
Calvin Lin, The University of Texas at Austin 1

The State of the Art in Parallel Languages

Calvin Lin
Department of Computer Science
The University of Texas at Austin

January 12, 2011

2

Outline

 1. State of the art

– Pthreads

– OpenMP

– MPI

 2. Moving forward

– High level languages

– PGAS languages

– Global view abstractions

 3. Modern languages

– Chapel

– (X10)

Calvin Lin, The University of Texas at Austin 2

3

Pthreads Introduction

 Consider a simple situation

– Simple hardware

– A trivial problem

4

Multithreading

 Threads
– Each thread has its own process state, but threads share memory and file

state

Process

Thread

Memory state

File state

Process state

Program counter

Stack pointer

G.P. registers

Thread

Process state

Program counter

Stack pointer

G.P. registers

Calvin Lin, The University of Texas at Austin 3

5

Symmetric Multiprocessors

 Symmetric Multiprocessor
– Processors share physical memory, and all physical memory is equidistant

from all processors
– Multiple threads can execute in parallel on multiple processors, and threads

can communicate through shared memory

Memory

P P P P

Processors

6

Simple Example

 Count the number of 3’s in an array.

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0v

n=16 count=5

Serial code:

int *v;
int n;
int count;

void count3s () {
count = 0;
for (int i=0; i<n; i++)

if (v[i]==3)
count++;

}

Calvin Lin, The University of Texas at Austin 4

7

Simple Example: Parallelization

 Each thread is responsible for counting the 3’s in some portion of the
array.

 With n elements and t threads, each thread is responsible for n/t array
elements.

2 3 0 2 3 3 1 0 0 1 3 2 2 3 1 0v

n=16 t=4

 Thread 0 Thread 1 Thread 2 Thread 3

8

Simple Example

int t;

void count3s() {
count = 0;

/* Create t threads */
for (i=0; i<t; i++)

/*
* Each thread calls count3s_thread with
* parameter i
*/

thread_create(count3s_thread, i);

/* Wait for threads to terminate */
for (i=0; i<t; i++)

thread_join();
}

Calvin Lin, The University of Texas at Austin 5

9

Simple Example (cont)

void count3s_thread(int id) {

/* Determine portion of array to work on */
int n_per_thread = n/t;
int start = id * n_per_thread;

/* Count the 3’s in my portion of array */
for (i=start; i<start+n_per_thread; i++)

if (v[i]==3)
count++;

}

 This code will not work because of a data race at the increment of count

 Are there any problems with this code?

10

Data Races

Definition

A data raceoccurs when two or more threads can modify the same memory

location at the same time

Example
The statement count++ is actually translated into 3 instructions:

1. Load count in register

2. Increment register contents
3. Store register in count

Thread 1 Thread 2

 time

 count = 0

 count = 1

load

increment
store

load
increment

store
 count = 1

Calvin Lin, The University of Texas at Austin 6

11

Mutual Exclusion

 Solution

– To prevent the data race, we must ensure that at all times at most one
thread is executing the count++ statement

– We can guarantee mutual exclusion by using a data object called a mutex
(also called alock)

12

Mutexes

 Usage

– A mutex is a data object with
– 2 states: locked and unlocked

– 2 methods: lock and unlock

– Critical code is then bracketed by calls to lock and unlock a mutex

mutex m;

mutex_lock(m);

mutex_unlock(m);

 critical
 section

Calvin Lin, The University of Texas at Austin 7

13

Simple Example—Second Try

mutex m;

void count3s_thread(int id) {
/* Count 3’s in portion of array */

for (i=start; i<start+n_per_thread; i++)
if (v[i]==3) {

mutex_lock(m);
count++;
mutex_unlock(m);

}
}

 Locking overhead is killing performance

Execution time in seconds
on SPARCstation 20

n=8 million, count=2 million

 Performance

 serial try2

 0.91

 5.02

 6.81

 t=1 t=2

 Does this code work correctly? Yes.

14

Simple Example—Third Try

int private_count[16];

void count3s_thread(int id) {
for (i=start; i<start+n_per_thread; i++)

if (v[i]==3)
private_count[id]++;

mutex_lock(m);
count += private_count[id];
mutex_unlock(m);

}

Execution time in seconds
on SPARCstation 20

n=8 million, count=2 million

 We have false sharing
 Performance

 serial try2

 0.91 1.15

 t=1 t=2

 0.91

 Each thread counts in a private counter, then combines at the end

 What’s going on?

Calvin Lin, The University of Texas at Austin 8

15

False Sharing

 Cache consistency

– On our hardware, caches are kept consistent

– False sharing occurs when 2 or more threads modify different data on the
same cache line

Memory

P P

Cache Cache
 private_count[0]

 private_count[1]

 Thread modifying
 private_count[0]

 Thread modifying
 private_count[1]

 The effort expended to maintain consistency can hurt performance

 private_count[0]

 private_count[1]

16

struct padded_int {
int value;
char padding[32];

} private_count[16];

void count3s_thread(int id) {
for (i=start; i<start+n_per_thread; i++)

if (v[i]==3)
private_count[id].value++;

mutex_lock(m);
count += private_count[id].value;
mutex_unlock(m);

}

Simple Example—Success at Last

Execution time in seconds
on SPARCstation 20

n=8 million, count=2 million

 Performance

 serial try2

 0.91
 0.51

 t=1 t=2

 0.91

 Allocate padding between private counters

Notice how convoluted our

data structure has become

Calvin Lin, The University of Texas at Austin 9

17

Lessons

 Programming with Pthreads is difficult

– The parallel code is considerably more complicated than its sequential
counterpart

– Getting things right can be tricky

– Getting good performance can be trickier

– Getting good performance can require knowledge of low-level details

18

But Wait, There’s More!

 More complexity

– Threads typically need to synchronize, which can be tricky

Calvin Lin, The University of Texas at Austin 10

19

Synchronization Error

 Railway Safety

“When two trains approach each other at a crossing, both shall come to a

full stop and neither shall start up again until the other has gone.”

– Statute passed by the Kansas state legislature

[A Treasury of Railroad Folklore, Botkin and Harlow, eds,

Bonanza Books, p. 381]

20

Synchronization Using Condition Variables

 Condition variables

– Allow a thread to wait until some event has occurred

 Example

– Suppose a thread wants to eat an apple on a table

– If there is no apple on the table, the thread can wait until an apple is

placed on the table

Calvin Lin, The University of Texas at Austin 11

21

Semantics of Condition Variables

 Conceptually, the condition variable is a gatekeeper

 signaler
 signaler

 waiter
 waiter

 waiter

 The Gate

 open the gate
 if there’s a waiter

 no effect if
 there is no

 waiter

 wait in line
 until the gate

is opened

22

Correct usage:
pthread_mutex_lock (&lock); // Protect apples with lock
while (apples==0) {

The lock is relinquished while the thread waits
pthread_cond_wait (&cond, &lock);

// The lock is re-acquired here
// Loop to see if there are any apples to eat

}
pthread_mutex_unlock (&lock);

Does the following code work?

if (apples==0) { // Wait for more apples
pthread_cond_wait (&cond, &lock);
// Wakeup and eat an apple

Protecting Condition Variables

 Error: Some other thread
may awaken first and eat the

last apple

 Hoare vs. Hansen Semantics

Calvin Lin, The University of Texas at Austin 12

23

Should the signaling thread use the lock, too?

Signaling Thread Waiting Thread

 time
 pthread_mutex_lock (&lock)

 while (apples==0)
 apples = 1;

 pthread_cond_signal (&cond);

 pthread_cond_wait (&cond); // Signal is dropped
 // Will wait forever

The correct code for the waiting thread:

pthread_mutex_lock (&lock); // Protects apples
while (apples==0) {

pthread_cond_wait (&cond, &lock);
}
pthread_mutex_unlock (&lock); // Now safe to eat an apple

Protecting Condition Variables (cont)

Yes.

24

Signaling Thread Waiting Thread
 pthread_mutex_lock(&lock)
 while (apples==0)

 pthread_mutex_lock(&lock);
 pthread_cond_wait (&cond);

 apples = 1;
 // Lock is released here

pthread_mutex_lock(&lock);
apples = 1;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&lock);

Protecting Condition Variables (cont)

 Case 1:

 Case 2:

 // No apples available

 pthread_cond_signal(&cond);
 pthread_mutex_unlock(&lock);

 while (apples==0)

 pthread_mutex_unlock(&lock);
 // Apples now available

Signaling Thread Waiting Thread

pthread_mutex_lock(&lock);
while (apples==1)

// Apples now available
pthread_mutex_unlock(&lock);

Calvin Lin, The University of Texas at Austin 13

25

pthread_mutex_lock(&lock);
apples = 1;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&lock);

Exercise: Where Is It Safe to Signal?

 Code 1:

pthread_mutex_lock(&lock);
pthread_cond_signal(&cond);
apples = 1;
pthread_mutex_unlock(&lock);

 Code 2:

pthread_mutex_lock(&lock);
apples = 1;
pthread_mutex_unlock(&lock);
pthread_cond_signal(&cond);

 Code 3:

26

Where Is It Safe to Signal?

 All of the three code fragments are correct.

 The condition variable must be signaled either (1) while the lock is
held or (2) after the final result of the logical condition has been
changed.

Calvin Lin, The University of Texas at Austin 14

27

pthread_mutex_lock(&lock);
apples = 1;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&lock);

All Three Codes are Correct

 Code 1:

pthread_mutex_lock(&lock);
pthread_cond_signal(&cond);
apples = 1;
pthread_mutex_unlock(&lock);

 Code 2:

pthread_mutex_lock(&lock);
apples = 1;
pthread_mutex_unlock(&lock);
pthread_cond_signal(&cond);

 Code 3:

 Which code will
perform the best?

28

Exercise: Which Will Perform Best?

 Code 3 will perform best.

– Gives the awakening threads the best chance of not blocking on the lock

– Has the shortest critical section

pthread_mutex_lock(&lock);
apples = 1;
pthread_mutex_unlock(&lock);
pthread_cond_signal(&cond);

 Code 3:

Calvin Lin, The University of Texas at Austin 15

29

Lessons

 Added complexity

– Synchronization with condition variables can be tricky

– It’s often hard to reason about race conditions

30

What About Optimizations?

 Consider barrier synchronization

– All threads agree to wait at a certain point in the code

– e.g. “Let’s all meet at Largo da Oliveira, and then we’ll choose a
restaurant”

Calvin Lin, The University of Texas at Austin 16

31

 barrier()

 barrier()

The Problem

 Synchronization leads to idle time

– Threads arrive at different times

– All except the last one has to wait

Thread 1Thread 0

 time

 Idle time

32

 barrier()

 barrier()

Hiding the Cost of Synchronization

 Optimization

– Do useful work while waiting

– Overlap synchronization latency with computation

– How do we accomplish this?

Thread 1Thread 0

 time
 Do useful

work

Calvin Lin, The University of Texas at Austin 17

33

 Basic idea

– Separate initiation from completion

– No thread completesuntil all threads have initiated

 Example: Split-phase barrier
– Initiation: barrier.arrive()

– Completion: barrier.wait()

/* Initiate synchronization */
barrier.arrive();

/* Do useful work */

/* Complete synchronization */
barrier.wait();

Split-Phase Operations

34

Example: Relaxation

We start with an array of n+2 values: n interior values and 2 boundary values.

At each iteration, we replace each interior value with the average of its 2

neighbor values.

Relaxation on 2D and 3D arrays is used in practice to solve systems of

differential equations such as the Navier-Stokes equations for fluid flow

 0.00 0.34 0.86 0.21 0.65 0.11 0.43 0.97 0.51 1.00

 interior values boundary value boundary value

 n=8

Calvin Lin, The University of Texas at Austin 18

35

Parallel Relaxation

double *val, *new; // Values array
int n; // Number of interior values
int t; // Number of threads
int iterations; // Iterations to perform

thread_main(int self) {
int n_per_thread = n / t;
int start = self * n_per_thread;

// For each iteration
for (int i=0; i<iterations; i++) {

// Update values
for (int j=start; j<start+n_per_thread; j++)

new[j] = (val[j-1] + val[j+1]) / 2.0;
swap(new, val);
barrier(); // Synchronize

}
} Can we use split-phase barriers to reduce synchronization costs?

36

Parallel Relaxation—A Closer Look

 Consider an individual thread’s work
– Each thread is responsible for updating n/t values at each iteration

– Each thread accesses 2 additional neighbor values:

– The neighbor values are modified by the left and right neighbors, so
the access and update of these neighbor values must be synchronized

– The local values are only accessed by this thread, so they require no
synchronization

 0.86 0.21 0.65 0.11 0.43 0.97

 local values neighbor
value

 neighbor
value

n/t local
values

Calvin Lin, The University of Texas at Austin 19

37

Relaxation with Split-Phase Barriers

thread_main(int self) {
...
// For each iteration
for (int i=0; i<iterations; i++) {

// Update neighbor values
int j = start;
val[j] = (val[j-1] + val[j+1]) / 2.0;
j = start + n_per_thread –1;
val[j] = (val[j-1] + val[j+1]) / 2.0;

barrier.arrive(); // Initiate barrier

// Update local values
for (j=start+1; j<start+n_per_thread_-1; j++)

new[j] = (val[j-1] + val[j+1]) / 2.0;
swap(new, val);
barrier.wait(); // Complete barrier

}
}

38

Split-Phase Barrier

class Barrier {
int nThreads;
int count = 0;
pthread_mutex_t lock;
pthread_cond_t all_here;

public:
Barrier (int t);
~Barrier (void);

// Initiate barrier
void arrive (void);

// Check if done
int done (void);

// Block until done
void wait (void);

};

int Barrier::done (void) {
int rval;
pthread_mutex_lock (&lock);

// Done if the count is zero
rval = !count;

pthread_mutex_unlock (&lock);
return rval;

};

Calvin Lin, The University of Texas at Austin 20

39

Split-Phase Barrier

void Barrier::arrive (void) {
pthread_mutex_lock (&lock);

count++; // Another thread has arrived
// If last thread arrives, then wake up any waiters
if (count==nThreads) {

pthread_cond_broadcast (&all_here);
count = 0;

}
pthread_mutex_unlock (&lock);

};
void Barrier::wait (void) {

pthread_mutex_lock (&lock);

// If not done, then wait
if (count!=0)

pthread_cond_wait (&all_here, &lock);

pthread_mutex_unlock (&lock);
};

 This code will
not work!

 What’s wrong?

40

Deadlock

Thread 0 Thread 1

 time

 barrier.arrive()

 barrier.arrive()

count

 barrier.wait()

 barrier.arrive()

 barrier.wait()
 barrier.wait()

 0

 1

 0

 1

 Both threads are now in pthread_cond_wait() ,

 so we have deadlock

 What caused the problem?

 Two different instances of the barrier share the same value of count

Calvin Lin, The University of Texas at Austin 21

41

Split-Phase Barrier—Revisited

class Barrier {
int nThreads;
int count;
int phase; // current phase
pthread_mutex_t lock;
pthread_cond_t all_here;

public:
Barrier (int t);
~Barrier (void);
// Initiate barrier and return phase
int arrive (void);
// Check if phase p is done
int done (int phase);
// Block until phase p is done
void wait (int phase);

};

Keep track of the current phase. The arrive() method returns the current
phase, which is then passed into the done() and wait() methods

42

Split-Phase Barrier—Revisited (cont)

int Barrier::arrive (void) {
int p;
pthread_mutex_lock (&lock);

p = phase; // Get phase
count++; // Another thread has arrived

// If last thread to arrive,
// then wake up any waiters and go to next phase
if (count==nThreads) {

pthread_cond_broadcast (&all_here);
count = 0;
phase = 1 – phase;

}

pthread_mutex_unlock (&lock);
return p;

};

Calvin Lin, The University of Texas at Austin 22

43

Split-Phase Barrier—Revisited (cont)

int Barrier::done (int p) {
int rval;
pthread_mutex_lock (&lock);

// Done if phase has changed
rval = (phase != p);

pthread_mutex_unlock (&lock);
return rval;

};
void Barrier::wait (int p) {

pthread_mutex_lock (&lock);

// If not done, then wait
while (p==phase)

pthread_cond_wait (&all_here, &lock);

pthread_mutex_unlock (&lock);
};

44

Deadlock Problem Resolved

Thread 0 Thread 1

 time

 barrier.arrive()

 barrier.arrive()

count

 barrier.wait(0)

 barrier.arrive()

 barrier.wait(1)
 barrier.wait(0)

 0

 1

 0

 1

 Deadlock does not occur: Thread 0’s call to barrier.wait(0) returns
without waiting.

 We can now distinguish between the first barrier and the second barrier

phase
 0

 1

Calvin Lin, The University of Texas at Austin 23

45

Relaxation Revisited

thread_main(int self) {
int phase
...
// For each iteration
for (int i=0; i<iterations; i++) {

// Update neighbor values
int j = start;
val[j] = (val[j-1] + val[j+1]) / 2.0;
j = start + n_per_thread –1;
val[j] = (val[j-1] + val[j+1]) / 2.0;

phase = barrier.arrive(); // Inititate barrier

// Update local values
for (j=start+1; j<start+n_per_thread_-1; j++)

new[j] = (val[j-1] + val[j+1]) / 2.0;
swap(new, val);
barrier.wait(phase); // Complete barrier

}
}

The logic of our code is more complex now

46

Relaxation Performance

 1

 13.1

 2

 13.1

 4 8

 6.6 6.6

 4.6
 3.8

 16

 4.0
 3.1

 2.9
 2.5

 P

 TP
Execution time in seconds on
14-processor UltraSPARC 4000
n=10 million, iterations=10

 Not split phase

 Split phase

Calvin Lin, The University of Texas at Austin 24

47

Split Phase Operations

 Relaxed synchronization

– With standard barriers, how far out of synch can two threads become?

– With split-phase barriers, how far out of synch can two threads become?

Thread 1

Thread 0 time
 barrier()

 barrier()

 iteration 1

 iteration 2

48

Split Phase Operations (cont)

 Relaxed synchronization

– About 1.5 iterations. Looser synchronization ⇒ improved performance

Thread 1

Thread 0

 time

 arrive()
 neighbor 1

 local 1

 wait()

 arrive()
 neighbor 2

 local 2

 wait()

Calvin Lin, The University of Texas at Austin 25

49

Split Phase Operations (cont)

 A common technique

– Split-phase message receive

– Split-phase reductions

– Reductions apply some operator, such as
compute-minimum, across some set of
values

– Asynchronous I/O

– Asynchronous Remote Procedure Call

– Speculative loads in the IA64

– . . .

 Increase parallelism
 Increased complexity

50

Pthreads Summary

 Advantages

– Powerful

 Disadvantages

– Low-level

– Error-prone

– Limited to shared memory machines

Calvin Lin, The University of Texas at Austin 26

51

Outline

 1. State of the art

– Pthreads

– OpenMP

– MPI

 2. Moving forward

– High level languages

– PGAS languages

– Global view abstractions

 3. Modern languages

– Chapel

52

OpenMP Interface

 Easy to use

– Popular and easy to use

– Supports C/C++ and Fortran

– Assumes a shared memory platform

 Limited model

– FORALL loops– loop iterations can execute independently

– Reductions

– Tasks

– Atomic sections

 http://www.openmp.org

Calvin Lin, The University of Texas at Austin 27

53

MPI—Message Passing Interface

 Goals

– Portable communication interface

– Support efficient communication across a wide variety of machines

– Provide a reliable communication interface

 History

– Defined in 1992 by a large consortium (60 individuals, 40 organizations)

– Widely adopted

– Many implementations, including vendor-specific implementations

– Widely used

54

The Basic Model

 Distributed memory

– Each process sees only a local address space

– Processes send messages to communicate with other processes

 Data structures

– Described as a collection of Fragmented Views, rather than a single Global
View

– Programmer must make the mapping

 Global View

 0 1 2 3

 4 5 6 7

 8 9 10 11

 12 13 14 15

 Fragmented View (4 processes)

 0 1

 0 1

 0 1

 0 1

 2 3 2 3

 2 3 2 3

Calvin Lin, The University of Texas at Austin 28

55

Basic Model (cont)

 SPMD code

– Write one piece of code that executes on each processor

 Fragmented View (4 processes)

 0 1

 0 1

 0 1

 0 1

 2 3 2 3

 2 3 2 3

56

Communication in MPI

 Two types

– Collective communication

– Point-to-point communication

Calvin Lin, The University of Texas at Austin 29

57

Collective Communication

 Barriers

– Pure synchronization

 Gather

– Collect data from all processes to a single process

 Scatter

– Spread data from one process to all other processes

 Reductions

– Compute max, min, sum of values that reside on multiple processes

– Can also compute some user-defined function

 Scans

– Parallel prefix

58

Communication in MPI

 Two types

– Collective communication

– Point-to-point communication

Calvin Lin, The University of Texas at Austin 30

59

 do {
/* do something interesting */
if (rank==0) {

 scanf (“%d”, &value);

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 else {

 MPI_Recv (&value, 1, MPI_INT, rank-1, 0,

 MPI_COMM_WORLD);

 if (rank < size-1)

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 printf (“Process %d got %d\n”, rank, value);

 } while (value >= 0);

MPI Example: Point-to-Point Communication

 The address of
the data to send

 The length of
the data to send

 The type of
the data

 Message
destination

 Message
tag

60

 do {
/* do something interesting */
if (rank==0) {

 scanf (“%d”, &value);

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 else {

 MPI_Recv (&value, 1, MPI_INT, rank-1, 0,

 MPI_COMM_WORLD);

 if (rank < size-1)

 MPI_Send (&value, 1, MPI_INT, rank+1, 0,

 MPI_COMM_WORLD);

 }

 printf (“Process %d got %d\n”, rank, value);

 } while (value >= 0);

MPI Example: Point-to-Point Communication

 What does
this code do?

 Observations

– Communication code is large and cumbersome

– Fragmented View requires more mental effort ⇒more difficult to reason about correctness

Calvin Lin, The University of Texas at Austin 31

61

Round Trip Message Latency

 Latency
– Much copying and synchronization, eg, MPI_Bsend()

 Sending Process Receiving ProcessKernel

 send

 recv

Kernel

 latency network

 time

62

Lower Latency Communication

 Non-buffered sends

– The send returns when data has been copied to the kernel

 Sending Process Receiving ProcessKernel

 send

 recv

Kernel

 latency

 wait
 network

 time

Calvin Lin, The University of Texas at Austin 32

63

The Cost of Non-Buffered Communication

 Danger

– Buffer might be overwritten before being copied to the kernel

– The wrong data will be sent!

 Sending Process Receiving ProcessKernel

 isend

 recv

Kernel

 network

 wait

 time

64

Design Issue

 The dilemma

– Buffered sends are safer but slower

– Non-buffered sends are faster but more dangerous

– Which form of point-to-point communication should MPI provide?

Calvin Lin, The University of Texas at Austin 33

65

The Challenge

 The challenge facing MPI

– Different clients have different needs

– No single implementation is ideal for all situations

 Real World Analogy: The Spork

spoon part

fork part

knife part

66

The Solution: Interface Bloat

 Common approach

– Create lots of specialized routines

– Let user choose the appropriate routine

Calvin Lin, The University of Texas at Austin 34

67

 12 ways (modes) to perform point-to-point communication:

Interface Bloat in MPI

Normal

Nonblock

Persistent

Normal Sync Ready Buffered

MPI_Send

MPI_Send_init MPI_Ssend_init

MPI_Isend

MPI_Rsend_init MPI_Bsend_init

MPI_Ssend

MPI_Issend MPI_Irsend

MPI_Rsend MPI_Bsend

MPI_Ibsend

Short term problems:
– Complex interface

– Specialized routines can be difficult to use

68

Interface Bloat in MPI

– No performance portability

– Application becomes less general

Long term problems:

Calvin Lin, The University of Texas at Austin 35

69

Problems with Interface Bloat

 Premature optimization

– Requires manual changes to application source

– Embeds optimizations into application source

 Long Term Problems

– Complicates maintenance

– Defeats portability

70

Summary

 Pthreads and MPI

– Difficult to use

– Each has its own issues

– Both too low-level

– Both widely used

 OpenMP

– Easier to use

– Supports both data and task parallelism

– Much more limited in its support for data parallelism

Calvin Lin, The University of Texas at Austin 36

71

Outline

 1. State of the art

– Pthreads

– OpenMP

– MPI

 2. Moving forward

– High level languages

– PGAS languages

– Global view abstractions

 3. Modern languages

– Chapel

72

Moving Forward

 What are our goals?

– Correctness: Help programmers write correct code

– Performance: Help programmers write efficient code

– Portability: Help programmers write portable code

 Is portability important?

– Long-lived software needs to run efficiently on many different platforms

– Why?

– There’s a wide variety of hardware platforms

– Hardware continues to change rapidly

 Why not just restrict ourselves to multi-core?

– As the number of cores per chip grows, the architecture needs to change

– eg. On-chip latencies grow

– eg. Cost of cache coherence grows with the number of cores

Calvin Lin, The University of Texas at Austin 37

73

Recall: Premature Optimization

 The root of all evil

– Requires manual changes to the application source code

– Embeds optimizations into the source code

 Long term implications

– Complicates maintenance

– Defeats portability

 What’s the fundamental problem?

– MPI is too low level

– MPI over-specifies the communication

– It specifies whatto send, whento send it, and howto send it by
specifying details of the implementation, such as the marshalling of
data, synchronization, and buffering

 Solution?

– Use a high level language (HLL)

74

Compiling High Level Languages

 Strategy

– Compile to MPI to get portability

 Problem

– Different machines favor the use of different MPI routines

Calvin Lin, The University of Texas at Austin 38

75

 m3
 m1

 m2

Compiling Higher Level Languages (HLL)

 Option 1: Portable compiler

– Compile to an intermediate language, such as C+MPI

 HLL

 C + MPI

 Advantages

– Intermediate code is portable

– Compiler has a single backend

 Disadvantages
– Favors portability over

performance

– We’re still using the MPI
interface, so we have the same
performance portability
problems that an MPI
programmer faces

 HLL
 Compiler

76

 m3
 m1

 m2

Compiling Higher Level Languages

 Option 2: Machine-specific compiler

– Create multiple backends for multiple target platforms

 HLL

 C2 + MPI

 HLL
 Compiler1

 C1 + MPI C3 + MPI

 Advantages

– Can exploit machine
assumptions

 Disadvantages

– Intermediate code is not portable

– Lotsof work in building
backends

 How can we resolve this conflict between portability and performance? How can we resolve this conflict between portability and performance?

Calvin Lin, The University of Texas at Austin 39

77

Ironman Interface [Chamberlain, et al, 1997]

 A communications interface used by ZPL

– A set of four calls which define constraints
about possible communication

– Individually, each call has little meaning

– Collectively, they can be bound to different
mechanisms for different machines

 The name is not based on the comic book

– It’s a reference to Strawman, Woodman,
Tinmanand Ironman, . . .

which were different versions of the Ada
language specification

78

The Ironman Interface

 DR– Destination Ready

– Earliest point at which the destination can
receive data

 SR– Source Ready

– Earliest point at which the sender can
transmit data

 DN– Destination Needed

– Latest point at which destination can
receive data

 SV– Sender Volatile

– Latest point by which data must be
transmitted from the sender

 time
 DR

 DN

 SR

 SV

 Sending

 Process

 Receiving

 Process

Calvin Lin, The University of Texas at Austin 40

79

The Ironman Interface (cont)

 DR– Destination Ready

– Assuming that the destination receives data
into a buffer, this receive cannot occur until
the buffer has been allocated, and it cannot
occur while the buffer’s data is in use

 SR– Source Ready

– The data cannot be sent until its been
computed by the sender

 DN– Destination Needed

– The point at which the destination needs to
use the data that it’s receiving

 SV– Source Volatile

 time
 DR

 SR

 DN

 SV

– If the sender is re-using the buffer, then this is the point at which the
source’s data is no longer valid

80

Example Bindings

 Synchronous Sends

-SV()-

Receive data in P2DN()-

-SR()Send data from P1

-DR()-

Effect at P2SPMD codeEffect at P1

 Q: Can we bind DR() to a receive?

 A: No. It would be legal from P2’s point of view, but it would cause

 deadlock in an SPMD program in which processes both send and

receive data

Calvin Lin, The University of Texas at Austin 41

81

Example Bindings II

 Non-blocking Sends and non-blocking Receives

-SV()
Wait for send to

complete

Wait for receive at
P2DN()-

-SR()
Non-blocking send

from P1

Non-blocking
receive in P2DR()-

Effect at P2SPMD codeEffect at P1

82

Example Bindings III

 User-Defined Callback Routines

-SV()-

Wait for receive to
completeDN()-

-SR()Send data

Post receive
callbackDR()Synchronize

Effect at P2SPMD codeEffect at P1

 Usage

– This binding is similar to the use of non-blocking receives, but when the
message is complete, a user-defined callback routine is called to un-
marshall the data as it arrives

Calvin Lin, The University of Texas at Austin 42

83

Example Bindings IV

 One-sided Communication

-SV()-

SynchronizeDN()Synchronize

-SR()
Put data into
destination

SynchronizeDR()Synchronize

Effect at P2SPMD codeEffect at P1

 Usage

– Some hardware allows one processor to Put data onto another processor’s
memory

– This mechanism is one-sided because the destination process is not
involved

84

Static Analysis– Identify Uses and Defs

 Example HLL code

 X := D;

 . . .

 S := . . .;

 . . .

 D := S@east

 Y := D;

 . . .

 S := . . .;

 DR();

 SR();

 DN();

SV();

 Last use of Dbefore data transfer
 Cannot receive into D before this point

 Last modification of Sbefore data transfer
 Cannot send D before this point

 Need to receive D by this point
 Next of use of Dafter data transfer

 Need to send S by this point
 Next of modification of Safter data transfer

Calvin Lin, The University of Texas at Austin 43

85

Static Analysis (cont)

 Example HLL code

 X := D;

 . . .

 S := . . .;

 . . .

 D := S@east;

 Y := D;

 . . .

 S := . . .;

 DR();

 SR();

 DN();

SV();

 Overall compilation scheme

– Identify the need for communication

– Use dependence analysis to identify Defs and
Uses, which define the four points of interest

– Perform code motion to push the four locations
apart

– Assign static Communication Tags to each set
of Ironman calls

– These tags are used to maintain state across
calls at runtime

– Insert parameters to each call
 Array language

semantics help by
reducing control

flow

86

Performance Summary for ZPL Using Ironman

 Extra procedure call overhead

– Less than 1%

 On an Intel Paragon

– Can use MPI, which maps well to Intel’s NX message passing library

 On the Cray T3E

– One-sided communication is 60-66% faster than MPI

 Key benefit

– Ironman produces code that is both portable and efficient

Calvin Lin, The University of Texas at Austin 44

87

The Larger Lessons?

 Higher level languages

– Can use richer and more complicated interfaces

– No human would want to use the Ironman interface

 Abstract interfaces

– Abstract interfaces can convey moreinformation than lower-level
interfaces

– Abstract interfaces can be both portableand efficient—but they need to
convey the right information

– In the case of communication, they should specify whatand whento
transfer data and nothing more

88

Outline

 1. State of the art

– Pthreads

– OpenMP

– MPI

 2. Moving forward

– High level languages

– PGAS languages

– Global view abstractions

 3. Modern languages

– Chapel

Calvin Lin, The University of Texas at Austin 45

89

High Level Languages

 What should our HLL look like?

90

Observations

 Global address space

– Makes it easier to reason about correctness

 Partitioned data

– Essential for reasoning about locality, which is essential for obtaining
good performance

 PGAS languages

– Provide a Partitioned Global Address Space

– Offers the best of both worlds

– Raise the level of abstraction over Pthreads and MPI

Calvin Lin, The University of Texas at Austin 46

91

First Generation PGAS Languages

 Three languages

– Co-Array Fortran (CAF, formerly known as F--)

– Unified Parallel C (UPC)

– Titanium (Ti)

 Shared basic idea

– Extend a sequential language with support for distributed arrays

– Remove low-level communication details

 http://upc.lbl.gov/

 http://www.co-array.org/

 http://titanium.cs.berkeley.edu/

 Much more convenient
 than MPI

 Much more convenient
 than MPI

92

 Philosophy

– What is the smallest change required to make Fortran 90 an effective
parallel language?

 Distributed vs. local arrays

– Usual Fortran90 syntax for local arrays

– Use square brackets to refer to distributed arrays

 real, dimension(n,n)[p,*] :: a,b

 do k=1,n

 do q=1,p

a(i,j)[myP, myQ] = b(i,k)[myP,q]

 real, dimension(n,n)[p,*] :: a,b

 do k=1,n

 do q=1,p

a(i,j)[myP, myQ] = b(i,k)[myP,q]

4D data structure

– Distinguishes local data from remote data

– Provides a Fragmented View of data, so
programmer must still make mental mapping to
what should be a single 2D array

Co-Array Fortran (CAF)

Calvin Lin, The University of Texas at Austin 47

93

Unified Parallel C

 Basic idea

– Extends C

– Data can be either privateor shared

– Four cases for pointers:

– Private pointer pointing to private data

– Private pointer pointing to shared data

– Shared pointer pointing to private data

– Shared pointer pointing to shared data

int myCount;

shared int count;

int myCount;

shared int count;

int *p1;

shared int *p2;

int *shared p3;

shared int *shared p4;

int *p1;

shared int *p2;

int *shared p3;

shared int *shared p4;

94

Titanium

 Object oriented

– Extends Java

– Provides region-based memory allocation as well as garbage collected
memory

– Restricts various other OO features

Calvin Lin, The University of Texas at Austin 48

95

Limitations of First Generation PGAS Languages

 Two issues

– They focus on array-based data-parallelism

– No support for irregular data structures

– No support for task-parallelism

– They provide a Fragmented View of data

96

Types of Parallelism

 Data parallelism

– Create parallelism by dividing the data and performing roughly the same
operations on each piece of the data

 Task parallelism

– Create parallelism by dividing the functions and applying them to the data at
the same time

– eg. pipeline parallelism

 Data parallelism is often more scalable

– Example: The latest presidential inauguration

– Cost: $160M

– Solution: parallelize the cooking of the meals

Calvin Lin, The University of Texas at Austin 49

97

Parallel Chefs

 Data parallelism

– Scales with the number
of guests

 Task parallelism

– Scales with the number
of tasks

 We often want both

98

Limitations of First Generation PGAS Languages

 Two issues

– They focus on array-based data-parallelism

– No support for irregular data structures

– No support for task-parallelism

– They provide a Fragmented View of data

– Can we articulate the problems that this causes?

Calvin Lin, The University of Texas at Austin 50

99

Outline

 1. State of the art

– Pthreads

– OpenMP

– MPI

 2. Moving forward

– High level languages

– PGAS languages

– Global view abstractions

 3. Modern languages

– Chapel

100

Programmer Productivity

 Global View abstractions

– Language constructs that produce the same result regardless of the number
of processors that is used

– Allows programmers to debug sequentially

– Leads to more clear and concise code

Calvin Lin, The University of Texas at Austin 51

101

Global View vs. Fragmented View

 Example

– 3 point stencil of a vector

Global view

=

+

(

)/2

Fragmented view

 B = (A@east + A@west)/2;

102

Global View vs. Fragmented View

 Example

– 3 point stencil of a vector

Global view

=

+

(

)/2

Fragmented view

=

+

=

+

=

)/2 +)/2)/2

(((

 B = (A@east + A@west)/2;

Calvin Lin, The University of Texas at Austin 52

103

Global View vs. Fragmented View

 Example

– 3 point stencil of a vector

Global View
begin
region R = [1..n];
var n : int;

A, B : [R] real;
procedure main()
[R] begin

B := (A@west+A@east)/2;
end;

end;

Fragmented View
def main() {

var n: int = 1000;
var locN: int = n/numProcs;
var a, b: [0..locN+1] real ;

if (iHaveRightNeighbor) {
send (right, a(locN));
recv (right, a(locN+1));

}
if (iHaveLeftNeighbor) {

send (left, a(1));
recv (left, a(0));

}
forall i in 1..locN {

b(i) = (a(i-1) + a(i+1))/2;
}

}

104

Global View vs. Fragmented View

 Example

– 3 point stencil of a vector

Global View
begin
region R = [1..n];
var n : int;

A, B : [R] real;
procedure main()
[R] begin

B := (A@west+A@east)/2;
end;

end;

Fragmented View
def main() {

var n: int = 1000;
var locN: int = n/numProcs;
var a, b: [0..locN+1] real ;
var innerLo : int = 1;
var innerHi: int = locN;

if (iHaveRightNeighbor) {
send (right, a(locN));
recv (right, a(locN+1));

} else {
innerHi = locN-1;

}
if (iHaveLeftNeighbor) {

send (left, a(1));
recv (left, a(0));

} else {
innerLo = 2;

}
forall i in innerLo .. innerHi {

b(i) = (a(i-1) + a(i+1))/2;
}

}

 Communication becomes
geometrically more
complex for higher-
dimensional arrays

 Assumes numProcsdivides n;
 a more general version would

require additional effort

Calvin Lin, The University of Texas at Austin 53

105

Consider therprj3 stencil from NAS MG

=

+ +
=

= w
0

= w
1

= w
2

= w
3

 8

 12

 6

 1

106

NAS MG rprj3 stencil in Fortran+MPI

subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer n1, n2, n3, kk
double precision u(n1,n2,n3)
integer axis

if(.not. dead(kk))then
do axis = 1, 3

if(nprocs .ne. 1) then
call sync_all()
call give3(axis, +1, u, n1, n2, n3, kk)
call give3(axis, -1, u, n1, n2, n3, kk)
call sync_all()
call take3(axis, -1, u, n1, n2, n3)
call take3(axis, +1, u, n1, n2, n3)

else
call comm1p(axis, u, n1, n2, n3, kk)

endif
enddo

else
do axis = 1, 3

call sync_all()
call sync_all()

enddo
call zero3(u,n1,n2,n3)

endif
return
end

subroutine give3(axis, dir, u, n1, n2, n3, k)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1, i2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1, 2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-1,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-1)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

return
end

subroutine take3(axis, dir, u, n1, n2, n3)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif
endif

return
end

subroutine comm1p(axis, u, n1, n2, n3, kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id
integer i, kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1,

i2,i3)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-

1,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-

1)
enddo

enddo
endif

dir = -1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,

2,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

endif

do i=1,nm2
buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)

enddo

dir = -1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

endif

dir = +1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif

return
end

subroutine rprj3(r,m1k,m2k,m3k,s,m1j,m2j,m3j,k)
implicit none
include 'cafnpb.h'
include 'globals.h'

integer m1k, m2k, m3k, m1j, m2j, m3j,k

double precision r(m1k,m2k,m3k), s(m1j,m2j,m3j)
integer j3, j2, j1, i3, i2, i1, d1, d2, d3, j
double precision x1(m), y1(m), x2,y2

if(m1k.eq.3)then
d1 = 2

else
d1 = 1

endif

if(m2k.eq.3)then
d2 = 2

else
d2 = 1

endif

if(m3k.eq.3)then
d3 = 2

else
d3 = 1

endif

do j3=2,m3j-1
i3 = 2*j3-d3
do j2=2,m2j-1

i2 = 2*j2-d2
do j1=2,m1j

i1 = 2*j1-d1
x1(i1-1) = r(i1-1,i2-1,i3) + r(i1-1,i2+1,i3)

> + r(i1-1,i2, i3-1) + r(i1-1,i2, i3 +1)
y1(i1-1) = r(i1-1,i2-1,i3-1) + r(i1-1,i2-1,i3+1)

> + r(i1-1,i2+1,i3-1) + r(i1-1,i2+1,i3 +1)
enddo
do j1=2,m1j-1

i1 = 2*j1-d1
y2 = r(i1, i2-1,i3-1) + r(i1, i2-1,i3+1)

> + r(i1, i2+1,i3-1) + r(i1, i2+1,i3+1)
x2 = r(i1, i2-1,i3) + r(i1, i2+1,i3)

> + r(i1, i2, i3-1) + r(i1, i2, i3+1)
s(j1,j2,j3) =

> 0.5D0 * r(i1,i2,i3)
> + 0.25D0 * (r(i1-1,i2,i3) + r(i1+1,i2,i3) + x2)
> + 0.125D0 * (x1(i1-1) + x1(i1+1) + y2)
> + 0.0625D0 * (y1(i1-1) + y1(i1+1))

enddo
enddo

enddo
j = k-1
call comm3(s,m1j,m2j,m3j,j)
return
end

Calvin Lin, The University of Texas at Austin 54

107

Performance Notes
Here we see the advantage
of ZPL’s Ironman interface

ZPL also performs better at smaller
scales where communication is not the
bottleneck ⇒ higher-level languages
need not sacrifice performance

Cray T3E

Similar observations—and more dramatic
ones—have been made using more recent
architectures, languages, and benchmarks

108

Generality Notes

Each ZPL binary supports:
• an arbitrary load-time problem size
• an arbitrary load-time # of
processors
• 1D/2D/3D data decompositions

This MPI binary only supports:
•a static 2k problem size
•a static 2j # of processors
•a 3D data decomposition

The code could be rewritten to relax
these assumptions, but at what
cost?
- in performance?
- in development effort? Cray T3E

Calvin Lin, The University of Texas at Austin 55

109

Code Size Notes

242

70

202

87

566

0

200

400

600

800

1000

1200

F+MPI ZPL
Language

L
in

es
 o

f
C

o
d

e

communication
declarations
computation

More importantly, the ZPL
is easier to write, read,
modify, and maintain

 The ZPL is 6.4× shorter because it uses Global

 View abstractions

 ⇒ Little/no code for communication

 ⇒ Little/no code for array bookkeeping

110

Critiquing ZPL

 Strengths

– Concise

– Global View abstractions

– Helps programmers reason about performance

 Weaknesses

– Focuses on regular data-parallelism

– Is it too restrictive?

– Unfamiliar to many programmers

Calvin Lin, The University of Texas at Austin 56

111

Outline

 1. State of the art

– Pthreads

– OpenMP

– MPI

 2. Moving forward

– High level languages

– PGAS languages

– Global view abstractions

 3. Modern languages

– Chapel

112

Chapel Goals

 Goals

– Support general parallel programming

– Provide global view abstractions

– Provide support for locality

– Reduce gap between mainstream languages and parallel languages

Calvin Lin, The University of Texas at Austin 57

113

History– High Productivity Computing Systems Program

 DARPA HPCS Program (2002)

– Realization that programmer productivity is critical

– Sought to increase programmer productivity by 10× by 2010

– Productivity = Performance +

Programmability +

Portability +

Robustness

 Last two languages standing

– Chapel (Cray)

– X10 (IBM)

 Includes both hardware
 and language design

114

Previous Languages– Two Extremes

Target Machine
pthreads

Expose
Implementing
Mechanisms

“Why is everything so painful?”

Target MachineTarget Machine

Higher-Level
Abstractions

“Why do my hands feel tied?”

 MPI

 HPF

 ZPL

 OpenMP

Calvin Lin, The University of Texas at Austin 58

115

Multi-Resolution Language Design

 The Chapel approach

– Allow the language to be used at multiple levels of abstraction

– Provide high-level features and automation for convenience

– Provide the ability to drop down to lower, more manual levels

– Use appropriate separation of concerns to keep these layers clean

Distributions
Data parallelism

Task Parallelism
Base Language

Target Machine

Locality Control
Stealable Tasks

Suspendable Tasks
Run to Completion

Target Machine

Thread per Task

task scheduling

Garbage Collection
Region-based

Target Machine

Malloc/Free

memory management

language concepts

116

Chapel In a Nutshell

 Rich base language

– Standard stuff: types, expressions, statements, functions, modules

– Object-orientation: value- and reference-based classes (optional)

– Iterators: functions that generate a stream of return values

– Latent types: ability to omit types of variables, arguments, etc.

 Task parallelism

– Task creation: structured and unstructured task creation

– Synchronization: through sync variables, transactional memory

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Calvin Lin, The University of Texas at Austin 59

117

Chapel In a Nutshell (cont)

 Data parallelism

– Data structures: global view of dense, sparse, associative arrays

– Operators: forall loops, promotion of scalar operators/functions, …

 Locality

– Locales: language concept for reasoning about machine locality

– On clauses:ability to place tasks, variables on specific locales

– Distributions: recipes for implementing distributed arrays on locales

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

118

Task Parallelism

 Basic features

– Spawn a task

– Begin , cobegin , coforall

– Synchronize tasks

– Synch, full/empty bits, atomic sections, . . .

 Example of task creation:
begin DoThisTask();

WhileContinuing();

TheOriginalThread();

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Calvin Lin, The University of Texas at Austin 60

119

Domains

D

domain:a first-class index set

var m = 4, n = 8;

var D: domain (2) = [1..m, 1..n];

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

120

Domains

D

Inner

domain:a first-class index set

var m = 4, n = 8;

var D: domain (2) = [1..m, 1..n];

var Inner: subdomain (D) = [2..m-1, 2..n-1];

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Calvin Lin, The University of Texas at Austin 61

121

Domains: Some Uses

 Declaring arrays:
var A, B: [D] real ;

 Iteration (sequential or parallel):
for ij in Inner { … }

or: forall ij in Inner { … }

 Array Slicing:
A[Inner] = B[Inner];

 Array reallocation:
D = [1..2*m, 1..2*n];

A
B

B
A

D

AInner BInner

1 2 3 4 5 6

7 8 9 10 11 12

D

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

122

Data Parallelism: Other Domains

“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”

(1,0)

(10,24)

(1,0)

(10,24)

(1,0)

(10,24)dense strided sparse

graphs
associative

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Calvin Lin, The University of Texas at Austin 62

123

Data Parallelism: Domain Uses

“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”

Domains are used to declare arrays…

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

124

Data Parallelism: Domain Uses

…to iterate over index sets…
forall ij in StrDom {

DnsArr(ij) += SpsArr(ij);

}

“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Calvin Lin, The University of Texas at Austin 63

125

Data Parallelism: Domain Uses

…to slice arrays…
DnsArr[StrDom] += SpsArr[StrDom];

“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

126

Data Parallelism: Domain Uses

…and to reallocate arrays
StrDom = DnsDom by (2,2);

SpsDom += genEquator();

“steve”
“mary”
“wayne”
“david”
“john”
“samuel”
“brad”

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Calvin Lin, The University of Texas at Austin 64

127

Locality: Locales

locale: architectural unit of locality

– Represents both a processor and local memory

– Threads within a locale have ~uniform access to local memory

– Memory within other locales is accessible, but at a price

– e.g., a multicore processor or SMP node could be a locale

– Programmers can declare, manipulate, and use locales

L0 L1 L2 L3
MEM MEM MEM

MEM MEM MEM

MEM MEM MEM

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

128

Locality: Task Placement

on clauses: indicate where tasks should execute

Either in a data-driven manner…

computePivot(lo, hi, data);

cobegin {

on data(lo) do Quicksort(lo, pivot, data);

on data(pivot) do Quicksort(pivot, hi, data);

}

…or by naming locales explicitly

cobegin {

on TaskALocs do computeTaskA(…);

on TaskBLocs do computeTaskB(…);

on Locales(0) do computeTaskC(…);

}

0 1

0

2 3 4 5 6 7

computeTaskA()

computeTaskB()

computeTaskC()

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

Calvin Lin, The University of Texas at Austin 65

129

Locality: Domain Distribution

Domains may be distributed across locales
var D: domain (2) distributed Block on CompGrid = …;

A distribution implies…

…ownership of the domain’s indices (and its arrays’ elements)

…the default work ownership for operations on the domains/arrays

Chapel provides…

…a standard library of distributions (Block, Recursive Bisection, …)

…the means for advanced users to author their own distributions

CompGrid

0 1 2 3

4 5 6 7

D A
B

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

130

Locality: Domain Distributions

 A distribution must implement

– The mapping from indices to locales

– The per-locale representation of domain indices and array elements

– The compiler’s target interface for lowering global-view operations

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

“steve”
“mary”
“wayne”
“david”
“john”
“pete”
“peg”

Calvin Lin, The University of Texas at Austin 66

131

Locality: Distributions Overview

 Distributions define a mapping

– From the user’s global view operations to the fragmented implementation
for a distributed memory machine

 Users can implement custom distributions
– Written using task parallel features, on clauses, domains/arrays

– Must implement standard interface:

– Allocation/reallocation of domain indices and array elements

– Mapping functions (e.g., index-to-locale, index-to-value)

– Iterators: parallel/serial × global/local

– Optionally, communication idioms

 Chapel’s standard library of distributions

– Written using the same mechanism as user-defined distributions

– Tuned for different platforms to maximize performance

Distributions

Data Parallelism

Task Parallelism

Base Language

Target Machine

Locality Control

132

Distributions vs. Domains

Q1: Why distinguish between distributions and domains?

Q2: Why do distributions map an index spacerather than a fixed index set?

A: To permit several domains to share a single distribution

– Amortizes the overheads of storing a distribution

– Supports trivial domain/array alignment and compiler optimizations

const D : …distributed B1 = [1..8],

outerD: …distributed B1 = [0..9],

innerD: subdomain (D) = [2..7],

slideD: subdomain (D) = [4..6];

L0 L1 L2

Shared distributions
support trivial alignment

of these domains

Calvin Lin, The University of Texas at Austin 67

133

Distributions vs. Domains

Q1: Why distinguish between distributions and domains?

Q2: Why do distributions map an index spacerather than a fixed index set?

A: To permit several domains to share a single distribution

– Amortizes the overheads of storing a distribution

– Supports trivial domain/array alignment and compiler optimizations

const D : …distributed B1 = [1..8],

outerD: …distributed B1 = [0..9],

innerD: subdomain (D) = [2..7],

slideD: subdomain (D) = [4..6];

L0 L1 L2

When each domain is
given its own distribution,
the compiler cannot reason
about alignment of indices

134

Recall the NAS MG rprj3 stencil in Fortran+MPI

subroutine comm3(u,n1,n2,n3,kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer n1, n2, n3, kk
double precision u(n1,n2,n3)
integer axis

if(.not. dead(kk))then
do axis = 1, 3

if(nprocs .ne. 1) then
call sync_all()
call give3(axis, +1, u, n1, n2, n3, kk)
call give3(axis, -1, u, n1, n2, n3, kk)
call sync_all()
call take3(axis, -1, u, n1, n2, n3)
call take3(axis, +1, u, n1, n2, n3)

else
call comm1p(axis, u, n1, n2, n3, kk)

endif
enddo

else
do axis = 1, 3

call sync_all()
call sync_all()

enddo
call zero3(u,n1,n2,n3)

endif
return
end

subroutine give3(axis, dir, u, n1, n2, n3, k)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3, k, ierr
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1, i2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1, 2,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-1,i3)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-1)

enddo
enddo

buff(1:buff_len,buff_id+1)[nbr(axis,dir,k)] =
> buff(1:buff_len,buff_id)

endif
endif

return
end

subroutine take3(axis, dir, u, n1, n2, n3)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer buff_id, indx

integer i3, i2, i1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
if(dir .eq. -1)then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i2=2,n2-1

indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 2)then
if(dir .eq. -1)then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i3=2,n3-1
do i1=1,n1

indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif
endif

if(axis .eq. 3)then
if(dir .eq. -1)then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

else if(dir .eq. +1) then

do i2=1,n2
do i1=1,n1

indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif
endif

return
end

subroutine comm1p(axis, u, n1, n2, n3, kk)
use caf_intrinsics

implicit none

include 'cafnpb.h'
include 'globals.h'

integer axis, dir, n1, n2, n3
double precision u(n1, n2, n3)

integer i3, i2, i1, buff_len,buff_id
integer i, kk, indx

dir = -1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 3 + dir
buff_len = nm2

do i=1,nm2
buff(i,buff_id) = 0.0D0

enddo

dir = +1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(n1-1,

i2,i3)
enddo

enddo
endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id)= u(i1,n2-

1,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,n3-

1)
enddo

enddo
endif

dir = -1

buff_id = 2 + dir
buff_len = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
buff_len = buff_len + 1
buff(buff_len,buff_id) = u(2, i2,i3)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,

2,i3)
enddo

enddo
endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
buff_len = buff_len + 1
buff(buff_len, buff_id) = u(i1,i2,2)

enddo
enddo

endif

do i=1,nm2
buff(i,4) = buff(i,3)
buff(i,2) = buff(i,1)

enddo

dir = -1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(n1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,n2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,n3) = buff(indx, buff_id)

enddo
enddo

endif

dir = +1

buff_id = 3 + dir
indx = 0

if(axis .eq. 1)then
do i3=2,n3-1

do i2=2,n2-1
indx = indx + 1
u(1,i2,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 2)then
do i3=2,n3-1

do i1=1,n1
indx = indx + 1
u(i1,1,i3) = buff(indx, buff_id)

enddo
enddo

endif

if(axis .eq. 3)then
do i2=1,n2

do i1=1,n1
indx = indx + 1
u(i1,i2,1) = buff(indx, buff_id)

enddo
enddo

endif

return
end

subroutine rprj3(r,m1k,m2k,m3k,s,m1j,m2j,m3j,k)
implicit none
include 'cafnpb.h'
include 'globals.h'

integer m1k, m2k, m3k, m1j, m2j, m3j,k

double precision r(m1k,m2k,m3k), s(m1j,m2j,m3j)
integer j3, j2, j1, i3, i2, i1, d1, d2, d3, j
double precision x1(m), y1(m), x2,y2

if(m1k.eq.3)then
d1 = 2

else
d1 = 1

endif

if(m2k.eq.3)then
d2 = 2

else
d2 = 1

endif

if(m3k.eq.3)then
d3 = 2

else
d3 = 1

endif

do j3=2,m3j-1
i3 = 2*j3-d3
do j2=2,m2j-1

i2 = 2*j2-d2
do j1=2,m1j

i1 = 2*j1-d1
x1(i1-1) = r(i1-1,i2-1,i3) + r(i1-1,i2+1,i3)

> + r(i1-1,i2, i3-1) + r(i1-1,i2, i3 +1)
y1(i1-1) = r(i1-1,i2-1,i3-1) + r(i1-1,i2-1,i3+1)

> + r(i1-1,i2+1,i3-1) + r(i1-1,i2+1,i3 +1)
enddo
do j1=2,m1j-1

i1 = 2*j1-d1
y2 = r(i1, i2-1,i3-1) + r(i1, i2-1,i3+1)

> + r(i1, i2+1,i3-1) + r(i1, i2+1,i3+1)
x2 = r(i1, i2-1,i3) + r(i1, i2+1,i3)

> + r(i1, i2, i3-1) + r(i1, i2, i3+1)
s(j1,j2,j3) =

> 0.5D0 * r(i1,i2,i3)
> + 0.25D0 * (r(i1-1,i2,i3) + r(i1+1,i2,i3) + x2)
> + 0.125D0 * (x1(i1-1) + x1(i1+1) + y2)
> + 0.0625D0 * (y1(i1-1) + y1(i1+1))

enddo
enddo

enddo
j = k-1
call comm3(s,m1j,m2j,m3j,j)
return
end

Calvin Lin, The University of Texas at Austin 68

135

NAS MG rprj3 stencil in Chapel

 Chapel solution

– Exploits first class domains

def rprj3(S, R) {

const Stencil = [-1..1, -1..1, -1..1],

w: [0..3] real = (0.5 , 0.25 , 0.125 , 0.0625),

w3d = [(i,j,k) in Stencil] w((i!=0) + (j!=0) + (k!=0));

forall ijk in S.domain do

S(ijk) = + reduce [offset in Stencil]

(w3d(offset) * R(ijk + offset*R.stride));

}

136

Chapel Summary

 Generality

– Extends the notion of data parallelism beyond dense arrays

– Supports task parallelism as well as data parallelism

 Performance

– Allows programmers to encode locality into their programs

 Correctness and programmability
– Raises the level of abstract

– Provides a Global View of data

Calvin Lin, The University of Texas at Austin 69

137

X10

 Overview

– Another PGAS language

– Supports both task parallelism and data parallelism

– Support for data parallelism focuses on dense arrays

– Strange memory semantics: Local vs. remote memory

138

Final Thoughts

 Exciting times

– Parallelism is ubiquitous

– New willingness to consider new languages

– Chapel and X10 offer nice solutions

 Work in parallel computing

– Your choice: You can be the bug or the windshield

Calvin Lin, The University of Texas at Austin 70

139

 Thank You!

