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High-End CPUs and GPUs
Xeon X7550 Tesla C2050

Cores 8 (superscalar) 448 (simple)
Active threads 2 per core 48 per core
Frequency 2 GHz 1.15 GHz
Peak performance* 128 GFlop/s 1030 GFlop/s
Peak mem bandwidth 25.6 GB/s 144 GB/s
Maximum power 130 W 238 W
Price $2800 $2300

Tesla: late 2009
Xeon: early 2010
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GPU Advantages

 Performance

 8x as many instructions executed per second

 Main memory bandwidth

 5.6x as many bytes transferred per second

 Cost-, energy-, and size-efficiency

 9.8x as much performance per dollar

 4.4x as much performance per watt

 10.4x as much performance per area

(Based on peak values)
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GPU Disadvantages

 Clearly, we should be using GPUs all the time

 So why aren’t we?

 GPUs can only execute some types of code fast

 Need lots of data parallelism, data reuse, regularity

 GPUs are harder to program and tune than CPUs

 In part because of poor tool (compiler) support

 In part because of their architecture

 Requirements and arch are unlikely to change
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CUDA Programming

 General-purpose (non-
graphics) programming

 Uses GPU as massively 
parallel co-processor

 SIMT (single-instruction 
multiple-threads)

 Thousands of threads 
needed for full efficiency

 C/C++ with extensions
 Function launch

 Calling functions on GPU

 Memory management
 GPU memory allocation, 

copying data to/from GPU

 Declaration qualifiers
 Device, shared, local, etc.

 Special instructions
 Barriers, fences, max, etc.

 Keywords
 threadIdx, blockIdx
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Calling GPU Kernels

 Kernels are functions that run on the GPU

 Callable by CPU code

 CPU can continue processing while GPU runs kernel
KernelName<<<blocks, threads>>>(arg1, arg2, ...);

 Launch configuration (programmer selectable)

 Special parameters: number of blocks and threads

 Kernel call automatically spawns m blocks with n threads 
(i.e., m*n threads total) that run a copy of the same function

 Normal function parameters: passed conventionally

 Different address space, should never pass CPU pointers
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Block and Thread Allocation

 Blocks assigned to SMs

 Streaming multiprocessors

 Threads assigned to PEs

 Processing elements

 Hardware limits

 8 resident blocks per SM

 768, 1024, or 1536 
resident threads per SM

 512, 512, or 1024 
threads per block

 Above limits are lower if 
register or shared mem
usage is too high

 65535 blocks per kernel
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GPU Architecture

 1 to 30 SMs (with 8, 8, or 32 PEs per SM)

 SMs have fast barriers, thread voting, shared mem

 Very fast thread communication within block

 Slow communication between blocks (DRAM atomics)
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Block Scalability

 Hardware can assign blocks to SMs in any order

 A kernel with enough blocks scales across GPUs

 Not all blocks may be resident at the same time
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Warp-Based Execution

 32 contiguous threads form a warp

 Execute same instruction in same cycle (or disabled)

 At any time, only one warp is executed per SM

 Warps are scheduled out-of-order w.r.t. each other

 Thread divergence (reduction of parallelism)

 Some threads in warp jump to different PC than others

 Hardware runs subsets of warp until they re-converge
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GPU Memories

 Memory types

 Registers (r/w per thread)

 Local mem (r/w per thread)

 Shared mem (r/w per block)
 Software-controlled cache

 Global mem (r/w per kernel)

 Constant mem (r per kernel)

 Separate from CPU

 CPU can access global and 
constant mem via PCIe bus

 Requires explicit transfer
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Fast Memory Accesses

 Coalesced main memory access (16/32x faster)

 Under some conditions, HW combines multiple (half) 
warp memory accesses into a single coalesced access

 CC 1.1: 64-byte aligned contiguous 4-byte words

 CC 1.3: 64-byte aligned 64-byte line (any permutation)

 CC 2.0: 128-byte aligned 128-byte line (cached)

 Bank-conflict-free shared memory access (16/32)

 No superword alignment or contiguity requirements

 CC 1.x: 16 different banks per half warp or same word

 CC 2.0: 32 different banks + one-word broadcast
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Coalesced Main Memory Accesses
single coalesced access           one and two coalesced accesses*

NVIDIA                                                                                                     NVIDIA
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N-Body Simulation

 Time evolution of physical system

 System consists of bodies

 “n” is the number of bodies

 Bodies interact via pair-wise forces

 Many systems can be modeled in this way

 Star/galaxy clusters (gravitational force)

 Particles (electric force, magnetic force)
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Simple N-Body Algorithm

 Algorithm
Initialize body masses, positions, and velocities

Iterate over time steps {
Accumulate forces acting on each body

Update body positions and velocities based on force

}

Output result

 More sophisticated n-body algorithms exist
 Barnes Hut algorithm

 Fast Multipole Method (FMM)
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Key Loops (Pseudo Code)
bodySet = // input

for timestep do {  // O(n2) sequential

foreach Body b1 in bodySet {  // O(n2) parallel

foreach Body b2 in bodySet {

if (b1 != b2) {

b1.addInteractionForce(b2);

}

}

}

foreach Body b in bodySet {   // O(n) parallel

b.Advance();

}

}

// output result
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Force Calculation C Code
struct Body {

float mass, posx, posy, posz; // mass and 3D position

float velx, vely, velz, accx, accy, accz; // 3D velocity & accel

} *body;

for (i = 0; i < nbodies; i++) {
. . .

for (j = 0; j < nbodies; j++) {

if (i != j) {

dx = body[j].posx - px; // delta x

dy = body[j].posy - py; // delta y

dz = body[j].posz - pz; // delta z

dsq = dx*dx + dy*dy + dz*dz; // distance squared

dinv = 1.0f / sqrtf(dsq + epssq); // inverse distance

scale = body[j].mass * dinv * dinv * dinv; // scaled force

ax += dx * scale; // accumulate x contribution of accel

ay += dy * scale;  az += dz * scale; // ditto for y and z

}

}
. . .

}
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GPU Suitability of N-Body Algorithm

 Lots of data parallelism
 Force calculations are independent
 Should be able to keep SMs and PEs busy

 Sufficient memory access regularity
 All force calculations access body data in same order*
 Should have lots of coalesced memory accesses

 Sufficient code regularity
 All force calculations are identical*
 There should be little thread divergence

 Plenty of data reuse
 O(n2) operations on O(n) data
 CPU/GPU transfer time is insignificant
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C to CUDA Conversion

 Two CUDA kernels

 Force calculation

 Advance position and velocity

 Benefits

 Force calculation requires over 99.9% of runtime

 Primary target for acceleration

 Advancing kernel unimportant to runtime

 But allows to keep data on GPU during entire simulation

 Minimizes GPU/CPU transfers
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C to CUDA Conversion
__global__ void ForceCalcKernel(int nbodies, struct Body *body, ...) {

. . .

}

__global__ void AdvancingKernel(int nbodies, struct Body *body, ...) {

. . .

}

int main(...) {

Body *body, *bodyl;

. . .

cudaMalloc((void**)&bodyl, sizeof(Body)*nbodies);

cudaMemcpy(bodyl, body, sizeof(Body)*nbodies, cuda…HostToDevice);

for (timestep = ...) {

ForceCalcKernel<<<1, 1>>>(nbodies, bodyl, ...);

AdvancingKernel<<<1, 1>>>(nbodies, bodyl, ...);

}

cudaMemcpy(body, bodyl, sizeof(Body)*nbodies, cuda…DeviceToHost);

cudaFree(bodyl);

. . .

}
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Evaluation Methodology

 Systems and compilers
 CC 1.1: Quadro NVS 135M, nvcc 2.2

 1 SM, 8 PEs, 0.8 GHz, 768 resident threads

 CC 1.3: Quadro FX 5800, nvcc 3.2
 30 SMs, 240 PEs, 1.3GHz, 30720 resident threads

 CC 2.0: Tesla C2050, nvcc 3.2
 14 SMs, 448 PEs, 1.15 GHz, 21504 resident threads

 Inputs and metric
 1k, 10k, or 100k star clusters (Plummer model)

 Median runtime of three experiments, excluding I/O
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1-Thread Performance

 Problem size

 n=1000, step=1

 n=10000, step=1

 n=10000, step=1

 Slowdown rel. to CPU

 CC 1.1: 39.3

 CC 1.3: 72.4

 CC 2.0: 36.7

(Note: comparing different 
GPUs to different CPUs)

 Performance

 1 thread is one to two 
orders of magnitude 
slower on GPU than CPU

 Reasons

 No caches (CC 1.x)

 Not superscalar

 Slower clock frequency

 No SMT latency hiding

Writing Efficient CUDA Programs 25



Using N Threads

 Approach

 Eliminate outer loop

 Instantiate n copies of inner loop, one per body

 Threading

 Blocks can only hold 512 or 1024 threads

 Up to 8 blocks can be resident in an SM at a time

 SM can hold 768, 1024, or 1536 threads

 We use 256 threads per block (greatest common divisor)

 Need multiple blocks

 Last block may not have full number of threads
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Using N Threads
__global__ void ForceCalcKernel(int nbodies, struct Body *body, ...) {

for (i = 0; i < nbodies; i++) {

i = threadIdx.x + blockIdx.x * blockDim.x; // compute i

if (i < nbodies) { // in case last block is only partially used

for (j = ...) {

. . .

}

}

}

__global__ void AdvancingKernel(int nbodies, struct body *body, ...) {

// same changes

}

#define threads 256

int main(...) {

. . .

int blocks = (nbodies + threads - 1) / threads; // compute block cnt

for (timestep = ...) {

ForceCalcKernel<<<1, 1blocks, threads>>>(nbodies, bodyl, ...);

AdvancingKernel<<<1, 1blocks, threads>>>(nbodies, bodyl, ...);

}

}
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N-Thread Speedup

 Relative to 1 GPU thread

 CC 1.1:     40 (8 PEs)

 CC 1.3: 7781 (240 PEs)

 CC 2.0: 6495 (448 PEs)

 Relative to 1 CPU thread

 CC 1.1:     1.0

 CC 1.3: 107.5

 CC 2.0: 176.7

 Performance

 Speedup much higher 
than number of PEs
(5, 32, and 14.5 times)

 Due to SMT latency hiding

 Per-core performance

 CPU core delivers under 
7.9, 4.4*, and 5* times as 
much performance as a 
GPU core (PE)
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structs in array

scalar arrays

Using Scalar Arrays

 Data structure conversion
 Arrays of structs are bad for coalescing
 Bodies’ elements (e.g., mass fields) are not adjacent

 Optimize data structure
 Use multiple scalar arrays, one per field (need 10)
 Results in code bloat but often much better speed
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Using Scalar Arrays
__global__ void ForceCalcKernel(int nbodies, float *mass, ...) {

// change all “body[k].blah” to “blah[k]”

}

__global__ void AdvancingKernel(int nbodies, float *mass, ...) {

// change all “body[k].blah” to “blah[k]”

}

int main(...) {

float *mass, *posx, *posy, *posz, *velx, *vely, *velz, *accx, *accy,*accz;

float *massl, *posxl, *posyl, *poszl, *velxl, *velyl, *velzl, ...;

mass = (float *)malloc(sizeof(float) * nbodies); // etc

. . .

cudaMalloc((void**)&massl, sizeof(float)*nbodies); // etc

cudaMemcpy(massl, mass, sizeof(float)*nbodies, cuda…HostToDevice); // etc

for (timestep = ...) {

ForceCalcKernel<<<1, 1>>>(nbodies, massl, posxl, ...);

AdvancingKernel<<<1, 1>>>(nbodies, massl, posxl, ...);

}

cudaMemcpy(mass, massl, sizeof(float)*nbodies, cuda…DeviceToHost); // etc

. . .

}
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Scalar Array Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Relative to struct

 CC 1.1: 1.00

 CC 1.3: 0.83

 CC 2.0: 0.96

 Performance

 Threads access same
memory locations, not 
adjacent ones
 Never coalesced in CC 1.1

 Always combined but not 
coalesced in CC 1.3 & 2.0

 Slowdowns presumably 
due to DRAM banks

 Scalar arrays

 Still needed (see later)
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Constant Kernel Parameters

 Kernel parameters

 Lots of parameters due to scalar arrays

 All but one parameter never change their value

 Constant memory

 “Pass” parameters only once

 Copy them into GPU’s constant memory

 Performance implications

 Reduced parameter passing overhead

 Constant memory has hardware cache
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Constant Kernel Parameters
__constant__ int nbodiesd;

__constant__ float dthfd, epssqd, float *massd, *posxd, ...; 

__global__ void ForceCalcKernel(int step) {

// rename affected variables (add “d” to name)

}

__global__ void AdvancingKernel() {

// rename affected variables (add “d” to name)

}

int main(...) {

. . .

cudaMemcpyToSymbol(massd, &massl, sizeof(void *)); // etc

. . .

for (timestep = ...) {

ForceCalcKernel<<<1, 1>>>(step);

AdvancingKernel<<<1, 1>>>();

}

. . .

}
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Constant Mem Parameter Speedup

 Problem size

 n=128, step=10000

 n=1000, step=10000

 n=1000, step=10000

 Speedup

 CC 1.1: 1.017

 CC 1.3: 1.015

 CC 2.0: 1.016

 Performance

 Minimal speedup

 Only useful for very 
short kernels that are 
often invoked

 Benefit

 Less shared memory 
used (may be crucial)
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Using the RSQRT Instruction

 Slowest kernel operation

 Computing one over the square root is very slow

 GPU has slightly imprecise but fast 1/sqrt instruction
(frequently used in graphics code to calculate inverse 
of distance to a point)

 IEEE floating-point accuracy compliance

 CC 1.x is not entirely compliant

 CC 2.x is compliant but offers faster non-compliant 
instructions
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Using the RSQRT Instruction

for (i = 0; i < nbodies; i++) {

. . .

for (j = 0; j < nbodies; j++) {

if (i != j) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = 1.0f / sqrtf(dsq + epssq);

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

}

. . .

}
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RSQRT Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 1.00

 CC 1.3: 0.99

 CC 2.0: 1.83

 Performance

 No change for CC 1.x
 Compiler automatically 

uses less precise RSQRT as 
most FP ops are not fully 
precise anyhow

 83% speedup for CC 2.0
 Over entire application

 Compiler defaults to 
precise instructions

 Explicit use of RSQRT 
indicates imprecision okay
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Using 2 Loops to Avoid If Statement

 “if (i != j)” causes thread divergence

 Break loop into two loops to avoid if statement

for (j = 0; j < nbodies; j++) {

if (i != j) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

}
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Using 2 Loops to Avoid If Statement
for (j = 0; j < i; j++) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

for (j = i+1; j < nbodies; j++) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}
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Loop Duplication Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 1.02

 CC 1.3: 0.55

 CC 2.0: 1.00

 Performance

 No change for 1.1 & 2.0
 Divergence moved to loop

 45% slowdown for CC 1.3
 Unclear why

 Discussion

 Not a useful optimization

 Code bloat

 A little divergence is okay 
(only 1 in 3125 iterations)
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Blocking using Shared Memory

 Code is memory bound

 Each warp streams in all bodies’ mass and position

 Block inner loop

 Read block of mass & position info into shared mem

 Requires barrier (fast hardware barrier within SM)

 Advantage

 A lot fewer main memory accesses

 Remaining accesses are fully coalesced (due to usage 
of scalar arrays)
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Blocking using Shared Memory
__shared__ float posxs[threads], posys[threads], poszs[…], masss[…];

j = 0;

for (j1 = 0; j1 < nbodiesd; j1 += THREADS) { // first part of loop

idx = tid + j1;

if (idx < nbodiesd) { // each thread copies 4 words (fully coalesced)

posxs[id] = posxd[idx];  posys[id] = posyd[idx];

poszs[id] = poszd[idx];  masss[id] = massd[idx];

}

__syncthreads(); // wait for all copying to be done

bound = min(nbodiesd - j1, THREADS);

for (j2 = 0; j2 < bound; j2++, j++) { // second part of loop

if (i != j) {

dx = posxs[j2] – px;  dy = posys[j2] – py;  dz = poszs[j2] - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssqd);

scale = masss[j2] * dinv * dinv * dinv;

ax += dx * scale;  ay += dy * scale;  az += dz * scale;

}

}

}
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Blocking Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 8.2

 CC 1.3: 3.7

 CC 2.0: 1.1

 Performance

 Great speedup for CC 1.x

 Little speedup for CC 2.0
 Has hardware data cache

 Discussion

 Very important 
optimization for memory 
bound code

 Even with L1 cache
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Loop Unrolling

 CUDA compiler

 Generally good at unrolling loops with fixed bounds

 Does not unroll inner loop of our example code

 Use pragma to unroll

#pragma unroll 8

for (j2 = 0; j2 < bound; j2++, j++) {

if (i != j) {

dx = posxs[j2] – px;  dy = posys[j2] – py;  dz = poszs[j2] - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssqd);

scale = masss[j2] * dinv * dinv * dinv;

ax += dx * scale;  ay += dy * scale;  az += dz * scale;

}

}
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Loop Unrolling Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 1.06

 CC 1.3: 1.07

 CC 2.0: 1.16

 Performance

 Noticeable speedup

 All three GPUs

 Discussion

 Can be useful

 May increase register 
usage, which may lower 
maximum number of 
threads per block and 
result in slowdown
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CC 2.0 Absolute Performance

 Problem size

 n=100000, step=1

 Runtime

 612 ms

 FP operations

 326.7 GFlop/s (SP)

 219.2 GFlops/s (DP)

 Main mem throughput

 1.035 GB/s, 1.388 GB/s

 Not peak performance
 Only 32% of 1030 GFlop/s

 Peak assumes FMA every cyc

 3 sub (1c), 3 fma (1c), 1 rsqrt
(8c), 3 mul (1c), 3 fma (1) = 
20c for 20 Flop

 63% of realistic peak of 515.2 
GFlop/s
 Assumes no non-FP ops

 With int ops = 31c for 20 Flop
 99% of actual peak of 330.45 

GFlop/s
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Things to Consider

 Minimize PCIe transfers

 Implementing entire algorithm on GPU, even some 
slow serial code sections, might be overall win

 Locks and synchronization

 Lightweight locks & barriers often possible within SM

 Slow across different SMs

 CC 2.0’s hardware L1 caches are not coherent

 Disable or use volatile & fences to avoid deadlocks

 Can stream data to/from GPU while computing
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Warp-Based Execution
// wrong on GPU, correct on CPU

do {

cnt = 0;

if (ready[i] != 0) cnt++;

if (ready[j] != 0) cnt++;

} while (cnt < 2);

ready[k] = 1;

// correct

do {

cnt = 0;

if (ready[i] != 0) cnt++;

if (ready[j] != 0) cnt++;

if (cnt == 2) ready[k] = 1;

} while (cnt < 2);

 Problem

 Thread divergence

 Loop exiting threads 
wait for other threads in 
warp to also exit

 “ready*k+ = 1” is not 
executed until all 
threads in warp are 
done with loop

 Possible deadlock
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Hybrid Execution

 CPU needed
 CPU always needed for program launch and most I/O
 CPU much faster on serial program segments

 GPU 10 times faster than CPU on parallel code
 Running 10% of problem on CPU is hardly worthwhile
 Complicates programming and requires data transfer

 Best CPU data structure is often not best for GPU

 PCIe bandwidth much lower than GPU bandwidth
 1.6 to 6.5 GB/s versus 144 GB/s
 Merging CPU and GPU on same die (like AMD’s Fusion 

APU) will make finer grain switching possible
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Summary and Conclusions

 Step-by-step porting and tuning of CUDA code

 Example: n-body simulation

 GPUs have very powerful hardware

 Only exploitable with some codes

 Even harder to program and optimize for than CPUs
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