
Writing Efficient CUDA Programs

Martin Burtscher

Department of Computer Science

High-End CPUs and GPUs
Xeon X7550 Tesla C2050

Cores 8 (superscalar) 448 (simple)
Active threads 2 per core 48 per core
Frequency 2 GHz 1.15 GHz
Peak performance* 128 GFlop/s 1030 GFlop/s
Peak mem bandwidth 25.6 GB/s 144 GB/s
Maximum power 130 W 238 W
Price $2800 $2300

Tesla: late 2009
Xeon: early 2010

Writing Efficient CUDA Programs 2

Hightechreview.com
Thepcreport.net

GPU Advantages

 Performance

 8x as many instructions executed per second

 Main memory bandwidth

 5.6x as many bytes transferred per second

 Cost-, energy-, and size-efficiency

 9.8x as much performance per dollar

 4.4x as much performance per watt

 10.4x as much performance per area

(Based on peak values)

Writing Efficient CUDA Programs 3

GPU Disadvantages

 Clearly, we should be using GPUs all the time

 So why aren’t we?

 GPUs can only execute some types of code fast

 Need lots of data parallelism, data reuse, regularity

 GPUs are harder to program and tune than CPUs

 In part because of poor tool (compiler) support

 In part because of their architecture

 Requirements and arch are unlikely to change

Writing Efficient CUDA Programs 4

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 5

Thepcreport.net

CUDA Programming

 General-purpose (non-
graphics) programming

 Uses GPU as massively
parallel co-processor

 SIMT (single-instruction
multiple-threads)

 Thousands of threads
needed for full efficiency

 C/C++ with extensions
 Function launch

 Calling functions on GPU

 Memory management
 GPU memory allocation,

copying data to/from GPU

 Declaration qualifiers
 Device, shared, local, etc.

 Special instructions
 Barriers, fences, max, etc.

 Keywords
 threadIdx, blockIdx

Writing Efficient CUDA Programs 6

GPUCPU
PCIe

bus

Calling GPU Kernels

 Kernels are functions that run on the GPU

 Callable by CPU code

 CPU can continue processing while GPU runs kernel
KernelName<<<blocks, threads>>>(arg1, arg2, ...);

 Launch configuration (programmer selectable)

 Special parameters: number of blocks and threads

 Kernel call automatically spawns m blocks with n threads
(i.e., m*n threads total) that run a copy of the same function

 Normal function parameters: passed conventionally

 Different address space, should never pass CPU pointers

Writing Efficient CUDA Programs 7

Block and Thread Allocation

 Blocks assigned to SMs

 Streaming multiprocessors

 Threads assigned to PEs

 Processing elements

 Hardware limits

 8 resident blocks per SM

 768, 1024, or 1536
resident threads per SM

 512, 512, or 1024
threads per block

 Above limits are lower if
register or shared mem
usage is too high

 65535 blocks per kernel

Writing Efficient CUDA Programs 8

t0 t1 t2 … tm

Blocks

PE

Shared

Memory

MT IU

PE

Shared

Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

Adapted from NVIDIA

GPU Architecture

 1 to 30 SMs (with 8, 8, or 32 PEs per SM)

 SMs have fast barriers, thread voting, shared mem

 Very fast thread communication within block

 Slow communication between blocks (DRAM atomics)

Writing Efficient CUDA Programs 9

Global Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Adapted from NVIDIA

Block Scalability

 Hardware can assign blocks to SMs in any order

 A kernel with enough blocks scales across GPUs

 Not all blocks may be resident at the same time

Writing Efficient CUDA Programs 10

GPU with 2 SMs

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU with 4 SMs

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

Adapted from NVIDIA

Warp-Based Execution

 32 contiguous threads form a warp

 Execute same instruction in same cycle (or disabled)

 At any time, only one warp is executed per SM

 Warps are scheduled out-of-order w.r.t. each other

 Thread divergence (reduction of parallelism)

 Some threads in warp jump to different PC than others

 Hardware runs subsets of warp until they re-converge

Writing Efficient CUDA Programs 11

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

Adapted from NVIDIA

GPU Memories

 Memory types

 Registers (r/w per thread)

 Local mem (r/w per thread)

 Shared mem (r/w per block)
 Software-controlled cache

 Global mem (r/w per kernel)

 Constant mem (r per kernel)

 Separate from CPU

 CPU can access global and
constant mem via PCIe bus

 Requires explicit transfer

Writing Efficient CUDA Programs 12

GPU

Global + Local Memory (DRAM)

Block (0, 0)

Shared Memory (SRAM)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory (SRAM)

Thread (0, 0)

Registers

Thread (1, 0)

Registers

C

P

U Constant Memory (DRAM, cached)

Adapted from NVIDIA

Fast Memory Accesses

 Coalesced main memory access (16/32x faster)

 Under some conditions, HW combines multiple (half)
warp memory accesses into a single coalesced access

 CC 1.1: 64-byte aligned contiguous 4-byte words

 CC 1.3: 64-byte aligned 64-byte line (any permutation)

 CC 2.0: 128-byte aligned 128-byte line (cached)

 Bank-conflict-free shared memory access (16/32)

 No superword alignment or contiguity requirements

 CC 1.x: 16 different banks per half warp or same word

 CC 2.0: 32 different banks + one-word broadcast

Writing Efficient CUDA Programs 13

Coalesced Main Memory Accesses
single coalesced access one and two coalesced accesses*

NVIDIA NVIDIA

Writing Efficient CUDA Programs 14

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 15

NASA/JPL-Caltech/SSC

N-Body Simulation

 Time evolution of physical system

 System consists of bodies

 “n” is the number of bodies

 Bodies interact via pair-wise forces

 Many systems can be modeled in this way

 Star/galaxy clusters (gravitational force)

 Particles (electric force, magnetic force)

16Writing Efficient CUDA Programs

RUG

Cornell

Simple N-Body Algorithm

 Algorithm
Initialize body masses, positions, and velocities

Iterate over time steps {
Accumulate forces acting on each body

Update body positions and velocities based on force

}

Output result

 More sophisticated n-body algorithms exist
 Barnes Hut algorithm

 Fast Multipole Method (FMM)

Writing Efficient CUDA Programs 17

Key Loops (Pseudo Code)
bodySet = // input

for timestep do { // O(n2) sequential

foreach Body b1 in bodySet { // O(n2) parallel

foreach Body b2 in bodySet {

if (b1 != b2) {

b1.addInteractionForce(b2);

}

}

}

foreach Body b in bodySet { // O(n) parallel

b.Advance();

}

}

// output result

18Writing Efficient CUDA Programs

Force Calculation C Code
struct Body {

float mass, posx, posy, posz; // mass and 3D position

float velx, vely, velz, accx, accy, accz; // 3D velocity & accel

} *body;

for (i = 0; i < nbodies; i++) {
. . .

for (j = 0; j < nbodies; j++) {

if (i != j) {

dx = body[j].posx - px; // delta x

dy = body[j].posy - py; // delta y

dz = body[j].posz - pz; // delta z

dsq = dx*dx + dy*dy + dz*dz; // distance squared

dinv = 1.0f / sqrtf(dsq + epssq); // inverse distance

scale = body[j].mass * dinv * dinv * dinv; // scaled force

ax += dx * scale; // accumulate x contribution of accel

ay += dy * scale; az += dz * scale; // ditto for y and z

}

}
. . .

}
Writing Efficient CUDA Programs 19

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 20

GPU Suitability of N-Body Algorithm

 Lots of data parallelism
 Force calculations are independent
 Should be able to keep SMs and PEs busy

 Sufficient memory access regularity
 All force calculations access body data in same order*
 Should have lots of coalesced memory accesses

 Sufficient code regularity
 All force calculations are identical*
 There should be little thread divergence

 Plenty of data reuse
 O(n2) operations on O(n) data
 CPU/GPU transfer time is insignificant

Writing Efficient CUDA Programs 21

C to CUDA Conversion

 Two CUDA kernels

 Force calculation

 Advance position and velocity

 Benefits

 Force calculation requires over 99.9% of runtime

 Primary target for acceleration

 Advancing kernel unimportant to runtime

 But allows to keep data on GPU during entire simulation

 Minimizes GPU/CPU transfers

Writing Efficient CUDA Programs 22

C to CUDA Conversion
__global__ void ForceCalcKernel(int nbodies, struct Body *body, ...) {

. . .

}

__global__ void AdvancingKernel(int nbodies, struct Body *body, ...) {

. . .

}

int main(...) {

Body *body, *bodyl;

. . .

cudaMalloc((void**)&bodyl, sizeof(Body)*nbodies);

cudaMemcpy(bodyl, body, sizeof(Body)*nbodies, cuda…HostToDevice);

for (timestep = ...) {

ForceCalcKernel<<<1, 1>>>(nbodies, bodyl, ...);

AdvancingKernel<<<1, 1>>>(nbodies, bodyl, ...);

}

cudaMemcpy(body, bodyl, sizeof(Body)*nbodies, cuda…DeviceToHost);

cudaFree(bodyl);

. . .

}

Writing Efficient CUDA Programs 23

Indicates GPU kernel that CPU can call

Separate address spaces, need two pointers

Allocate memory on GPU

Copy CPU data to GPU

Copy GPU data back to CPUCall GPU kernel with 1 block

and 1 thread per block

Evaluation Methodology

 Systems and compilers
 CC 1.1: Quadro NVS 135M, nvcc 2.2

 1 SM, 8 PEs, 0.8 GHz, 768 resident threads

 CC 1.3: Quadro FX 5800, nvcc 3.2
 30 SMs, 240 PEs, 1.3GHz, 30720 resident threads

 CC 2.0: Tesla C2050, nvcc 3.2
 14 SMs, 448 PEs, 1.15 GHz, 21504 resident threads

 Inputs and metric
 1k, 10k, or 100k star clusters (Plummer model)

 Median runtime of three experiments, excluding I/O

Writing Efficient CUDA Programs 24

1-Thread Performance

 Problem size

 n=1000, step=1

 n=10000, step=1

 n=10000, step=1

 Slowdown rel. to CPU

 CC 1.1: 39.3

 CC 1.3: 72.4

 CC 2.0: 36.7

(Note: comparing different
GPUs to different CPUs)

 Performance

 1 thread is one to two
orders of magnitude
slower on GPU than CPU

 Reasons

 No caches (CC 1.x)

 Not superscalar

 Slower clock frequency

 No SMT latency hiding

Writing Efficient CUDA Programs 25

Using N Threads

 Approach

 Eliminate outer loop

 Instantiate n copies of inner loop, one per body

 Threading

 Blocks can only hold 512 or 1024 threads

 Up to 8 blocks can be resident in an SM at a time

 SM can hold 768, 1024, or 1536 threads

 We use 256 threads per block (greatest common divisor)

 Need multiple blocks

 Last block may not have full number of threads

Writing Efficient CUDA Programs 26

Using N Threads
__global__ void ForceCalcKernel(int nbodies, struct Body *body, ...) {

for (i = 0; i < nbodies; i++) {

i = threadIdx.x + blockIdx.x * blockDim.x; // compute i

if (i < nbodies) { // in case last block is only partially used

for (j = ...) {

. . .

}

}

}

__global__ void AdvancingKernel(int nbodies, struct body *body, ...) {

// same changes

}

#define threads 256

int main(...) {

. . .

int blocks = (nbodies + threads - 1) / threads; // compute block cnt

for (timestep = ...) {

ForceCalcKernel<<<1, 1blocks, threads>>>(nbodies, bodyl, ...);

AdvancingKernel<<<1, 1blocks, threads>>>(nbodies, bodyl, ...);

}

}

Writing Efficient CUDA Programs 27

N-Thread Speedup

 Relative to 1 GPU thread

 CC 1.1: 40 (8 PEs)

 CC 1.3: 7781 (240 PEs)

 CC 2.0: 6495 (448 PEs)

 Relative to 1 CPU thread

 CC 1.1: 1.0

 CC 1.3: 107.5

 CC 2.0: 176.7

 Performance

 Speedup much higher
than number of PEs
(5, 32, and 14.5 times)

 Due to SMT latency hiding

 Per-core performance

 CPU core delivers under
7.9, 4.4*, and 5* times as
much performance as a
GPU core (PE)

Writing Efficient CUDA Programs 28

structs in array

scalar arrays

Using Scalar Arrays

 Data structure conversion
 Arrays of structs are bad for coalescing
 Bodies’ elements (e.g., mass fields) are not adjacent

 Optimize data structure
 Use multiple scalar arrays, one per field (need 10)
 Results in code bloat but often much better speed

Writing Efficient CUDA Programs 29

Using Scalar Arrays
__global__ void ForceCalcKernel(int nbodies, float *mass, ...) {

// change all “body[k].blah” to “blah[k]”

}

__global__ void AdvancingKernel(int nbodies, float *mass, ...) {

// change all “body[k].blah” to “blah[k]”

}

int main(...) {

float *mass, *posx, *posy, *posz, *velx, *vely, *velz, *accx, *accy,*accz;

float *massl, *posxl, *posyl, *poszl, *velxl, *velyl, *velzl, ...;

mass = (float *)malloc(sizeof(float) * nbodies); // etc

. . .

cudaMalloc((void**)&massl, sizeof(float)*nbodies); // etc

cudaMemcpy(massl, mass, sizeof(float)*nbodies, cuda…HostToDevice); // etc

for (timestep = ...) {

ForceCalcKernel<<<1, 1>>>(nbodies, massl, posxl, ...);

AdvancingKernel<<<1, 1>>>(nbodies, massl, posxl, ...);

}

cudaMemcpy(mass, massl, sizeof(float)*nbodies, cuda…DeviceToHost); // etc

. . .

}

Writing Efficient CUDA Programs 30

Scalar Array Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Relative to struct

 CC 1.1: 1.00

 CC 1.3: 0.83

 CC 2.0: 0.96

 Performance

 Threads access same
memory locations, not
adjacent ones
 Never coalesced in CC 1.1

 Always combined but not
coalesced in CC 1.3 & 2.0

 Slowdowns presumably
due to DRAM banks

 Scalar arrays

 Still needed (see later)

Writing Efficient CUDA Programs 31

Constant Kernel Parameters

 Kernel parameters

 Lots of parameters due to scalar arrays

 All but one parameter never change their value

 Constant memory

 “Pass” parameters only once

 Copy them into GPU’s constant memory

 Performance implications

 Reduced parameter passing overhead

 Constant memory has hardware cache

Writing Efficient CUDA Programs 32

Constant Kernel Parameters
__constant__ int nbodiesd;

__constant__ float dthfd, epssqd, float *massd, *posxd, ...;

__global__ void ForceCalcKernel(int step) {

// rename affected variables (add “d” to name)

}

__global__ void AdvancingKernel() {

// rename affected variables (add “d” to name)

}

int main(...) {

. . .

cudaMemcpyToSymbol(massd, &massl, sizeof(void *)); // etc

. . .

for (timestep = ...) {

ForceCalcKernel<<<1, 1>>>(step);

AdvancingKernel<<<1, 1>>>();

}

. . .

}

Writing Efficient CUDA Programs 33

Constant Mem Parameter Speedup

 Problem size

 n=128, step=10000

 n=1000, step=10000

 n=1000, step=10000

 Speedup

 CC 1.1: 1.017

 CC 1.3: 1.015

 CC 2.0: 1.016

 Performance

 Minimal speedup

 Only useful for very
short kernels that are
often invoked

 Benefit

 Less shared memory
used (may be crucial)

Writing Efficient CUDA Programs 34

Using the RSQRT Instruction

 Slowest kernel operation

 Computing one over the square root is very slow

 GPU has slightly imprecise but fast 1/sqrt instruction
(frequently used in graphics code to calculate inverse
of distance to a point)

 IEEE floating-point accuracy compliance

 CC 1.x is not entirely compliant

 CC 2.x is compliant but offers faster non-compliant
instructions

Writing Efficient CUDA Programs 35

Using the RSQRT Instruction

for (i = 0; i < nbodies; i++) {

. . .

for (j = 0; j < nbodies; j++) {

if (i != j) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = 1.0f / sqrtf(dsq + epssq);

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

}

. . .

}

Writing Efficient CUDA Programs 36

RSQRT Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 1.00

 CC 1.3: 0.99

 CC 2.0: 1.83

 Performance

 No change for CC 1.x
 Compiler automatically

uses less precise RSQRT as
most FP ops are not fully
precise anyhow

 83% speedup for CC 2.0
 Over entire application

 Compiler defaults to
precise instructions

 Explicit use of RSQRT
indicates imprecision okay

Writing Efficient CUDA Programs 37

Using 2 Loops to Avoid If Statement

 “if (i != j)” causes thread divergence

 Break loop into two loops to avoid if statement

for (j = 0; j < nbodies; j++) {

if (i != j) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

}

Writing Efficient CUDA Programs 38

Using 2 Loops to Avoid If Statement
for (j = 0; j < i; j++) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

for (j = i+1; j < nbodies; j++) {

dx = body[j].posx - px;

dy = body[j].posy - py;

dz = body[j].posz - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssq);

scale = body[j].mass * dinv * dinv * dinv;

ax += dx * scale;

ay += dy * scale;

az += dz * scale;

}

Writing Efficient CUDA Programs 39

Loop Duplication Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 1.02

 CC 1.3: 0.55

 CC 2.0: 1.00

 Performance

 No change for 1.1 & 2.0
 Divergence moved to loop

 45% slowdown for CC 1.3
 Unclear why

 Discussion

 Not a useful optimization

 Code bloat

 A little divergence is okay
(only 1 in 3125 iterations)

Writing Efficient CUDA Programs 40

Blocking using Shared Memory

 Code is memory bound

 Each warp streams in all bodies’ mass and position

 Block inner loop

 Read block of mass & position info into shared mem

 Requires barrier (fast hardware barrier within SM)

 Advantage

 A lot fewer main memory accesses

 Remaining accesses are fully coalesced (due to usage
of scalar arrays)

Writing Efficient CUDA Programs 41

Blocking using Shared Memory
__shared__ float posxs[threads], posys[threads], poszs[…], masss[…];

j = 0;

for (j1 = 0; j1 < nbodiesd; j1 += THREADS) { // first part of loop

idx = tid + j1;

if (idx < nbodiesd) { // each thread copies 4 words (fully coalesced)

posxs[id] = posxd[idx]; posys[id] = posyd[idx];

poszs[id] = poszd[idx]; masss[id] = massd[idx];

}

__syncthreads(); // wait for all copying to be done

bound = min(nbodiesd - j1, THREADS);

for (j2 = 0; j2 < bound; j2++, j++) { // second part of loop

if (i != j) {

dx = posxs[j2] – px; dy = posys[j2] – py; dz = poszs[j2] - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssqd);

scale = masss[j2] * dinv * dinv * dinv;

ax += dx * scale; ay += dy * scale; az += dz * scale;

}

}

}

Writing Efficient CUDA Programs 42

Blocking Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 8.2

 CC 1.3: 3.7

 CC 2.0: 1.1

 Performance

 Great speedup for CC 1.x

 Little speedup for CC 2.0
 Has hardware data cache

 Discussion

 Very important
optimization for memory
bound code

 Even with L1 cache

Writing Efficient CUDA Programs 43

Loop Unrolling

 CUDA compiler

 Generally good at unrolling loops with fixed bounds

 Does not unroll inner loop of our example code

 Use pragma to unroll

#pragma unroll 8

for (j2 = 0; j2 < bound; j2++, j++) {

if (i != j) {

dx = posxs[j2] – px; dy = posys[j2] – py; dz = poszs[j2] - pz;

dsq = dx*dx + dy*dy + dz*dz;

dinv = rsqrtf(dsq + epssqd);

scale = masss[j2] * dinv * dinv * dinv;

ax += dx * scale; ay += dy * scale; az += dz * scale;

}

}

Writing Efficient CUDA Programs 44

Loop Unrolling Speedup

 Problem size

 n=10000, step=1

 n=100000, step=1

 n=100000, step=1

 Speedup

 CC 1.1: 1.06

 CC 1.3: 1.07

 CC 2.0: 1.16

 Performance

 Noticeable speedup

 All three GPUs

 Discussion

 Can be useful

 May increase register
usage, which may lower
maximum number of
threads per block and
result in slowdown

Writing Efficient CUDA Programs 45

CC 2.0 Absolute Performance

 Problem size

 n=100000, step=1

 Runtime

 612 ms

 FP operations

 326.7 GFlop/s (SP)

 219.2 GFlops/s (DP)

 Main mem throughput

 1.035 GB/s, 1.388 GB/s

 Not peak performance
 Only 32% of 1030 GFlop/s

 Peak assumes FMA every cyc

 3 sub (1c), 3 fma (1c), 1 rsqrt
(8c), 3 mul (1c), 3 fma (1) =
20c for 20 Flop

 63% of realistic peak of 515.2
GFlop/s
 Assumes no non-FP ops

 With int ops = 31c for 20 Flop
 99% of actual peak of 330.45

GFlop/s

Writing Efficient CUDA Programs 46

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 47

gamedsforum.ca

Things to Consider

 Minimize PCIe transfers

 Implementing entire algorithm on GPU, even some
slow serial code sections, might be overall win

 Locks and synchronization

 Lightweight locks & barriers often possible within SM

 Slow across different SMs

 CC 2.0’s hardware L1 caches are not coherent

 Disable or use volatile & fences to avoid deadlocks

 Can stream data to/from GPU while computing

Writing Efficient CUDA Programs 48

Warp-Based Execution
// wrong on GPU, correct on CPU

do {

cnt = 0;

if (ready[i] != 0) cnt++;

if (ready[j] != 0) cnt++;

} while (cnt < 2);

ready[k] = 1;

// correct

do {

cnt = 0;

if (ready[i] != 0) cnt++;

if (ready[j] != 0) cnt++;

if (cnt == 2) ready[k] = 1;

} while (cnt < 2);

 Problem

 Thread divergence

 Loop exiting threads
wait for other threads in
warp to also exit

 “ready*k+ = 1” is not
executed until all
threads in warp are
done with loop

 Possible deadlock

Writing Efficient CUDA Programs 49

Hybrid Execution

 CPU needed
 CPU always needed for program launch and most I/O
 CPU much faster on serial program segments

 GPU 10 times faster than CPU on parallel code
 Running 10% of problem on CPU is hardly worthwhile
 Complicates programming and requires data transfer

 Best CPU data structure is often not best for GPU

 PCIe bandwidth much lower than GPU bandwidth
 1.6 to 6.5 GB/s versus 144 GB/s
 Merging CPU and GPU on same die (like AMD’s Fusion

APU) will make finer grain switching possible

Writing Efficient CUDA Programs 50

Outline

 Introduction

 CUDA overview

 N-body example

 Porting and tuning

 Other considerations

 Conclusions

Writing Efficient CUDA Programs 51

Summary and Conclusions

 Step-by-step porting and tuning of CUDA code

 Example: n-body simulation

 GPUs have very powerful hardware

 Only exploitable with some codes

 Even harder to program and optimize for than CPUs

 Acknowledgments

 Keshav Pingali: overall project support

 TACC, NVIDIA: hardware resources

 NSF, IBM, NEC, Intel, UT Austin, Texas State: funding

Writing Efficient CUDA Programs 52

