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Computational science 
•  Simulations of physical phenomena 

–  fluid flow over aircraft (Boeing 777) 
–  fatigue fracture in aircraft bodies 
–  evolution of galaxies 
–  …. 

•  Two main approaches 
–  continuous methods: fields and differential equations (eg. Navier-Stokes 

equations, Maxwell’s equations,…) 
–  discrete methods/n-body methods: particles and forces (eg. gravitational 

forces) 
•  We will focus first on continuous methods in this lecture 

–  most differential equations cannot be solved exactly 
–  must use numerical methods that compute approximate solutions 

•  discretization: convert calculus problem to linear algebra problem 
–  finite-difference, finite-element and spectral methods 

•  Then we will study n-body methods 



Organization 
•  Finite-difference methods 

–  ordinary and partial differential equations 
–  discretization techniques 

•  explicit methods: Forward-Euler method 
•  implicit methods: Backward-Euler method 

•  Finite-element methods 
–  mesh generation and refinement 
–  weighted residuals 

•  N-body methods 
–  spatial decomposition trees 

•  Key algorithms and data structures 
–  matrix computations 

•  algorithms 
–  matrix-vector multiplication (MVM) 
–  matrix-matrix multiplication (MMM) 
–  solution of systems of linear equations 

»  direct methods 
»  iterative methods 

•  data structures 
–  dense matrices 
–  sparse matrices 

–  graph computations 
•  mesh generation and refinement 
•  spatial decomposition trees 



Ordinary differential equations 
•  Consider the ode 

 u‘(t) = -3u(t)+2 
 u(0) = 1 

•  This is called an initial value 
problem 
–  initial value of u is given 
–  compute how function u 

evolves for t > 0 
•  Using elementary calculus, we 

can solve this ode exactly 
 u(t) = 1/3 (e-3t+2) 

2/3 



Problem 

•  For general ode’s, we may not be able to express 
solution in terms of elementary functions 

•  In most practical situations, we do not need exact 
solution anyway 
–  enough to compute an approximate solution, provided  

•  we have some idea of how much error was introduced 
•  we can improve the accuracy as needed 

•  General solution:  
–  convert calculus problem into algebra/arithmetic problem 

•  discretization: replace continuous variables with discrete variables 
•  in finite differences,  

–  time will advance in fixed-size steps: t=0,h,2h,3h,… 
–  differential equation is replaced by difference equation 



Forward-Euler method 
•  Intuition: 

–  we can compute the derivative at 
t=0 from the differential equation 

      u‘(t) = -3u(t)+2 
–  so compute the derivative at t=0 

and advance along tangent to t =h 
to find an approximation to u(h) 

•  Formally, we replace derivative 
with forward difference to get a 
difference equation 

–  u’(t) ! (u(t+h) – u(t))/h  
•  Replacing derivative with 

difference is essentially the 
inverse of how derivatives were 
probably introduced to you in 
elementary calculus 



Back to ode 
•  Original ode 

  u‘(t) = -3u(t)+2 
•  After discretization using Forward-Euler: 

  (u(t+h) – u(t))/h = -3u(t)+2 
•  After rearrangement, we get difference equation 

  u(t+h) = (1-3h)u(t)+2h  
•  We can now compute values of u: 

  u(0)  = 1 
  u(h)  = (1-h) 
  u(2h) = (1-2h+3h2) 
  ….. 



Exact solution of difference equation 
•  In this particular case, we can actually solve difference equation 

exactly 
•  It is not hard to show that if difference equation is 

u(n+1) = a*u(n)+b 
u(0) = 1 

   the solution is  
     u(n+1) = an+b*(1-an)/(1-a) 
•  For our difference equation,  

        u(nh+h) = (1-3h)u(nh)+2h 
    the exact solution is 

   u(nh) = 1/3( (1-3h)n+2) 
•  Stability: 

–  values computed from difference equation will blow up if  
•  ||(1-3h)|| > 1 " h > 2/3 

–  for this problem, forward-Euler is stable only if step size is less than 2/3 
–  in general, forward-Euler is stable only for small enough step sizes 



Comparison 
•  Exact solution 

 u(t) = 1/3 (e-3t+2) 
 u(nh) = 1/3(e-3nh+2)  (at time-steps) 

•  Forward-Euler solution  
  uf(nh) =1/3( (1-3h)n+2) 

•  Use series expansion to compare 
      u(nh) = 1/3(1-3nh+9/2 n2h2 … + 2) 
       uf(nh) = 1/3(1-3nh+n(n-1)/2 9h2+…+2) 
      So error = O(nh2) (provided h < 2/3) 
•  Conclusion: 

–  error per time step (local error) = 
O(h2) 

–  error at time nh = O(nh2) 

h=1/3 

h=.2 

h=0.1 

h=0.01 

exact solution 



Choosing time step 

•  Time-step needs to be small enough to 
capture highest frequency phenomenon of 
interest 

•  Nyquist’s criterion 
–  sampling frequency must be at least twice 

highest frequency to prevent aliasing 
–  for most finite-difference formulas, you need 

sampling frequencies (much) higher than the 
Nyquist criterion 

•  In practice, most functions of interest are 
not band-limited, so use 

–  insight from application or 
–  reduce time-step repeatedly till changes are 

not significant 
•  Fixed-size time-step can be inefficient if 

frequency varies widely over time interval 
–  other methods like finite-elements permit 

variable time-steps as we will see later 

time 



Backward-Euler method 
•  Replace derivative with backward 

difference 
 u’(t+h) ! (u(t+h) – u(t))/h  

•  For our ode, we get 
 u(t+h)-u(t)/h = -3u(t+h)+2 
 which after rearrangement 
 u(t+h)= (2h+u(t))/(1+3h) 

•  As before, this equation is simple 
enough that we can write down the 
exact solution: 

 u(nh) = ((1/(1+3h))n + 2)/3  
•  Using series expansion, we get 

 u(nh) = (1-3nh + (-n(-n-1)/2) 9h2 + ...+2)/3 
 u(nh) = (1 -3nh + 9/2 n2h2 + 9/2 nh2 +...

+2)/3 
 So error = O(nh2) (for any value of h) 

h=1000 

h=0.1 

h=0.01 

exact solution 



Comparison 
•  Exact solution 

 u(t) = 1/3 (e-3t+2) 
 u(nh) = 1/3(e-3nh+2)  (at time-steps) 

•  Forward-Euler solution  
  uf(nh) =1/3( (1-3h)n+2) 
  error = O(nh2) (provided h < 2/3) 

•  Backward-Euler solution  
 ub(n*h) = 1/3 ((1/(1+3h))n + 2) 
 error = O(nh2) (h can be any value 

you want) 
•  Many other discretization 

schemes have been studied in the 
literature 

–  Runge-Kutta  
–  Crank-Nicolson 
–  Upwind differencing 
–  … Red: exact solution 

Blue: Backward-Euler solution (h=0.1) 
Green: Forward-Euler solution (h=0.1) 



Systems of ode’s 
•  Consider a system of coupled ode’s of the form 

u'(t) = a11*u(t) + a12*v(t) + a13*w(t) + c1(t) 
v'(t) = a21*u(t) + a22*v(t) + a23*w(t) + c2(t) 
w'(t) = a31*u(t) + a32*v(t) + a33*w(t) + c3(t) 

•  If we use Forward-Euler method to discretize this 
system, we get the following system of 
simultaneous equations 

    u(t+h)–u(t) /h = a11*u(t) + a12*v(t) + a13*w(t) + c1(t) 
v(t+h)–v(t) /h = a21*u(t) + a22*v(t) + a23*w(t) + c2(t) 
w(t+h)–w(t) /h= a31*u(t) + a32*v(t) + a33*w(t) + c3(t) 



Forward-Euler (contd.) 

•  Rearranging, we get 
     u(t+h) = (1+ha11)*u(t) + ha12*v(t) + ha13*w(t) + hc1(t) 

v(t+h) = ha21*u(t) + (1+ha22)*v(t) + ha23*w(t) + hc2(t) 
w(t+h) = ha31*u(t) + ha32*v(t) + (1+a33)*w(t) + hc3(t) 

•  Introduce vector/matrix notation 
 u(t) = [u(t) v(t) w(t)]T 

   A    = ….. 
     c(t) =[c1(t) c2(t) c3(t)]T 



Vector notation 

•  Our systems of equations was 
     u(t+h) = (1+ha11)*u(t) + ha12*v(t) + ha13*w(t) + hc1(t) 

 v(t+h) = ha21*u(t) + (1+ha22)*v(t) + ha23*w(t) + hc2(t) 
 w(t+h) = ha31*u(t) + ha32*v(t) + (1+a33)*w(t) + hc3(t) 

•  This system can be written compactly as follows 
u(t+h) = (I+hA)u(t)+hc(t) 

•  We can use this form to compute values of u(h),u(2h),u
(3h),… 

•  Forward-Euler is an example of explicit method of 
discretization 
–  key operation: matrix-vector (MVM) multiplication 
–  in principle, there is a lot of data-parallelism 

•  O(n2) multiplications 
•  O(n) reductions 

–  parallelism is independent of runtime values 



Backward-Euler 

•  We can also use Backward-Euler method to 
discretize system of ode’s 

    u(t+h)–u(t) /h = a11*u(t+h) + a12*v(t+h) + a13*w(t+h) + c1(t+h) 
v(t+h)–v(t) /h = a21*u(t+h) + a22*v(t+h) + a23*w(t+h) + c2(t+h) 
w(t+h)–w(t) /h= a31*u(t+h) + a32*v(t+h) + a33*w(t+h) + c3(t+h) 

•  We can write this in matrix notation as follows 
(I-hA)u(t+h) = u(t)+hc(t+h) 

•  Backward-Euler is example of implicit method of 
discretization 
–  key operation: solving a dense linear system Mx = v  

•  How do we solve large systems of linear equations? 



Higher-order ode’s 
•  Higher-order ode’s can be reduced to systems of first-order ode’s 
•  Example: 

  y’’ + y = f(t) 
  Introduce an auxiliary variable v = y’ 
  Then v’ = y’’, so original ode becomes 
   v’ = -y + f(t) 
  Therefore, original ode can be reduced to the following system of first 

order ode’s 
   y’(t) = 0*y(t)+   v(t) + 0 
   v’(t) = -y(t) + 0*v(t) + f(t) 

•  We can now use the techniques introduced earlier to discretize this 
system. 

•  Interesting point: 
–  coefficient matrix A will have lots of zeros (sparse matrix) 
–  for large systems, it is important to exploit sparsity to reduce 

computational effort 



Intuition for system 

•  Discretize system using forward-Euler 
     y(t+h)-y(t) /h = v(t) 
     v(t+h)-v(t) /h = -y(t) +f(t) 
•  You can eliminate v from this system to get a 

recurrence relation purely in terms of y 
  y(t+2h)-2y(t+h)+y(t) +  y(t) = f(t) 

h2 

Approximation for second derivative 

t t+h t+2h 



Solving linear systems 
•  Linear system: Ax = b 
•  Two approaches 

–  direct methods: Cholesky, LU with pivoting 
•  factorize A into product of lower and upper triangular matrices A = 

LU 
•  solve two triangular systems 

Ly = b 
Ux = y 

•  problems: 
–  even if A is sparse, L and U can be quite dense (“fill”) 
–  no useful information is produced until the end of the procedure 

–  iterative methods: Jacobi, Gauss-Seidel, CG, GMRES 
•  guess an initial approximation x0 to solution 
•  error is Ax0 – b (called residual) 
•  repeatedly compute better approximation xi+1 from residual  (Axi – b) 
•  terminate when approximation is “good enough” 



Iterative method: Jacobi iteration 
•  Linear system 

    4x+2y=8 
        3x+4y=11 
•  Exact solution is (x=1,y=2) 
•  Jacobi iteration for finding approximations to solution 

–  guess an initial approximation 
–  iterate 

•  use first component of residual to refine value of x 
•  use second component of residual to refine value of y 

•  For our example 
  xi+1 = xi - (4xi+2yi-8)/4 

      yi+1 = yi - (3xi+4yi-11)/4 

–  for initial guess (x0=0,y0=0) 

     i    0   1        2            3            4             5              6             7 
     x   0   2        0.625     1.375     0.8594    1.1406     0.9473    1.0527 
     y   0   2.75   1.250     2.281     1.7188    2.1055     1.8945    2.0396 



Jacobi iteration: general picture 
•  Linear system Ax = b 
•  Jacobi iteration 

 M*xi+1 = (M-A)xi + b  (where M is the diagonal of A) 
 This can be written as 
 xi+1 = xi – M-1(Axi – b) 

•  Key operation: 
–  matrix-vector multiplication  

•  Caveat: 
–  Jacobi iteration does not always converge 
–  even when it converges, it usually converges slowly 
–  there are faster iterative methods available: CG,GMRES,.. 
–  what is important from our perspective is that key operation in all 

these iterative methods is matrix-vector multiplication 



Sparse matrix representations 



MVM with sparse matrices 

•  Coordinate storage 
  for P = 1 to NZ do 
     Y(A.row(P))=Y(A.row(P)) + A.val(P)*X(A.column(P)) 

•  CRS storage 
for I = 1 to N do 
   for JJ = A.rowptr(I) to A.rowPtr(I+1)-1 do 
    Y(I)=Y(I)+A.val(JJ)*X(A.column(J))) 



Finite-difference methods for solving 
partial differential equations 

•  Basic ideas carry over 
•  Example: 2-d heat equation 
        ±2u/±x2 + ±2u/±y2 = f(x,y) 
        assume temperature at boundary is fixed 
•  Discretize domain using a regular NxN grid of pitch h 
•  Approximate derivatives as differences 

        ±2u/±x2 =  ((u(i,j+1)-u(i,j))/h  - (u(i,j)-u(i,j-1))/h)/h 
       ±2u/±y2 =  ((u(i+1,j)-u(i,j))/h  - (u(i,j)-u(i-1,j))/h)/h 

•   So we get a system of (N-1)x(N-1) difference equations 
       in terms of the unknowns at the (N-1)x(N-1) interior points 

         8 (i,j) such that (i,j) is an interior point 
          u(i,j+1)+u(i,j-1)+u(i+1,j)+u(i-1,j) – 4u(i,j) = h2 f(ih,jh) 

(i,j) 

(i-1,j) 

(i+1,j) 

(i,j-1) (i,j+1) 

5-point stencil 



……………………………… 
……………………………… 
……………………………… 
……………………………… 
0..1 0..0 1 -4 1 0..0 1 0…0. 
0..0 0 1 0..0 1 -4 1 0..0 1 0. 
……………………………… 
……………………………… 
……………………………... 

•  System of (N-1)x(N-1) difference equations 
       in terms of the unknowns at the (N-1)x(N-1) interior points 

    8 (i,j) such that (i,j) is an interior point 
           u(i,j+1)+u(i,j-1)+u(i+1,j)+u(i-1,j) – 4u(i,j) = h2 f(ih,jh) 

Finite-difference methods for solving 
partial differential equations contd.) 

(i,j) 

(i-1,j) 

(i+1,j) 

(i,j-1) (i,j+1) 

5-point stencil 

…. 
u(i-1,j) 
…. 
u(i,j-1) 
u(i,j) 
u(i,j+1) 
..... 
u(i+1,j) 
…… 

= h2 
……. 
f(ih,jh) 
…….. 

•   Matrix notation: use row-major (natural) order for u’s  

Pentadiagonal sparse matrix  

Since matrix is sparse, we should use an iterative method like Jacobi.  



Implementation of Jacobi iteration  
for this problem 

•  Data structures: 
–  coefficient matrix is known at compile-time, 

so inline it into the code 
–  values of u at a given time-step are stored in 

2-D array 
–  we use two arrays to hold values of u at 

successive time-steps and copy between 
them 

un un+1 

Jacobi iteration 
with 5-point stencil 

//Jacobi iteration  
//initialize array u 
for time = 1, nsteps 
    for i = 2,n-1 
      for j = 2,n-1 
         temp(i,j)=0.25*(u(i-1,j)+u(i+1,j)+u(i,j-)+u(i,j+1)) 
    for i = 2,n-1 
      for j = 2,n-1 
         u(i,j) = temp(i,j) 



Finite-difference methods for solving 
partial differential equations (contd.) 

•  Known as stencil codes 
•  Example shown is Jacobi iteration with 

five-point stencil 
–  many other stencils are used in practice 

•  Parallelism 
–  all interior points can be computed in parallel 
–  parallelism is independent of runtime values 

un un+1 

Jacobi iteration 
with 5-point stencil 



Comment on Sparse MVM 

•  At an abstract level 
–  algorithm: matrix-vector multiplication 
–  data structures: four sparse representations 

•  coordinate storage 
•  compressed-row storage 
•  compressed-column storage 
•  “inlined” into code (stencil) 

•  Programs:  
–  algorithm and data structure are intertwined, making 

them hard to understand for humans as well as 
transformation systems  



Summary 
•  Finite-difference methods 

–  can be used to find 
approximate solutions to ode’s 
and pde’s 

•  Many large-scale 
computational science 
simulations use these methods 

•  Time step or grid step needs to 
be constant and is determined 
by highest-frequency 
phenomenon 
–  can be inefficient for when 

frequency varies widely in 
domain of interest 

–  one solution: structured AMR 
methods 



Finite-element methods 

•  Express approximate solution to pde as a linear combination 
of certain basis functions 

•  Similar in spirit to Fourier analysis 
–  express periodic functions as linear combinations of sines and 

cosines  
•  Questions: 

–  what should be the basis functions? 
•  mesh generation: discretization step for finite-elements 
•  mesh defines basis functions Á0, Á1, Á2,…which are low-degree 

piecewise polynomial functions 
–  given the basis functions, how do we find the best linear combination 

of these for approximating solution to pde? 
•  u = !i ci Ái 
•  weighted residual method: similar in spirit to what we do in Fourier 

analysis, but more complex because basis functions are not necessarily 
orthogonal 



Mesh generation and refinement 

•  1-D example: 
–  mesh is a set of points, not necessarily equally spaced 
–  basis functions are “hats” which 

•  have a value of 1 at a mesh point,  
•  decay down to 0 at neighboring mesh points 
•  0 everywhere else 

–  linear combinations of these produce piecewise linear functions in domain, which may 
change slope only at mesh points 

•  In 2-D, mesh is a triangularization of domain, while in 3-D, it might be a 
tetrahedralization 

•  Mesh refinement: called h-refinement 
–  add more points to mesh in regions where discretization error is large 
–  irregular nature of mesh makes this easy to do this locally 
–  finite-differences require global refinement which can be computationally expensive 



Finding coefficients  

•  Weighted residual technique 
–  similar in spirit to what we do in Fourier analysis, but basis 

functions are not necessarily orthogonal 
•  Key idea: 

–  problem is reduced to solving a system of equations Ax = b 
–  solution gives the coefficients in the weighted sum 
–  because basis functions are zero almost everywhere in the 

domain, matrix A is usually very sparse 
•  number of rows/columns of A ~ O(number of points in mesh) 
•  number of non-zeros per row  ~ O(connectivity of mesh point) 

–  typical numbers: 
•  A is 106x106 

•  only about ~100 non-zeros per row 









Delaunay Mesh Refinement 
•  Iterative refinement to remove badly 

shaped triangles: 
  while there are bad triangles do { 

Pick a bad triangle; 
Find its cavity; 
Retriangulate cavity;  
     // may create new bad triangles 
} 

•  Don’t-care non-determinism: 
–  final mesh depends on order in which bad 

triangles are processed 
–  applications do not care which mesh is 

produced 
•  Data structure:  

–  graph in which nodes represent triangles and 
edges represent triangle adjacencies 

•  Parallelism:  
–  bad triangles with cavities that do not overlap 

can be processed in parallel 
–  parallelism is dependent on runtime values 

•  compilers cannot find this parallelism  
–  (Miller et al) at runtime, repeatedly build 

interference graph and find maximal 
independent sets for parallel execution 
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i1 

i2 

i3 

i4 

i5 

Operator formulation of algorithms 
•  Algorithm =  
     repeated application of operator to graph 

–  active element:  
•  node or edge where computation is needed 

–  DMR: nodes representing bad triangles 
–  Event-driven simulation: station with 

incoming message 
–  Jacobi: interior nodes of mesh 

–  neighborhood: 
•  set of nodes and edges read/written to 

perform computation 
–  DMR: cavity of bad triangle 
–  Event-driven simulation: station 
–  Jacobi: nodes in stencil 

•  distinct usually from neighbors in graph 
–  ordering:  

•  order in which active elements must be executed 
in a sequential implementation 

–  any order (Jacobi,DMR, graph reduction) 
–  some problem-dependent order (event-

driven simulation) 

: active node 

: neighborhood 
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Parallelism 
•  Amorphous data-parallelism 

–  active nodes can be processed in parallel, 
subject to 

•  neighborhood constraints 
•  ordering constraints 

•  Computations at two active elements are 
independent if 

–  Neighborhoods do not overlap 
–  More generally, neither of them writes to an 

element in the intersection of the neighborhoods 
•  Unordered active elements 

–  Independent active elements can be processed 
in parallel 

–  How do we find independent active elements? 
•  Ordered active elements 

–  Independence is not enough  
–  How do we determine what is safe to execute 

w/o violating ordering? 

i1 

i2 

i3 

i4 

i5 

2 

5 

A 
B C 



Barnes Hut 
N-body Simulation 



Introduction 

•  Physical system simulation (time evolution) 
– System consists of bodies 
–  “n” is the number of bodies 
– Bodies interact via pair-wise forces 

•  Many systems can be modeled in these 
terms 
– Galaxy clusters (gravitational force) 
– Particles (electric force, magnetic force) 

Barnes Hut N-body Simulation 40 



Barnes Hut Idea 

•  Precise force calculation 
– Requires O(n2) operations (O(n2) body pairs) 

•  Barnes and Hut (1986) 
– Algorithm to approximately compute forces 

•  Bodies’ initial position & velocity are also 
approximate 

– Requires only O(n log n) operations 
–  Idea is to “combine” far away bodies 
– Error should be small because force " 1/r2  

Barnes Hut N-body Simulation 41 



Barnes Hut Algorithm 

•  Set bodies’ initial position and velocity 
•  Iterate over time steps 

1.  Subdivide space until at most one body per cell 
•  Record this spatial hierarchy in an octree 

2.  Compute mass and center of mass of each cell 
3.  Compute force on bodies by traversing octree 

•  Stop traversal path when encountering a leaf (body) 
or an internal node (cell) that is far enough away 

4.  Update each body’s position and velocity 

Barnes Hut N-body Simulation 42 



Build Tree (Level 1) 

Barnes Hut N-body Simulation 43 

Subdivide space until at most one body per cell 



Build Tree (Level 2) 

Barnes Hut N-body Simulation 44 

Subdivide space until at most one body per cell 



Build Tree (Level 3) 

Barnes Hut N-body Simulation 45 

Subdivide space until at most one body per cell 



Build Tree (Level 4) 

Barnes Hut N-body Simulation 46 

Subdivide space until at most one body per cell 



Build Tree (Level 5) 

Barnes Hut N-body Simulation 47 

Subdivide space until at most one body per cell 



Compute Cells’ Center of Mass 

Barnes Hut N-body Simulation 48 

For each internal cell, compute sum of mass and weighted average 
of position of all bodies in subtree; example shows two cells only 



Compute Forces 

Barnes Hut N-body Simulation 49 

Compute force, for example, acting upon green body 



Compute Force (short distance) 

Barnes Hut N-body Simulation 50 

Scan tree depth first from left to right; green portion already completed 



Compute Force (down one level) 

Barnes Hut N-body Simulation 51 

Red center of mass is too close, need to go down one level 



Compute Force (long distance) 

Barnes Hut N-body Simulation 52 

Yellow center of mass is far enough away 



Compute Force (skip subtree) 

Barnes Hut N-body Simulation 53 

Therefore, entire subtree rooted in the yellow cell can be skipped 



Pseudocode 
 Set bodySet = ... 
 foreach timestep do { 
   Octree octree = new Octree(); 
   foreach Body b in bodySet { 
     octree.Insert(b); 
   } 
   OrderedList cellList = octree.CellsByLevel(); 
   foreach Cell c in cellList { 
     c.Summarize(); 
   } 
   foreach Body b in bodySet { 
     b.ComputeForce(octree); 
   } 
   foreach Body b in bodySet { 
     b.Advance(); 
   } 
 } Barnes Hut N-body Simulation 54 



Complexity 
 Set bodySet = ... 
 foreach timestep do {           // O(n log n) 
   Octree octree = new Octree(); 
   foreach Body b in bodySet {   // O(n log n) 
     octree.Insert(b); 
   } 
   OrderedList cellList = octree.CellsByLevel(); 
   foreach Cell c in cellList {  // O(n) 
     c.Summarize(); 
   } 
   foreach Body b in bodySet {   // O(n log n) 
     b.ComputeForce(octree); 
   } 
   foreach Body b in bodySet {   // O(n) 
     b.Advance(); 
   } 
 } Barnes Hut N-body Simulation 55 



Parallelism 
 Set bodySet = ... 
 foreach timestep do {           // sequential 
   Octree octree = new Octree(); 
   foreach Body b in bodySet {   // tree building 
     octree.Insert(b); 
   } 
   OrderedList cellList = octree.CellsByLevel(); 
   foreach Cell c in cellList {  // tree traversal 
     c.Summarize(); 
   } 
   foreach Body b in bodySet {   // fully parallel 
     b.ComputeForce(octree); 
   } 
   foreach Body b in bodySet {   // fully parallel 
     b.Advance(); 
   } 
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Amorphous Data-Parallelism (1) 

•  Top-down tree building 
– Topology: tree 
– Operator: morph (refinement) 
– Ordering: unordered 
– Active nodes: new nodes 
– Neighborhoods: active nodes and their 

parents (the path leading to the parent is only 
read) 

– Parallelism: increasing from none to a lot 
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Amorphous Data-Parallelism (2) 

•  Bottom-up tree summarization 
– Topology: tree 
– Operator: local computation (structure driven) 
– Ordering: ordered (children first, priority is 

determined by tree level) 
– Active nodes: internal nodes 
– Neighborhoods: active nodes and their 

children 
– Parallelism: decreasing from a lot to none 
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Amorphous Data-Parallelism (3) 

•  Force computation 
– Topology: tree + set 
– Operator: reader + local computation 

(structure driven) 
– Ordering: unordered/unordered 
– Active nodes: nodes in set 
– Neighborhoods: active nodes (the tree is only 

read) 
– Parallelism: full 
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Amorphous Data-Parallelism (4) 

•  Advancing bodies 
– Topology: set 
– Operator: local computation (structure driven) 
– Ordering: unordered 
– Active nodes: nodes 
– Neighborhoods: active nodes 
– Parallelism: full 
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Summary 
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Summary (contd.) 

•  Some key computational science algorithms and data structures 
–  MVM:  

•  source: explicit finite-difference methods for ode’s, iterative linear solvers, 
finite-element methods 

•  data structures: both dense and sparse matrices 
–  stencil computations: 

•  source: finite-difference methods for pde’s 
•  data structures: dense matrices 

–  A=LU:  
•  terminology: direct methods for solving linear systems, factorization 
•  source: boundary-element methods 
•  data structures: usually only dense matrices 
•  comment: high-performance factorization codes use MMM as a kernel 

–  mesh generation and refinement 
•  source: finite-element methods 
•  data structures: graphs 

–  tree construction and traversal 
•  source: n-nody methods 
•  data structures: spatial decomposition tree 



Summary (contd.) 

•  Terminology 
–  regular algorithms:  

•  dense matrix computations like MVM, A=LU, stencil computations 
•  parallelism in algorithms is independent of runtime values, so all 

parallelization decisions can be made at compile-time 
–  semi-regular algorithms: 

•  sparse matrix computations like MVM, A=LU 
•  parallelization decisions can be made at runtime once matrix is 

available, but before computation is actually performed 
•  inspector-executor approach (see later) 

–  irregular algorithms: 
•  graph computations like mesh generation and refinement 
•  parallelism in algorithms is dependent on runtime values 
•  most parallelization decisions have to be made at runtime during the 

execution of the algorithm 


