
Writing Efficient CUDA Programs

Martin Burtscher

Department of Computer Science

High-End CPUs and GPUs
Xeon X7550 Tesla C2050

Cores 8 (superscalar) 448 (simple)
Active threads 2 per core 48 per core
Frequency 2 GHz 1.15 GHz
Peak performance* 128 GFlop/s 1030 GFlop/s
Peak mem bandwidth 25.6 GB/s 144 GB/s
Maximum power 130 W 238 W
Price $2800 $2300

Tesla: late 2009
Xeon: early 2010

Writing Efficient CUDA Programs 2

Hightechreview.com
Thepcreport.net

GPU Advantages

 Performance

 8x as many instructions executed per second

 Main memory bandwidth

 5.6x as many bytes transferred per second

 Cost-, energy-, and size-efficiency

 9.8x as much performance per dollar

 4.4x as much performance per watt

 10.4x as much performance per area

(Based on peak values)

Writing Efficient CUDA Programs 3

GPU Disadvantages

 Clearly, we should be using GPUs all the time

 So why aren’t we?

 GPUs can only execute some types of code fast

 Need lots of data parallelism, data reuse, regularity

 GPUs are harder to program and tune than CPUs

 In part because of poor tool (compiler) support

 In part because of their architecture

 Requirements and arch are unlikely to change

Writing Efficient CUDA Programs 4

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 5

Thepcreport.net

CUDA Programming

 General-purpose (non-
graphics) programming

 Uses GPU as massively
parallel co-processor

 SIMT (single-instruction
multiple-threads)

 Thousands of threads
needed for full efficiency

 C/C++ with extensions
 Function launch

 Calling functions on GPU

 Memory management
 GPU memory allocation,

copying data to/from GPU

 Declaration qualifiers
 Device, shared, local, etc.

 Special instructions
 Barriers, fences, max, etc.

 Keywords
 threadIdx, blockIdx

Writing Efficient CUDA Programs 6

GPUCPU
PCIe

bus

Calling GPU Kernels

 Kernels are functions that run on the GPU

 Callable by CPU code

 CPU can continue processing while GPU runs kernel
KernelName<<<blocks, threads>>>(arg1, arg2, ...);

 Launch configuration (programmer selectable)

 Special parameters: number of blocks and threads

 Kernel call automatically spawns m blocks with n threads
(i.e., m*n threads total) that run a copy of the same function

 Normal function parameters: passed conventionally

 Different address space, should never pass CPU pointers

Writing Efficient CUDA Programs 7

Block and Thread Allocation

 Blocks assigned to SMs

 Streaming multiprocessors

 Threads assigned to PEs

 Processing elements

 Hardware limits

 8 resident blocks per SM

 768, 1024, or 1536
resident threads per SM

 512, 512, or 1024
threads per block

 Above limits are lower if
register or shared mem
usage is too high

 65535 blocks per kernel

Writing Efficient CUDA Programs 8

t0 t1 t2 … tm

Blocks

PE

Shared

Memory

MT IU

PE

Shared

Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

Adapted from NVIDIA

GPU Architecture

 1 to 30 SMs (with 8, 8, or 32 PEs per SM)

 SMs have fast barriers, thread voting, shared mem

 Very fast thread communication within block

 Slow communication between blocks (DRAM atomics)

Writing Efficient CUDA Programs 9

Global Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Adapted from NVIDIA

Block Scalability

 Hardware can assign blocks to SMs in any order

 A kernel with enough blocks scales across GPUs

 Not all blocks may be resident at the same time

Writing Efficient CUDA Programs 10

GPU with 2 SMs

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU with 4 SMs

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

Adapted from NVIDIA

Warp-Based Execution

 32 contiguous threads form a warp

 Execute same instruction in same cycle (or disabled)

 At any time, only one warp is executed per SM

 Warps are scheduled out-of-order w.r.t. each other

 Thread divergence (reduction of parallelism)

 Some threads in warp jump to different PC than others

 Hardware runs subsets of warp until they re-converge

Writing Efficient CUDA Programs 11

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Adapted from NVIDIA

GPU Memories

 Memory types

 Registers (r/w per thread)

 Local mem (r/w per thread)

 Shared mem (r/w per block)
 Software-controlled cache

 Global mem (r/w per kernel)

 Constant mem (r per kernel)

 Separate from CPU

 CPU can access global and
constant mem via PCIe bus

 Requires explicit transfer

Writing Efficient CUDA Programs 12

GPU

Global + Local Memory (DRAM)

Block (0, 0)

Shared Memory (SRAM)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory (SRAM)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

C

P

U Constant Memory (DRAM, cached)

Adapted from NVIDIA

Fast Memory Accesses

 Coalesced main memory access (16/32x faster)

 Under some conditions, HW combines multiple (half)
warp memory accesses into a single coalesced access

 CC 1.1: 64-byte aligned contiguous 4-byte words

 CC 1.3: 64-byte aligned 64-byte line (any permutation)

 CC 2.0: 128-byte aligned 128-byte line (cached)

 Bank-conflict-free shared memory access (16/32)

 No superword alignment or contiguity requirements

 CC 1.x: 16 different banks per half warp or same word

 CC 2.0: 32 different banks + one-word broadcast

Writing Efficient CUDA Programs 13

Coalesced Main Memory Accesses
single coalesced access one and two coalesced accesses*

NVIDIA NVIDIA

Writing Efficient CUDA Programs 14

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 15

NASA/JPL-Caltech/SSC

N-Body Simulation

 Time evolution of physical system

 System consists of bodies

 “n” is the number of bodies

 Bodies interact via pair-wise forces

 Many systems can be modeled in this way

 Star/galaxy clusters (gravitational force)

 Particles (electric force, magnetic force)

16Writing Efficient CUDA Programs

RUG

Cornell

Simple N-Body Algorithm

 Algorithm
Initialize body masses, positions, and velocities

Iterate over time steps {
Accumulate forces acting on each body

Update body positions and velocities based on force

}

Output result

 More sophisticated n-body algorithms exist
 Barnes Hut algorithm

 Fast Multipole Method (FMM)

Writing Efficient CUDA Programs 17

Key Loops (Pseudo Code)
bodySet = // input

for timestep do { // O(n2) sequential

foreach Body b1 in bodySet { // O(n2) parallel

foreach Body b2 in bodySet {

if (b1 != b2) {

b1.addInteractionForce(b2);

}

}

}

foreach Body b in bodySet { // O(n) parallel

b.Advance();

}

}

// output result

18Writing Efficient CUDA Programs

Force Calculation C Code
struct Body {

float mass, posx, posy, posz; // mass and 3D position

float velx, vely, velz, accx, accy, accz; // 3D velocity & accel

} *body;

for (i = 0; i < nbodies; i++) {
. . .

for (j = 0; j < nbodies; j++) {

if (i != j) {

dx = body[j].posx - px; // delta x

dy = body[j].posy - py; // delta y

dz = body[j].posz - pz; // delta z

dsq = dx*dx + dy*dy + dz*dz; // distance squared

dinv = 1.0f / sqrtf(dsq + epssq); // inverse distance

scale = body[j].mass * dinv * dinv * dinv; // scaled force

ax += dx * scale; // accumulate x contribution of accel

ay += dy * scale; az += dz * scale; // ditto for y and z

}

}
. . .

}
Writing Efficient CUDA Programs 19

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 20

GPU Suitability of N-Body Algorithm

 Lots of data parallelism
 Force calculations are independent
 Should be able to keep SMs and PEs busy

 Sufficient memory access regularity
 All force calculations access body data in same order*
 Should have lots of coalesced memory accesses

 Sufficient code regularity
 All force calculations are identical*
 There should be little thread divergence

 Plenty of data reuse
 O(n2) operations on O(n) data
 CPU/GPU transfer time is insignificant

Writing Efficient CUDA Programs 21

C to CUDA Conversion

 Two CUDA kernels

 Force calculation

 Advance position and velocity

 Benefits

 Force calculation requires over 99.9% of runtime

 Primary target for acceleration

 Advancing kernel unimportant to runtime

 But allows to keep data on GPU during entire simulation

 Minimizes GPU/CPU transfers

Writing Efficient CUDA Programs 22

C to CUDA Conversion
__global__ void ForceCalcKernel(int nbodies, struct Body *body, ...) {

. . .

}

__global__ void AdvancingKernel(int nbodies, struct Body *body, ...) {

. . .

}

int main(...) {

Body *body, *bodyl;

. . .

cudaMalloc((void**)&bodyl, sizeof(Body)*nbodies);

cudaMemcpy(bodyl, body, sizeof(Body)*nbodies, cuda…HostToDevice);

for (timestep = ...) {

ForceCalcKernel<<<1, 1>>>(nbodies, bodyl, ...);

AdvancingKernel<<<1, 1>>>(nbodies, bodyl, ...);

}

cudaMemcpy(body, bodyl, sizeof(Body)*nbodies, cuda…DeviceToHost);

cudaFree(bodyl);

. . .

}

Writing Efficient CUDA Programs 23

Indicates GPU kernel that CPU can call

Separate address spaces, need two pointers

Allocate memory on GPU

Copy CPU data to GPU

Copy GPU data back to CPUCall GPU kernel with 1 block

and 1 thread per block

Evaluation Methodology

 Systems and compilers
 CC 1.1: Quadro NVS 135M, nvcc 2.2

 1 SM, 8 PEs, 0.8 GHz, 768 resident threads

 CC 1.3: Quadro FX 5800, nvcc 3.2
 30 SMs, 240 PEs, 1.3GHz, 30720 resident threads

 CC 2.0: Tesla C2050, nvcc 3.2
 14 SMs, 448 PEs, 1.15 GHz, 21504 resident threads

 Inputs and metric
 1k, 10k, or 100k star clusters (Plummer model)

 Median runtime of three experiments, excluding I/O

Writing Efficient CUDA Programs 24

1-Thread Performance

 Problem size

 n=1000, step=1

 n=10000, step=1

 n=10000, step=1

 Slowdown rel. to CPU

 CC 1.1: 39.3

 CC 1.3: 72.4

 CC 2.0: 36.7

(Note: comparing different
GPUs to different CPUs)

 Performance

 1 thread is one to two
orders of magnitude
slower on GPU than CPU

 Reasons

 No caches (CC 1.x)

 Not superscalar

 Slower clock frequency

 No SMT latency hiding

Writing Efficient CUDA Programs 25

Using N Threads

 Approach

 Eliminate outer loop

 Instantiate n copies of inner loop, one per body

 Threading

 Blocks can only hold 512 or 1024 threads

 Up to 8 blocks can be resident in an SM at a time

 SM can hold 768, 1024, or 1536 threads

 We use 256 threads per block (greatest common divisor)

 Need multiple blocks

 Last block may not have full number of threads

Writing Efficient CUDA Programs 26

Using N Threads
__global__ void ForceCalcKernel(int nbodies, struct Body *body, ...) {

for (i = 0; i < nbodies; i++) {

i = threadIdx.x + blockIdx.x * blockDim.x; // compute i

if (i < nbodies) { // in case last block is only partially used

for (j = ...) {

. . .

}

}

}

__global__ void AdvancingKernel(int nbodies, struct body *body, ...) {

// same changes

}

#define threads 256

int main(...) {

. . .

int blocks = (nbodies + threads - 1) / threads; // compute block cnt

for (timestep = ...) {

ForceCalcKernel<<<1, 1blocks, threads>>>(nbodies, bodyl, ...);

AdvancingKernel<<<1, 1blocks, threads>>>(nbodies, bodyl, ...);

}

}

Writing Efficient CUDA Programs 27

N-Thread Speedup

 Relative to 1 GPU thread

 CC 1.1: 40 (8 PEs)

 CC 1.3: 7781 (240 PEs)

 CC 2.0: 6495 (448 PEs)

 Relative to 1 CPU thread

 CC 1.1: 1.0

 CC 1.3: 107.5

 CC 2.0: 176.7

 Performance

 Speedup much higher
than number of PEs
(5, 32, and 14.5 times)

 Due to SMT latency hiding

 Per-core performance

 CPU core delivers under
7.9, 4.4*, and 5* times as
much performance as a
GPU core (PE)

Writing Efficient CUDA Programs 28

structs in array

scalar arrays

Using Scalar Arrays

 Data structure conversion
 Arrays of structs are bad for coalescing
 Bodies’ elements (e.g., mass fields) are not adjacent

 Optimize data structure
 Use multiple scalar arrays, one per field (need 10)
 Results in code bloat but often much better speed

Writing Efficient CUDA Programs 29

Using Scalar Arrays
__global__ void ForceCalcKernel(int nbodies, float *mass, ...) {

// change all “body[k].blah” to “blah[k]”

}

__global__ void AdvancingKernel(int nbodies, float *mass, ...) {

// change all “body[k].blah” to “blah[k]”

}

int main(...) {

float *mass, *posx, *posy, *posz, *velx, *vely, *velz, *accx, *accy,*accz;

float *massl, *posxl, *posyl, *poszl, *velxl, *velyl, *velzl, ...;

mass = (float *)malloc(sizeof(float) * nbodies); // etc

. . .

cudaMalloc((void**)&massl, sizeof(float)*nbodies); // etc

cudaMemcpy(massl, mass, sizeof(float)*nbodies, cuda…HostToDevice); // etc

for (timestep = ...) {

ForceCalcKernel<<<1, 1>>>(nbodies, massl, posxl, ...);

AdvancingKernel<<<1, 1>>>(nbodies, massl, posxl, ...);

}

cudaMemcpy(mass, massl, sizeof(float)*nbodies, cuda…DeviceToHost); // etc

. . .

}

Writing Efficient CUDA Programs 30

Scalar Array Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Relative to struct

 CC 1.1: 1.00

 CC 1.3: 0.83

 CC 2.0: 0.96

 Performance

 Threads access same
memory locations, not
adjacent ones
 Never coalesced in CC 1.1

 Always combined but not
coalesced in CC 1.3 & 2.0

 Slowdowns presumably
due to DRAM banks

 Scalar arrays

 Still needed (see later)

Writing Efficient CUDA Programs 31

Constant Kernel Parameters

 Kernel parameters

 Lots of parameters due to scalar arrays

 All but one parameter never change their value

 Constant memory

 “Pass” parameters only once

 Copy them into GPU’s constant memory

 Performance implications

 Reduced parameter passing overhead

 Constant memory has hardware cache

Writing Efficient CUDA Programs 32

Constant Kernel Parameters
__constant__ int nbodiesd;

__constant__ float dthfd, epssqd, float *massd, *posxd, ...;

__global__ void ForceCalcKernel(int step) {

// rename affected variables (add “d” to name)

}

__global__ void AdvancingKernel() {

// rename affected variables (add “d” to name)

}

int main(...) {

. . .

cudaMemcpyToSymbol(massd, &massl, sizeof(void *)); // etc

. . .

for (timestep = ...) {

ForceCalcKernel<<<1, 1>>>(step);

AdvancingKernel<<<1, 1>>>();

}

. . .

}

Writing Efficient CUDA Programs 33

Constant Mem Parameter Speedup

 Problem size

 n=128, step=10000

 n=1000, step=10000

 n=1000, step=10000

 Speedup

 CC 1.1: 1.017

 CC 1.3: 1.015

 CC 2.0: 1.016

 Performance

 Minimal speedup

 Only useful for very
short kernels that are
often invoked

 Benefit

 Less shared memory
used (may be crucial)

Writing Efficient CUDA Programs 34

Using the RSQRT Instruction

 Slowest kernel operation

 Computing one over the square root is very slow

 GPU has slightly imprecise but fast 1/sqrt instruction
(frequently used in graphics code to calculate inverse
of distance to a point)

 IEEE floating-point accuracy compliance

 CC 1.x is not entirely compliant

 CC 2.x is compliant but offers faster non-compliant
instructions

Writing Efficient CUDA Programs 35

Using the RSQRT Instruction

for (i = 0; i < nbodies; i++) {

. . .

for (j = 0; j < nbodies; j++) {

if (i != j) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = 1.0f / sqrtf(dsq + epssq);

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

}

. . .

}

Writing Efficient CUDA Programs 36

RSQRT Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 1.00

 CC 1.3: 0.99

 CC 2.0: 1.83

 Performance

 No change for CC 1.x
 Compiler automatically

uses less precise RSQRT as
most FP ops are not fully
precise anyhow

 83% speedup for CC 2.0
 Over entire application

 Compiler defaults to
precise instructions

 Explicit use of RSQRT
indicates imprecision okay

Writing Efficient CUDA Programs 37

Using 2 Loops to Avoid If Statement

 “if (i != j)” causes thread divergence

 Break loop into two loops to avoid if statement

for (j = 0; j < nbodies; j++) {

if (i != j) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

}

Writing Efficient CUDA Programs 38

Using 2 Loops to Avoid If Statement
for (j = 0; j < i; j++) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

for (j = i+1; j < nbodies; j++) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

Writing Efficient CUDA Programs 39

Loop Duplication Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 1.02

 CC 1.3: 0.55

 CC 2.0: 1.00

 Performance

 No change for 1.1 & 2.0
 Divergence moved to loop

 45% slowdown for CC 1.3
 Unclear why

 Discussion

 Not a useful optimization

 Code bloat

 A little divergence is okay
(only 1 in 3125 iterations)

Writing Efficient CUDA Programs 40

Blocking using Shared Memory

 Code is memory bound

 Each warp streams in all bodies’ mass and position

 Block inner loop

 Read block of mass & position info into shared mem

 Requires barrier (fast hardware barrier within SM)

 Advantage

 A lot fewer main memory accesses

 Remaining accesses are fully coalesced (due to usage
of scalar arrays)

Writing Efficient CUDA Programs 41

Blocking using Shared Memory
__shared__ float posxs[threads], posys[threads], poszs[…], masss[…];

j = 0;

for (j1 = 0; j1 < nbodiesd; j1 += THREADS) { // first part of loop

idx = tid + j1;

if (idx < nbodiesd) { // each thread copies 4 words (fully coalesced)

posxs[id] = posxd[idx]; posys[id] = posyd[idx];

poszs[id] = poszd[idx]; masss[id] = massd[idx];

}

__syncthreads(); // wait for all copying to be done

bound = min(nbodiesd - j1, THREADS);

for (j2 = 0; j2 < bound; j2++, j++) { // second part of loop

if (i != j) {

dx = posxs[j2] – px; dy = posys[j2] – py; dz = poszs[j2] - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssqd);

scale = masss[j2] * dinv * dinv * dinv;

ax += dx * scale; ay += dy * scale; az += dz * scale;

}

}

}

Writing Efficient CUDA Programs 42

Blocking Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 8.2

 CC 1.3: 3.7

 CC 2.0: 1.1

 Performance

 Great speedup for CC 1.x

 Little speedup for CC 2.0
 Has hardware data cache

 Discussion

 Very important
optimization for memory
bound code

 Even with L1 cache

Writing Efficient CUDA Programs 43

Loop Unrolling

 CUDA compiler

 Generally good at unrolling loops with fixed bounds

 Does not unroll inner loop of our example code

 Use pragma to unroll

#pragma unroll 8

for (j2 = 0; j2 < bound; j2++, j++) {

if (i != j) {

dx = posxs[j2] – px; dy = posys[j2] – py; dz = poszs[j2] - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssqd);

scale = masss[j2] * dinv * dinv * dinv;

ax += dx * scale; ay += dy * scale; az += dz * scale;

}

}

Writing Efficient CUDA Programs 44

Loop Unrolling Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 1.06

 CC 1.3: 1.07

 CC 2.0: 1.16

 Performance

 Noticeable speedup

 All three GPUs

 Discussion

 Can be useful

 May increase register
usage, which may lower
maximum number of
threads per block and
result in slowdown

Writing Efficient CUDA Programs 45

CC 2.0 Absolute Performance

 Problem size

 n=100000, step=1

 Runtime

 612 ms

 FP operations

 326.7 GFlop/s (SP)

 219.2 GFlops/s (DP)

 Main mem throughput

 1.035 GB/s, 1.388 GB/s

 Not peak performance
 Only 32% of 1030 GFlop/s

 Peak assumes FMA every cyc

 3 sub (1c), 3 fma (1c), 1 rsqrt
(8c), 3 mul (1c), 3 fma (1) =
20c for 20 Flop

 63% of realistic peak of 515.2
GFlop/s
 Assumes no non-FP ops

 With int ops = 31c for 20 Flop
 99% of actual peak of 330.45

GFlop/s

Writing Efficient CUDA Programs 46

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 47

gamedsforum.ca

Things to Consider

 Minimize PCIe transfers

 Implementing entire algorithm on GPU, even some
slow serial code sections, might be overall win

 Locks and synchronization

 Lightweight locks & barriers often possible within SM

 Slow across different SMs

 CC 2.0’s hardware L1 caches are not coherent

 Disable or use volatile & fences to avoid deadlocks

 Can stream data to/from GPU while computing

Writing Efficient CUDA Programs 48

Warp-Based Execution
// wrong on GPU, correct on CPU

do {

cnt = 0;

if (ready[i] != 0) cnt++;

if (ready[j] != 0) cnt++;

} while (cnt < 2);

ready[k] = 1;

// correct

do {

cnt = 0;

if (ready[i] != 0) cnt++;

if (ready[j] != 0) cnt++;

if (cnt == 2) ready[k] = 1;

} while (cnt < 2);

 Problem

 Thread divergence

 Loop exiting threads
wait for other threads in
warp to also exit

 “ready*k+ = 1” is not
executed until all
threads in warp are
done with loop

 Possible deadlock

Writing Efficient CUDA Programs 49

Hybrid Execution

 CPU needed
 CPU always needed for program launch and most I/O
 CPU much faster on serial program segments

 GPU 10 times faster than CPU on parallel code
 Running 10% of problem on CPU is hardly worthwhile
 Complicates programming and requires data transfer

 Best CPU data structure is often not best for GPU

 PCIe bandwidth much lower than GPU bandwidth
 1.6 to 6.5 GB/s versus 144 GB/s
 Merging CPU and GPU on same die (like AMD’s Fusion

APU) will make finer grain switching possible

Writing Efficient CUDA Programs 50

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 51

Summary and Conclusions

 Step-by-step porting and tuning of CUDA code

 Example: n-body simulation

 GPUs have very powerful hardware

 Only exploitable with some codes

 Even harder to program and optimize for than CPUs

 Acknowledgments

 Keshav Pingali: overall project support

 TACC, NVIDIA: hardware resources

 NSF, IBM, NEC, Intel, UT Austin, Texas State: funding

Writing Efficient CUDA Programs 52

