in parallel w/o synchronization 

–  Just-in-time scheduling: 
•  local computation + topology-driven (eg) tree walks, sparse MVM 
•  inspector-executor approach 

–  Compile-time scheduling:  
•  previous case + graph is known at compile-time (eg) Jacobi 
•  make all scheduling decisions at compile-time time 



DMR Results 

24 

Problem size: 0.5M triangles, 0.25M bad triangles 
Machine: Intel Nehalem, 2 Quad-core processors  

• Serial time: 17002 ms 
• Best // time: 3745 ms 
• Best speedup: 4.5X 
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DMR Statistics 



Barnes-Hut 

•  Optimization 
–  static parallelization of particle-

pushing  
•  90+ % of execution time 

–  Galois runtime system but 
conflict-checking is turned off 

•  SPLASH-2 C implementation: 
•  same scaling 
•  roughly twice as fast (Java vs. C) 

•  Shows that static parallelization 
can be viewed as early-binding 
of scheduling decisions 

Sun Niagara-2 

Nehalem 



Andersen-style points-to analysis 

•  Algorithm formulation 
–   solution to system of set 

constraints 
–  3 graph rewrite rules 
–  speedup algorithm by 

collapsing cycles in 
constraint graph 

•  State of the art C++ 
implementation 
–  Hardekopf & Lin 
–  red lines in graphs 

•  “Parallel Andersen-style 
points-to analysis” Mendez-
Lojo et al (OOPSLA 2010) 



Ongoing work 

•  System building 
–  current version of Galois, Lonestar, ParaMeter: http://iss.ices.utexas.edu/galois 
–  ordered algorithms 

•  Algorithm studies: 
–  other kinds of structure  
–  intra-operator parallelism 
–  locality 

•  Application studies 
–  case studies of hand-optimized codes 

•  Compiler analysis 
–  analyze and optimize code for operators 

•  Specializing data structure implementations to particular algorithms 
–  can this be done semi-automatically? 
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Ongoing work (contd.) 

•  Kali project (with David 
Padua, UIUC) 
–  system for exploiting  

•  conventional data-parallelism 
•  amorphous data-parallelism 



Related work 
•  Transactional memory (TM) 

–  Programming model: 
•  TM: explicitly parallel (threads) 

–  transactions: synchronization mechanism for threads 
–  mostly memory-level conflict detection  

•  Galois: Joe programs are sequential OO programs 
–  ADT-level conflict detection 

–  Where do threads come from? 
•  TM: someone else’s problem  
•  Galois project: focus on sources of parallelism in algorithm 

•  Thread-level speculation 
–  Programming model:  

•  Galois: separation between ADT and its implementation is critical 
–  permits separation of Joe and Stephanie layers (cf. relational databases) 
–  permits more aggressive conflict detection schemes like commutativity relations 

•  TLS: FORTRAN/C, so no separation between ADT and implementation 

–  Programming model: 
•  Galois: don’t-care non-determinism plays a central role  
•  TLS: FORTRAN/C, so only ordered algorithm 

30 



Summary 

•  Current approach 
1.  Static parallelization is the 

norm 
2.  Inspector-executor, optimistic 

parallelization, etc.  
•  needed only for weird 

programs, crutch for dumb 
programmers 

•  they are expensive: (eg) high 
abort ratio 

3.  Dependence graphs are the 
right abstraction for 
parallelism 
•  program-centric abstraction 

•  Galois approach 
1.  Optimistic parallelization is the 

baseline 
2.  Static parallelization, 

inspector-executor etc. 
•  possible only for weird 

programs, early-binding of 
scheduling decisions,  

•  overheads of optimistic 
parallelization can be 
controlled 

3.  Operator formulation of 
algorithms is the right 
abstraction 
•  data-centric abstraction 



Science of Parallel Programming  

Seemingly  
unrelated algorithms 

Unifying abstractions 
Specialized models 

that exploit structure 
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