
Some Computational Science
Algorithms

and
Data Structures

Keshav Pingali
University of Texas, Austin

Computational science
•  Simulations of physical phenomena

–  fluid flow over aircraft (Boeing 777)
–  fatigue fracture in aircraft bodies
–  evolution of galaxies
–  ….

•  Two main approaches
–  continuous methods: fields and differential equations (eg. Navier-Stokes

equations, Maxwell’s equations,…)
–  discrete methods/n-body methods: particles and forces (eg. gravitational

forces)
•  We will focus first on continuous methods in this lecture

–  most differential equations cannot be solved exactly
–  must use numerical methods that compute approximate solutions

•  discretization: convert calculus problem to linear algebra problem
–  finite-difference, finite-element and spectral methods

•  Then we will study n-body methods

Organization
•  Finite-difference methods

–  ordinary and partial differential equations
–  discretization techniques

•  explicit methods: Forward-Euler method
•  implicit methods: Backward-Euler method

•  Finite-element methods
–  mesh generation and refinement
–  weighted residuals

•  N-body methods
–  spatial decomposition trees

•  Key algorithms and data structures
–  matrix computations

•  algorithms
–  matrix-vector multiplication (MVM)
–  matrix-matrix multiplication (MMM)
–  solution of systems of linear equations

»  direct methods
»  iterative methods

•  data structures
–  dense matrices
–  sparse matrices

–  graph computations
•  mesh generation and refinement
•  spatial decomposition trees

Ordinary differential equations
•  Consider the ode

 u‘(t) = -3u(t)+2
 u(0) = 1

•  This is called an initial value
problem
–  initial value of u is given
–  compute how function u

evolves for t > 0
•  Using elementary calculus, we

can solve this ode exactly
 u(t) = 1/3 (e-3t+2)

2/3

Problem

•  For general ode’s, we may not be able to express
solution in terms of elementary functions

•  In most practical situations, we do not need exact
solution anyway
–  enough to compute an approximate solution, provided

•  we have some idea of how much error was introduced
•  we can improve the accuracy as needed

•  General solution:
–  convert calculus problem into algebra/arithmetic problem

•  discretization: replace continuous variables with discrete variables
•  in finite differences,

–  time will advance in fixed-size steps: t=0,h,2h,3h,…
–  differential equation is replaced by difference equation

Forward-Euler method
•  Intuition:

–  we can compute the derivative at
t=0 from the differential equation

 u‘(t) = -3u(t)+2
–  so compute the derivative at t=0

and advance along tangent to t =h
to find an approximation to u(h)

•  Formally, we replace derivative
with forward difference to get a
difference equation

–  u’(t) ! (u(t+h) – u(t))/h
•  Replacing derivative with

difference is essentially the
inverse of how derivatives were
probably introduced to you in
elementary calculus

Back to ode
•  Original ode

 u‘(t) = -3u(t)+2
•  After discretization using Forward-Euler:

 (u(t+h) – u(t))/h = -3u(t)+2
•  After rearrangement, we get difference equation

 u(t+h) = (1-3h)u(t)+2h
•  We can now compute values of u:

 u(0) = 1
 u(h) = (1-h)
 u(2h) = (1-2h+3h2)
 …..

Exact solution of difference equation
•  In this particular case, we can actually solve difference equation

exactly
•  It is not hard to show that if difference equation is

u(n+1) = a*u(n)+b
u(0) = 1

 the solution is
 u(n+1) = an+b*(1-an)/(1-a)
•  For our difference equation,

 u(nh+h) = (1-3h)u(nh)+2h
 the exact solution is

 u(nh) = 1/3((1-3h)n+2)
•  Stability:

–  values computed from difference equation will blow up if
•  ||(1-3h)|| > 1 " h > 2/3

–  for this problem, forward-Euler is stable only if step size is less than 2/3
–  in general, forward-Euler is stable only for small enough step sizes

Comparison
•  Exact solution

 u(t) = 1/3 (e-3t+2)
 u(nh) = 1/3(e-3nh+2) (at time-steps)

•  Forward-Euler solution
 uf(nh) =1/3((1-3h)n+2)

•  Use series expansion to compare
 u(nh) = 1/3(1-3nh+9/2 n2h2 … + 2)
 uf(nh) = 1/3(1-3nh+n(n-1)/2 9h2+…+2)
 So error = O(nh2) (provided h < 2/3)
•  Conclusion:

–  error per time step (local error) =
O(h2)

–  error at time nh = O(nh2)

h=1/3

h=.2

h=0.1

h=0.01

exact solution

Choosing time step

•  Time-step needs to be small enough to
capture highest frequency phenomenon of
interest

•  Nyquist’s criterion
–  sampling frequency must be at least twice

highest frequency to prevent aliasing
–  for most finite-difference formulas, you need

sampling frequencies (much) higher than the
Nyquist criterion

•  In practice, most functions of interest are
not band-limited, so use

–  insight from application or
–  reduce time-step repeatedly till changes are

not significant
•  Fixed-size time-step can be inefficient if

frequency varies widely over time interval
–  other methods like finite-elements permit

variable time-steps as we will see later

time

Backward-Euler method
•  Replace derivative with backward

difference
 u’(t+h) ! (u(t+h) – u(t))/h

•  For our ode, we get
 u(t+h)-u(t)/h = -3u(t+h)+2
 which after rearrangement
 u(t+h)= (2h+u(t))/(1+3h)

•  As before, this equation is simple
enough that we can write down the
exact solution:

 u(nh) = ((1/(1+3h))n + 2)/3
•  Using series expansion, we get

 u(nh) = (1-3nh + (-n(-n-1)/2) 9h2 + ...+2)/3
 u(nh) = (1 -3nh + 9/2 n2h2 + 9/2 nh2 +...

+2)/3
 So error = O(nh2) (for any value of h)

h=1000

h=0.1

h=0.01

exact solution

Comparison
•  Exact solution

 u(t) = 1/3 (e-3t+2)
 u(nh) = 1/3(e-3nh+2) (at time-steps)

•  Forward-Euler solution
 uf(nh) =1/3((1-3h)n+2)
 error = O(nh2) (provided h < 2/3)

•  Backward-Euler solution
 ub(n*h) = 1/3 ((1/(1+3h))n + 2)
 error = O(nh2) (h can be any value

you want)
•  Many other discretization

schemes have been studied in the
literature

–  Runge-Kutta
–  Crank-Nicolson
–  Upwind differencing
–  … Red: exact solution

Blue: Backward-Euler solution (h=0.1)
Green: Forward-Euler solution (h=0.1)

Systems of ode’s
•  Consider a system of coupled ode’s of the form

u'(t) = a11*u(t) + a12*v(t) + a13*w(t) + c1(t)
v'(t) = a21*u(t) + a22*v(t) + a23*w(t) + c2(t)
w'(t) = a31*u(t) + a32*v(t) + a33*w(t) + c3(t)

•  If we use Forward-Euler method to discretize this
system, we get the following system of
simultaneous equations

 u(t+h)–u(t) /h = a11*u(t) + a12*v(t) + a13*w(t) + c1(t)
v(t+h)–v(t) /h = a21*u(t) + a22*v(t) + a23*w(t) + c2(t)
w(t+h)–w(t) /h= a31*u(t) + a32*v(t) + a33*w(t) + c3(t)

Forward-Euler (contd.)

•  Rearranging, we get
 u(t+h) = (1+ha11)*u(t) + ha12*v(t) + ha13*w(t) + hc1(t)

v(t+h) = ha21*u(t) + (1+ha22)*v(t) + ha23*w(t) + hc2(t)
w(t+h) = ha31*u(t) + ha32*v(t) + (1+a33)*w(t) + hc3(t)

•  Introduce vector/matrix notation
 u(t) = [u(t) v(t) w(t)]T

 A = …..
 c(t) =[c1(t) c2(t) c3(t)]T

Vector notation

•  Our systems of equations was
 u(t+h) = (1+ha11)*u(t) + ha12*v(t) + ha13*w(t) + hc1(t)

 v(t+h) = ha21*u(t) + (1+ha22)*v(t) + ha23*w(t) + hc2(t)
 w(t+h) = ha31*u(t) + ha32*v(t) + (1+a33)*w(t) + hc3(t)

•  This system can be written compactly as follows
u(t+h) = (I+hA)u(t)+hc(t)

•  We can use this form to compute values of u(h),u(2h),u
(3h),…

•  Forward-Euler is an example of explicit method of
discretization
–  key operation: matrix-vector (MVM) multiplication
–  in principle, there is a lot of data-parallelism

•  O(n2) multiplications
•  O(n) reductions

–  parallelism is independent of runtime values

Backward-Euler

•  We can also use Backward-Euler method to
discretize system of ode’s

 u(t+h)–u(t) /h = a11*u(t+h) + a12*v(t+h) + a13*w(t+h) + c1(t+h)
v(t+h)–v(t) /h = a21*u(t+h) + a22*v(t+h) + a23*w(t+h) + c2(t+h)
w(t+h)–w(t) /h= a31*u(t+h) + a32*v(t+h) + a33*w(t+h) + c3(t+h)

•  We can write this in matrix notation as follows
(I-hA)u(t+h) = u(t)+hc(t+h)

•  Backward-Euler is example of implicit method of
discretization
–  key operation: solving a dense linear system Mx = v

•  How do we solve large systems of linear equations?

Higher-order ode’s
•  Higher-order ode’s can be reduced to systems of first-order ode’s
•  Example:

 y’’ + y = f(t)
 Introduce an auxiliary variable v = y’
 Then v’ = y’’, so original ode becomes
 v’ = -y + f(t)
 Therefore, original ode can be reduced to the following system of first

order ode’s
 y’(t) = 0*y(t)+ v(t) + 0
 v’(t) = -y(t) + 0*v(t) + f(t)

•  We can now use the techniques introduced earlier to discretize this
system.

•  Interesting point:
–  coefficient matrix A will have lots of zeros (sparse matrix)
–  for large systems, it is important to exploit sparsity to reduce

computational effort

Intuition for system

•  Discretize system using forward-Euler
 y(t+h)-y(t) /h = v(t)
 v(t+h)-v(t) /h = -y(t) +f(t)
•  You can eliminate v from this system to get a

recurrence relation purely in terms of y
 y(t+2h)-2y(t+h)+y(t) + y(t) = f(t)

h2

Approximation for second derivative

t t+h t+2h

Solving linear systems
•  Linear system: Ax = b
•  Two approaches

–  direct methods: Cholesky, LU with pivoting
•  factorize A into product of lower and upper triangular matrices A =

LU
•  solve two triangular systems

Ly = b
Ux = y

•  problems:
–  even if A is sparse, L and U can be quite dense (“fill”)
–  no useful information is produced until the end of the procedure

–  iterative methods: Jacobi, Gauss-Seidel, CG, GMRES
•  guess an initial approximation x0 to solution
•  error is Ax0 – b (called residual)
•  repeatedly compute better approximation xi+1 from residual (Axi – b)
•  terminate when approximation is “good enough”

Iterative method: Jacobi iteration
•  Linear system

 4x+2y=8
 3x+4y=11
•  Exact solution is (x=1,y=2)
•  Jacobi iteration for finding approximations to solution

–  guess an initial approximation
–  iterate

•  use first component of residual to refine value of x
•  use second component of residual to refine value of y

•  For our example
 xi+1 = xi - (4xi+2yi-8)/4

 yi+1 = yi - (3xi+4yi-11)/4

–  for initial guess (x0=0,y0=0)

 i 0 1 2 3 4 5 6 7
 x 0 2 0.625 1.375 0.8594 1.1406 0.9473 1.0527
 y 0 2.75 1.250 2.281 1.7188 2.1055 1.8945 2.0396

Jacobi iteration: general picture
•  Linear system Ax = b
•  Jacobi iteration

 M*xi+1 = (M-A)xi + b (where M is the diagonal of A)
 This can be written as
 xi+1 = xi – M-1(Axi – b)

•  Key operation:
–  matrix-vector multiplication

•  Caveat:
–  Jacobi iteration does not always converge
–  even when it converges, it usually converges slowly
–  there are faster iterative methods available: CG,GMRES,..
–  what is important from our perspective is that key operation in all

these iterative methods is matrix-vector multiplication

Sparse matrix representations

MVM with sparse matrices

•  Coordinate storage
 for P = 1 to NZ do
 Y(A.row(P))=Y(A.row(P)) + A.val(P)*X(A.column(P))

•  CRS storage
for I = 1 to N do
 for JJ = A.rowptr(I) to A.rowPtr(I+1)-1 do
 Y(I)=Y(I)+A.val(JJ)*X(A.column(J)))

Finite-difference methods for solving
partial differential equations

•  Basic ideas carry over
•  Example: 2-d heat equation
 ±2u/±x2 + ±2u/±y2 = f(x,y)
 assume temperature at boundary is fixed
•  Discretize domain using a regular NxN grid of pitch h
•  Approximate derivatives as differences

 ±2u/±x2 = ((u(i,j+1)-u(i,j))/h - (u(i,j)-u(i,j-1))/h)/h
 ±2u/±y2 = ((u(i+1,j)-u(i,j))/h - (u(i,j)-u(i-1,j))/h)/h

•  So we get a system of (N-1)x(N-1) difference equations
 in terms of the unknowns at the (N-1)x(N-1) interior points

 8 (i,j) such that (i,j) is an interior point
 u(i,j+1)+u(i,j-1)+u(i+1,j)+u(i-1,j) – 4u(i,j) = h2 f(ih,jh)

(i,j)

(i-1,j)

(i+1,j)

(i,j-1) (i,j+1)

5-point stencil

………………………………
………………………………
………………………………
………………………………
0..1 0..0 1 -4 1 0..0 1 0…0.
0..0 0 1 0..0 1 -4 1 0..0 1 0.
………………………………
………………………………
……………………………...

•  System of (N-1)x(N-1) difference equations
 in terms of the unknowns at the (N-1)x(N-1) interior points

 8 (i,j) such that (i,j) is an interior point
 u(i,j+1)+u(i,j-1)+u(i+1,j)+u(i-1,j) – 4u(i,j) = h2 f(ih,jh)

Finite-difference methods for solving
partial differential equations contd.)

(i,j)

(i-1,j)

(i+1,j)

(i,j-1) (i,j+1)

5-point stencil

….
u(i-1,j)
….
u(i,j-1)
u(i,j)
u(i,j+1)
.....
u(i+1,j)
……

= h2
…….
f(ih,jh)
……..

•  Matrix notation: use row-major (natural) order for u’s

Pentadiagonal sparse matrix

Since matrix is sparse, we should use an iterative method like Jacobi.

Implementation of Jacobi iteration
for this problem

•  Data structures:
–  coefficient matrix is known at compile-time,

so inline it into the code
–  values of u at a given time-step are stored in

2-D array
–  we use two arrays to hold values of u at

successive time-steps and copy between
them

un un+1

Jacobi iteration
with 5-point stencil

//Jacobi iteration
//initialize array u
for time = 1, nsteps
 for i = 2,n-1
 for j = 2,n-1
 temp(i,j)=0.25*(u(i-1,j)+u(i+1,j)+u(i,j-)+u(i,j+1))
 for i = 2,n-1
 for j = 2,n-1
 u(i,j) = temp(i,j)

Finite-difference methods for solving
partial differential equations (contd.)

•  Known as stencil codes
•  Example shown is Jacobi iteration with

five-point stencil
–  many other stencils are used in practice

•  Parallelism
–  all interior points can be computed in parallel
–  parallelism is independent of runtime values

un un+1

Jacobi iteration
with 5-point stencil

Comment on Sparse MVM

•  At an abstract level
–  algorithm: matrix-vector multiplication
–  data structures: four sparse representations

•  coordinate storage
•  compressed-row storage
•  compressed-column storage
•  “inlined” into code (stencil)

•  Programs:
–  algorithm and data structure are intertwined, making

them hard to understand for humans as well as
transformation systems

Summary
•  Finite-difference methods

–  can be used to find
approximate solutions to ode’s
and pde’s

•  Many large-scale
computational science
simulations use these methods

•  Time step or grid step needs to
be constant and is determined
by highest-frequency
phenomenon
–  can be inefficient for when

frequency varies widely in
domain of interest

–  one solution: structured AMR
methods

Finite-element methods

•  Express approximate solution to pde as a linear combination
of certain basis functions

•  Similar in spirit to Fourier analysis
–  express periodic functions as linear combinations of sines and

cosines
•  Questions:

–  what should be the basis functions?
•  mesh generation: discretization step for finite-elements
•  mesh defines basis functions Á0, Á1, Á2,…which are low-degree

piecewise polynomial functions
–  given the basis functions, how do we find the best linear combination

of these for approximating solution to pde?
•  u = !i ci Ái
•  weighted residual method: similar in spirit to what we do in Fourier

analysis, but more complex because basis functions are not necessarily
orthogonal

Mesh generation and refinement

•  1-D example:
–  mesh is a set of points, not necessarily equally spaced
–  basis functions are “hats” which

•  have a value of 1 at a mesh point,
•  decay down to 0 at neighboring mesh points
•  0 everywhere else

–  linear combinations of these produce piecewise linear functions in domain, which may
change slope only at mesh points

•  In 2-D, mesh is a triangularization of domain, while in 3-D, it might be a
tetrahedralization

•  Mesh refinement: called h-refinement
–  add more points to mesh in regions where discretization error is large
–  irregular nature of mesh makes this easy to do this locally
–  finite-differences require global refinement which can be computationally expensive

Finding coefficients

•  Weighted residual technique
–  similar in spirit to what we do in Fourier analysis, but basis

functions are not necessarily orthogonal
•  Key idea:

–  problem is reduced to solving a system of equations Ax = b
–  solution gives the coefficients in the weighted sum
–  because basis functions are zero almost everywhere in the

domain, matrix A is usually very sparse
•  number of rows/columns of A ~ O(number of points in mesh)
•  number of non-zeros per row ~ O(connectivity of mesh point)

–  typical numbers:
•  A is 106x106

•  only about ~100 non-zeros per row

Delaunay Mesh Refinement
•  Iterative refinement to remove badly

shaped triangles:
 while there are bad triangles do {

Pick a bad triangle;
Find its cavity;
Retriangulate cavity;
 // may create new bad triangles
}

•  Don’t-care non-determinism:
–  final mesh depends on order in which bad

triangles are processed
–  applications do not care which mesh is

produced
•  Data structure:

–  graph in which nodes represent triangles and
edges represent triangle adjacencies

•  Parallelism:
–  bad triangles with cavities that do not overlap

can be processed in parallel
–  parallelism is dependent on runtime values

•  compilers cannot find this parallelism
–  (Miller et al) at runtime, repeatedly build

interference graph and find maximal
independent sets for parallel execution

37

i1

i2

i3

i4

i5

Operator formulation of algorithms
•  Algorithm =
 repeated application of operator to graph

–  active element:
•  node or edge where computation is needed

–  DMR: nodes representing bad triangles
–  Event-driven simulation: station with

incoming message
–  Jacobi: interior nodes of mesh

–  neighborhood:
•  set of nodes and edges read/written to

perform computation
–  DMR: cavity of bad triangle
–  Event-driven simulation: station
–  Jacobi: nodes in stencil

•  distinct usually from neighbors in graph
–  ordering:

•  order in which active elements must be executed
in a sequential implementation

–  any order (Jacobi,DMR, graph reduction)
–  some problem-dependent order (event-

driven simulation)

: active node

: neighborhood

38

Parallelism
•  Amorphous data-parallelism

–  active nodes can be processed in parallel,
subject to

•  neighborhood constraints
•  ordering constraints

•  Computations at two active elements are
independent if

–  Neighborhoods do not overlap
–  More generally, neither of them writes to an

element in the intersection of the neighborhoods
•  Unordered active elements

–  Independent active elements can be processed
in parallel

–  How do we find independent active elements?
•  Ordered active elements

–  Independence is not enough
–  How do we determine what is safe to execute

w/o violating ordering?

i1

i2

i3

i4

i5

2

5

A
B C

Barnes Hut
N-body Simulation

Introduction

•  Physical system simulation (time evolution)
– System consists of bodies
–  “n” is the number of bodies
– Bodies interact via pair-wise forces

•  Many systems can be modeled in these
terms
– Galaxy clusters (gravitational force)
– Particles (electric force, magnetic force)

Barnes Hut N-body Simulation 40

Barnes Hut Idea

•  Precise force calculation
– Requires O(n2) operations (O(n2) body pairs)

•  Barnes and Hut (1986)
– Algorithm to approximately compute forces

•  Bodies’ initial position & velocity are also
approximate

– Requires only O(n log n) operations
–  Idea is to “combine” far away bodies
– Error should be small because force " 1/r2

Barnes Hut N-body Simulation 41

Barnes Hut Algorithm

•  Set bodies’ initial position and velocity
•  Iterate over time steps

1.  Subdivide space until at most one body per cell
•  Record this spatial hierarchy in an octree

2.  Compute mass and center of mass of each cell
3.  Compute force on bodies by traversing octree

•  Stop traversal path when encountering a leaf (body)
or an internal node (cell) that is far enough away

4.  Update each body’s position and velocity

Barnes Hut N-body Simulation 42

Build Tree (Level 1)

Barnes Hut N-body Simulation 43

Subdivide space until at most one body per cell

Build Tree (Level 2)

Barnes Hut N-body Simulation 44

Subdivide space until at most one body per cell

Build Tree (Level 3)

Barnes Hut N-body Simulation 45

Subdivide space until at most one body per cell

Build Tree (Level 4)

Barnes Hut N-body Simulation 46

Subdivide space until at most one body per cell

Build Tree (Level 5)

Barnes Hut N-body Simulation 47

Subdivide space until at most one body per cell

Compute Cells’ Center of Mass

Barnes Hut N-body Simulation 48

For each internal cell, compute sum of mass and weighted average
of position of all bodies in subtree; example shows two cells only

Compute Forces

Barnes Hut N-body Simulation 49

Compute force, for example, acting upon green body

Compute Force (short distance)

Barnes Hut N-body Simulation 50

Scan tree depth first from left to right; green portion already completed

Compute Force (down one level)

Barnes Hut N-body Simulation 51

Red center of mass is too close, need to go down one level

Compute Force (long distance)

Barnes Hut N-body Simulation 52

Yellow center of mass is far enough away

Compute Force (skip subtree)

Barnes Hut N-body Simulation 53

Therefore, entire subtree rooted in the yellow cell can be skipped

Pseudocode
 Set bodySet = ...
 foreach timestep do {
 Octree octree = new Octree();
 foreach Body b in bodySet {
 octree.Insert(b);
 }
 OrderedList cellList = octree.CellsByLevel();
 foreach Cell c in cellList {
 c.Summarize();
 }
 foreach Body b in bodySet {
 b.ComputeForce(octree);
 }
 foreach Body b in bodySet {
 b.Advance();
 }
 } Barnes Hut N-body Simulation 54

Complexity
 Set bodySet = ...
 foreach timestep do { // O(n log n)
 Octree octree = new Octree();
 foreach Body b in bodySet { // O(n log n)
 octree.Insert(b);
 }
 OrderedList cellList = octree.CellsByLevel();
 foreach Cell c in cellList { // O(n)
 c.Summarize();
 }
 foreach Body b in bodySet { // O(n log n)
 b.ComputeForce(octree);
 }
 foreach Body b in bodySet { // O(n)
 b.Advance();
 }
 } Barnes Hut N-body Simulation 55

Parallelism
 Set bodySet = ...
 foreach timestep do { // sequential
 Octree octree = new Octree();
 foreach Body b in bodySet { // tree building
 octree.Insert(b);
 }
 OrderedList cellList = octree.CellsByLevel();
 foreach Cell c in cellList { // tree traversal
 c.Summarize();
 }
 foreach Body b in bodySet { // fully parallel
 b.ComputeForce(octree);
 }
 foreach Body b in bodySet { // fully parallel
 b.Advance();
 }
 } Barnes Hut N-body Simulation 56

Amorphous Data-Parallelism (1)

•  Top-down tree building
– Topology: tree
– Operator: morph (refinement)
– Ordering: unordered
– Active nodes: new nodes
– Neighborhoods: active nodes and their

parents (the path leading to the parent is only
read)

– Parallelism: increasing from none to a lot
Barnes Hut N-body Simulation 57

Amorphous Data-Parallelism (2)

•  Bottom-up tree summarization
– Topology: tree
– Operator: local computation (structure driven)
– Ordering: ordered (children first, priority is

determined by tree level)
– Active nodes: internal nodes
– Neighborhoods: active nodes and their

children
– Parallelism: decreasing from a lot to none

Barnes Hut N-body Simulation 58

Amorphous Data-Parallelism (3)

•  Force computation
– Topology: tree + set
– Operator: reader + local computation

(structure driven)
– Ordering: unordered/unordered
– Active nodes: nodes in set
– Neighborhoods: active nodes (the tree is only

read)
– Parallelism: full

Barnes Hut N-body Simulation 59

Amorphous Data-Parallelism (4)

•  Advancing bodies
– Topology: set
– Operator: local computation (structure driven)
– Ordering: unordered
– Active nodes: nodes
– Neighborhoods: active nodes
– Parallelism: full

Barnes Hut N-body Simulation 60

Summary

Physical
Models

 Continuous
Models

 Discrete
Models

 Finite-difference

 Finite-element

 Spectral

Explicit

Implicit

MVM

Ax=b

Direct
methods

(Cholesky,LU)

Iterative
methods

(Jacobi,CG,..)

Spatial decomposition
trees

 Mesh generation
and refinement

Summary (contd.)

•  Some key computational science algorithms and data structures
–  MVM:

•  source: explicit finite-difference methods for ode’s, iterative linear solvers,
finite-element methods

•  data structures: both dense and sparse matrices
–  stencil computations:

•  source: finite-difference methods for pde’s
•  data structures: dense matrices

–  A=LU:
•  terminology: direct methods for solving linear systems, factorization
•  source: boundary-element methods
•  data structures: usually only dense matrices
•  comment: high-performance factorization codes use MMM as a kernel

–  mesh generation and refinement
•  source: finite-element methods
•  data structures: graphs

–  tree construction and traversal
•  source: n-nody methods
•  data structures: spatial decomposition tree

Summary (contd.)

•  Terminology
–  regular algorithms:

•  dense matrix computations like MVM, A=LU, stencil computations
•  parallelism in algorithms is independent of runtime values, so all

parallelization decisions can be made at compile-time
–  semi-regular algorithms:

•  sparse matrix computations like MVM, A=LU
•  parallelization decisions can be made at runtime once matrix is

available, but before computation is actually performed
•  inspector-executor approach (see later)

–  irregular algorithms:
•  graph computations like mesh generation and refinement
•  parallelism in algorithms is dependent on runtime values
•  most parallelization decisions have to be made at runtime during the

execution of the algorithm

