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CPU and GPU Comparison

Longhorn supercomputer at TACC
Xeon E5540 Quadro FX 5800

Cores 4 (superscalar) 240 (simple)

Active threads 2 per core 32 per core

Frequency 2.53 GHz 1.3 GHz

Peak performance* 81 GFlop/s 933 GFlop/s

Peak bandwidth 25.6 GB/s 102 GB/s

Maximum power 80 W 189 W

Price (Dec. 2010) $800 $2800

Main memory size 24 GB 4 GB
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GPU Advantages over CPU

 Peak performance

 11.5x more single-precision operations per second

 Main memory bandwidth

 4x more bytes transferred per second

 Cost-, energy-, and size-efficiency

 3.3x more performance per dollar

 4.9x more performance per watt

 6.5x more performance per area

(Based on peak values of Longhorn hardware)
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GPU Disadvantages over CPUs

 Programming and tuning are more difficult

 More error prone and time intensive

 Harder to get close to peak performance

 Program needs to map well to hardware

 Hardware requirements for high performance

 Large amount of data parallelism

 High degree of regularity (code and data accesses)

 Little data transfer between CPU and GPU
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Mapping Code to GPUs

 Only some regular codes are easy to port

 Matrix based, regular access patterns, many ops/word

 Dense matrix operations (level 2 and 3 BLAS)

 Stencil codes (PDE solvers)

 Many important scientific programs are irregular

 Build, traverse, and update dynamic data structures 
(trees, graphs, linked lists, priority queues, etc.)

 E.g., n-body simulation, data mining, SAT solving, 
social networks, discrete-event simulation, meshing
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Project Goal

 Want to find general ways to efficiently run 
irregular codes on GPUs

 Allows much broader range of applications
to leverage the benefits of GPU execution

 Approach

 Now: manually implement and optimize important 
irregular applications on GPUs to gain experience

 Later: examine these and other case studies to extract 
common implementation and optimization strategies
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Example: N-Body Simulation

 Irregular Barnes Hut algorithm

 Repeatedly builds unbalanced tree and
performs complex traversals on it

 Our implementation

 Designed for GPUs (not just port of CPU code)

 First GPU implementation of entire BH algorithm

 Results

 1 GPU is faster than 16 CPUs (128 cores) on this code

 GPU has better architecture for this irregular algorithm
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Calling GPU Kernels

 Kernels are functions that run on the GPU

 Callable by CPU code

KernelName<<<blocks, threads>>>(arg1, arg2, ...);

 Launch configuration (programmer selectable)

 Special parameters: number of blocks and threads

 Kernel call automatically spawns m blocks with n threads 
(i.e., m*n threads total) that run a copy of the kernel code
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Block and Thread Allocation

 Blocks assigned to SMs

 Streaming multiprocessors

 Threads assigned to PEs

 Processing elements

 Hardware limits

 8 resident blocks per SM

 1024 resident threads 
per SM

 512 threads per block

 Above limits are lower if 
register or shared mem
usage is too high

 65535 blocks per kernel
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GPU Hardware

 30 SMs with 8 PEs each

 SMs have fast barriers, thread voting, shared 
memory, and special instruction units

 Very fast thread communication within block

 Slow communication between blocks (DRAM atomics)
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Warp-Based Execution

 32 contiguous threads form a warp

 Execute same instruction in same cycle (or disabled)

 At any time, only one warp is executed per SM

 Warps are scheduled out-of-order w.r.t. each other

 Thread divergence (reduction of parallelism)

 Some threads in warp jump to different PC than others

 Hardware runs subsets of warp until they re-converge
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GPU Memories

 Memory types
 Registers (r/w per thread)
 Local mem (r/w per thread)
 Shared mem (r/w per block)

 Software controlled cache

 Global mem (r/w per kernel)
 No hardware cache

 Constant mem (r per kernel)

 Separate from CPU
 CPU can access global and 

constant mem via PCIe bus
 Requires explicit transfer
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Fast Memory Accesses

 Coalesced main memory access (16x bandwidth)

 Under some conditions, HW combines multiple half-
warp memory accesses into a single coalesced access

 64-byte aligned 64-byte line (any word permutation)

 Bank-conflict-free shared memory access (16x)

 No superword alignment requirement

 16 different banks per half warp or same word
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Coalesced Main Memory Accesses
single coalesced access            one and two coalesced accesses

NVIDIA                                                                                                     NVIDIA

Writing Efficient CUDA Programs 16



Outline

 Introduction

 GT200 architecture

 Barnes Hut algorithm

 CUDA implementation

 Experimental results

 Conclusions

An Efficient GPU Implementation of the Irregular Barnes Hut N-Body Algorithm 17

NASA/JPL-Caltech/SSC



N-Body Simulation

 Time evolution of physical system

 System consists of bodies

 “n” is the number of bodies

 Bodies interact via pair-wise forces

 Many systems can be modeled in this way

 Star/galaxy clusters (gravitational force)

 Particles (electric force, magnetic force)
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Barnes Hut Idea

 Precise force calculation

 Requires O(n2) operations (O(n2) body pairs)

 Barnes and Hut (1986)

 Algorithm to approximately compute forces

 Bodies’ initial position & velocity are also approximate

 Requires only O(n log n) operations

 Idea is to “combine” far away bodies

 Error should be small because force 1/dist2
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Barnes Hut Algorithm

 Set bodies’ initial position and velocity

 Iterate over time steps
1. Compute bounding box around bodies

2. Subdivide space until at most one body per cell
 Record this spatial hierarchy in an octree

3. Compute mass and center of mass of each cell

4. Compute force on bodies by traversing octree
 Stop traversal path when encountering a leaf (body) or an 

internal node (cell) that is far enough away

5. Update each body’s position and velocity
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Compute bounding box around all bodies → tree root
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Build Tree (Level 2)
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Subdivide space until at most one body per cell
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Build Tree (Level 3)
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Subdivide space until at most one body per cell
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Build Tree (Level 4)
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Subdivide space until at most one body per cell
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Build Tree (Level 5)
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Subdivide space until at most one body per cell
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Compute Cells’ Center of Mass
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For each internal cell, compute sum of mass and weighted average
of position of all bodies in subtree; example shows two cells only
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Compute Forces
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Compute force, for example, acting upon green body

An Efficient GPU Implementation of the Irregular Barnes Hut N-Body Algorithm



Compute Force (short distance)
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Scan tree depth first from left to right; green portion already completed
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Compute Force (down one level)
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Red center of mass is too close, need to go down one level
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Compute Force (long distance)
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Yellow center of mass is far enough away
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Compute Force (skip subtree)
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Therefore, entire subtree rooted in the yellow cell can be skipped
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Pseudocode
bodySet = ...

foreach timestep do {

bounding_box = new Bounding_Box();

foreach Body b in bodySet {

bounding_box.include(b);

}

octree = new Octree(bounding_box);

foreach Body b in bodySet {

octree.Insert(b);

}

cellList = octree.CellsByLevel();

foreach Cell c in cellList {

c.Summarize();

}

foreach Body b in bodySet {

b.ComputeForce(octree);

}

foreach Body b in bodySet {

b.Advance();

}

}
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Complexity and Parallelism
bodySet = ...

foreach timestep do {                // O(n log n) + ordered sequential

bounding_box = new Bounding_Box();

foreach Body b in bodySet {        // O(n) parallel reduction

bounding_box.include(b);

}

octree = new Octree(bounding_box);

foreach Body b in bodySet {        // O(n log n) top-down tree building

octree.Insert(b);

}

cellList = octree.CellsByLevel();

foreach Cell c in cellList {       // O(n) + ordered bottom-up traversal

c.Summarize();

}

foreach Body b in bodySet {        // O(n log n) fully parallel

b.ComputeForce(octree);

}

foreach Body b in bodySet {        // O(n) fully parallel

b.Advance();

}

}
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Efficient GPU Code

 Coalesced main memory accesses

 Little thread divergence

 Enough threads per block
 Not too many registers per thread

 Not too much shared memory usage

 Enough (independent) blocks
 Little synchronization between blocks

 Little CPU/GPU data transfer

 Efficient use of shared memory
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Main BH Implementation Challenges

 Based on irregular tree-based data structure

 Load imbalance

 Little coalescing

 Complex recursive traversals

 Recursion not allowed

 Lots of thread divergence

 Memory-bound pointer-chasing operations

 Not enough computation to hide latency
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Six GPU Kernels
Read initial data and transfer to GPU

for each timestep do {
1. Compute bounding box around bodies

2. Build hierarchical decomposition, i.e., octree

3. Summarize body information in internal octree nodes

4. Approximately sort bodies by spatial location (optional)

5. Compute forces acting on each body with help of octree

6. Update body positions and velocities

}

Transfer result from GPU and output
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Global Optimizations

 Make code iterative (recursion not supported)

 Keep data on GPU between kernel calls

 Use array elements instead of heap nodes

 One aligned array per field for coalesced accesses
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c0

c2 c4 c1

b5 ba c3 b6 b2 b7 b0 c5

b3 b1 b8 b4 b9

bodies (fixed) cell allocation direction

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba c5 c4 c3 c2 c1 c0. . .

Global Optimizations (cont.)

 Maximized thread count (rounded to warp size)

 Maximized resident block count (all SMs used)

 Pass kernel parameters through constant memory

 Use special allocation order

 Alias arrays (56 B/node)

 Use index arithmetic

 Persistent blocks & threads

 Unroll loops over children
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main memory

threads

shared memory

threads

shared memory

threads

shared memory

threads t1 t2

shared memory

threads t1

shared memory

barrier

barrier

. . .

warp 1

barrier

barrier

warp 1 warp 2 warp 3 warp 4

warp 1 warp 2

Kernel 1: Bounding Box

 Optimizations

 Equal sized chunks

 Fully coalesced

 Fully cached

 No bank conflicts

 Minimal divergence

 Built-in min and max

 2 red/mem, 6 red/bar

 1 atomic inc per block

 512 threads per SM
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*

Kernel 2: Build Octree

 Optimizations

 Load-balance bodies

 Cache root in registers

 Only lock leaf “pointers”

 Light-weight lock release

 No re-traverse after lock 
acquire failure

 Throttle lock polling

 288*2 threads per SM

Top-down tree building
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Kernel 2: Build Octree (cont.)
// initialize

cell = find_insertion_point(body);  // nothing locked, cell cached

child = get_insertion_index(cell, body);

if (child != locked) {  // skip atomic if already locked

if (child == atomicCAS(&cell[child], child, lock)) {

if (child == null) {  // fast path (frequent)

cell[child] = body;  // insert body (releases lock)

} else {  // slow path (infrequent)

new_cell = ...;  // atomically get next unused cell

// insert the existing and new body into new_cell

__threadfence();  // make new_cell subtree visible

cell[child] = new_cell;  // insert subtree (releases lock)

}

success = true;  // flag showing insertion succeeded

}

}

__syncthreads();  // wait for other warps
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Architectural Advantage

 Thread throttling

 Avoids likely useless work, in particular expensive 
memory polling operations to acquire a lock

 Speeds up threads that successfully acquired a lock 
because more bandwidth is available to them

 Hardware support

 Thread divergence enforces throttling within warp

 Fast HW barriers make warp throttling possible in SW
(CPU barriers are implemented in SW via memory)
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3 4 1 2 3 4

scan direction

. . .

Kernel 3: Summarize Subtrees

Bottom-up tree traversal

 Optimizations
 Load-balance cells

 No parent “pointers”

 Scan avoids deadlock

 Partially coalesced

 Use mass as flag + fence
 No locks, no atomics

 Cache unready “children”

 Automatic throttling

 Piggyback on traversal
 Count bodies in subtrees

 Move nulls to back

 256 threads per SM
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Kernel 3: Summarize Subtrees (cont.)
// initialize

if (missing == 0) {  // new cell, get child info

// initialize center of gravity

for (/*iterate over existing children*/) {

if (/*child is ready*/) {

// add its contribution to center of gravity

} else {

// cache child index

missing++;

} } }

if (missing != 0) {  // try to get missing child info

do {

if (/*last cached child is now ready*/) {

// remove from cache and add its contribution to center of gravity

missing--;

}

} while (/*missing changed*/ && (missing != 0));  // exit to avoid deadlock

}

if (missing == 0) {  // got all info, update cell info

// store center of gravity

__threadfence();  // make sure center of gravity is visible

// store cumulative mass (indicates cell is ready)

success = true;  // local flag indicating that computation for cell is done

}
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Kernel 4: Sort Bodies (optional)

Top-down tree traversal

 Optimizations

 (Similar to Kernel 3)

 Load-balance cells

 Scan avoids deadlock

 Use data field as flag
 No locks, no atomics

 Use counts from Kernel 3

 Automatic throttling

 512 threads per SM
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Kernel 4: Force Calculation
Top-down prefix traversal

 Optimizations
 Load balanced

 Use built-in rsqrt

 Optimizations (cont.)
 Group similar work together

 Uses sorting to minimize union 
of prefixes in warp

 Early out (nulls in back)

 Traverse whole union to avoid 
divergence (thread voting)

 Lane 0 reads data for entire 
warp, no sync needed

 Lane 0 controls iteration stack 
for entire warp (fits in cache)

 Cache tree-level-based data

 384*2 threads per SM
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Architectural Advantages

 Coalesced memory accesses & lockstep execution

 All threads in warp read same tree node at same time

 Only one mem access per warp instead of 32 accesses

 CPUs can only do this partially in highest shared cache 
level (no sync guarantee, still incurs p*L3 latency) 

 Warp-based execution

 Enables data sharing in warps w/o synchronization

 RSQRT instruction

 Quickly computes approximation of 1/sqrt(x)
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main memory

threads

main memory

warp 2

. . .

. . .

. . .

warp 1 warp 2 warp 3 warp 4 warp 1 warp 2

Kernel 5: Advance Bodies

 Optimizations

 Fully coalesced, no divergence

 Load balanced, 512 threads per SM

Straightforward streaming

An Efficient GPU Implementation of the Irregular Barnes Hut N-Body Algorithm 49



Related Work

 GPU-based n-body simulation

 GPU only: O(n2) algorithm

 Close to peak performance with blocking

 CPU + GPU: tree construction and traversal on CPU, 
force calculation (based on interaction lists) on GPU

 Problem size not restricted to GPU memory size

 Irregular GPU codes

 Mostly sparse matrix computations

 Parallel traversals of graphs built on CPU
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Evaluation Methodology

 Implementations

 Parallel CUDA C versions of Barnes Hut & O(n2) algorithm

 Parallel pthreads C version of BH algorithm (SPLASH-2)

 Systems and compilers

 Longhorn (TACC): Quadro FX 5800 GPU, 1.3 GHz, 30 SMs

 Nautilus (NICS): Xeon X7550 CPU, 2 GHz, 8 cores per CPU

 nvcc v3.0 (-O3 -arch=sm_13); icc v11.1 (-O3 -xW -pthread)

 Inputs and metric

 5k, 50k, 500k, and 5M star clusters (Plummer model)

 Median runtime of three experiments, excluding I/O
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Available Amorphous Data Parallelism

 Lots of bodies (K 1, 2, 5, 6) and cells (K 3, 4) can be 
processed in parallel (with only data dependencies)
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Nodes Touched per Activity (5M Input)

 K1: pair reduction

 K2: tree insertion

 K3: bottom-up step

 K4: top-down step

 K5: prefix traversal

 K6: integration step

 Max tree depth ≤ 22

 Cells have 3.1 children

 Prefix ≤ 6,315 nodes
(≤ 0.1% of 7.4 million)

 BH algorithm & sorting 
to min. union work well
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min avg max

kernel 1 1 2.0 2

kernel 2 2 13.2 22

kernel 3 2 4.1 9

kernel 4 2 4.1 9

kernel 5 818 4,117.0 6,315

kernel 6 1 1.0 1

neighborhood size



Runtime Comparison

 GPU vs. CPU (all inputs)

 GPU over 15x faster than 
CPU on irregular BH code

 GPU faster than 16 CPUs 
with 128 x86 cores

 BH vs. O(n2) algorithm

 O(n2) better for ≤ 10k

 GPU BH inefficiency

 5k input too small for 
7,680 to 23,040 threads

 Architectural advantage

 Low thread startup cost
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kernel 1 kernel 2 kernel 3 kernel 4 kernel 5 kernel 6 total O(n^2) alg

Gflop/s 37.62 0.30 0.70 0.00 93.94 18.29 75.79 304.90

Gbytes/s 75.00 1.38 2.95 4.69 3.13 73.17 2.91 0.95

runtime [s] 0.0 0.9 0.1 0.0 4.2 0.0 5.2 1,639.9

runtime [ms] kernel 1 kernel 2 kernel 3 kernel 4 kernel 5 kernel 6

CPU serial 50.0 2,160.0 430.0 310.0 382,840.0 990.0

GPU parallel 0.8 868.0 100.3 38.6 4,202.8 4.1

GPU percent 0.0% 16.6% 1.9% 0.7% 80.6% 0.1%

CPU/GPU 62.5 2.5 4.3 8.0 91.1 241.5

Kernel Performance for 5M Input

 Heterogeneous solution not useful
 PCIe transfer @ 3.13 GB/s requires over 130ms
 K2 is weak but also scales poorly on CPU (DS mismatch)
 K3 is a little slow but too short to move to CPU

 76 Gflop/s on irregular code (memory bound)
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Kernel Scaling on 5M Input

 Warps & blocks capped by register & cache use
 Warp scaling is good

 K4 almost saturates memory bandwidth with 1 warp
 K5 exhibits superlinear speedup due to OOO execution

 Block scaling is poor (memory bandwidth limited)
 Lot of computations help (K5), coalescing helps (K1,K6)
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kernel 1 kernel 2 kernel 3 kernel 4 kernel 5 kernel 6

warps 16 9 8 16 12 16

speedup 9.8 4.8 7.2 1.0 18.6 14.0

efficiency 61.0% 53.4% 90.3% 6.3% 154.8% 87.5%

blocks 30 60 30 30 60 30

speedup 14.8 1.2 2.9 1.7 15.4 6.0

efficiency 49.2% 2.0% 9.5% 5.6% 25.7% 19.9%
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Optimization Benefit by Kernel

 Warp throttling: helps while tree is small
 1 access per warp: can help (5.7x on older GPUs)
 Voting: much faster than cache-based reduction
 Sorting: helps a lot, helps more for larger inputs
 Divergence avoidance: absolutely paramount

 CPU-style coding causes divergence and de-coalescing
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throttling warp-based thread sorting of sync'ed

of mem access voting in bodies for execution

kernel 2 in kernel 5 kernel 5 kernel 5 in kernel 5

5,000 1.062 0.914 3.276 1.845 3.91

50,000 1.073 0.829 1.900 4.214 52.83

500,000 1.016 1.088 1.817 6.254 568.68

5,000,000 1.004 1.123 1.688 9.056 5088.67



Outline

 Introduction

 GT200 architecture

 Barnes Hut algorithm

 CUDA implementation

 Experimental results

 Conclusions
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Optimization Summary

 Exploit hardware features
 Fast synchronization & thread startup, special instructions, 

coalescing, even lockstep execution and thread divergence

 Minimize thread divergence

 Group similar work together & force synchronicity

 Minimize main memory accesses

 Share data within warp and throttle polling accesses

 Implement entire algorithm on GPU

 Avoids data transfers & data structure inefficiencies
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Optimization Summary (cont.)

 Use light-weight locking and synchronization

 Minimize locks, reuse fields, and use fence + store ops

 Combine traversals

 Perform multiple operations during single traversal

 Maximize parallelism and load balance

 Parallelize every step within and across SMs

 Maximize coalescing

 Partial coalescing due to array-based implementation
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Conclusions

 Irregularity does not necessarily prevent high-
performance on GPUs

 Entire Barnes Hut algorithm implemented on GPU

 Builds and traverses unbalanced octree

 One GPU outperforms 16 high-end 8-core Xeons

 Code directly for GPU, do not merely adjust CPU code

 Requires different data and code structures

 Benefits from different algorithmic modifications
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Future Work

 Implement other important irregular codes on GPUs

 Discover new implementation and optimization techniques

 Extract and generalize common strategies

 Enable entire classes of irregular programs to leverage the 
performance and energy/cost-efficiency of GPU execution
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