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General framework

How to speed up numerical simulations ?
Exploit advances in hardware (e.g multicore, GPUs,
FPGAs, Cell),
manage to use hardware efficiently for HPC applications
Better numerical methods

Impact on numerical libraries
Dense Linear Algebra (DLA) calculations
LAPACK, ScaLAPACK, sparse solvers, iterative
solvers...have to be rethought and rewritten
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Hardware to software trends

Processor speed improves 59% / year but memory bandwidth
only by 23%, latency by 5.5%
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GPUs evolution

Used in applications far beyond graphics (GPGPU)
High bandwidth
Significantly outperform current multicores for linear
algebra calculations (since 2008)
More programmability (CUDA)
Multiple levels of memory hierarchy
Numerical libraries available (CUDA...)
New generation supports double precision arithmetic
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Hardware to software trends
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Heterogeneity-aware algorithms

Architecture trends have moved towards heterogeneous
(CPU+GPU) designs
Objective: fully exploit the power that each of the hybrid
components offers
There are significant differences between the new
algorithms and those for conventional CPUs
Need for linear algebra routines for hybrid systems: there
is no self contained library like LAPACK
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MAGMA project

MAGMA: Matrix Algebra on GPU and Multicore
Architectures
DLA library for heterogeneous/hybrid architectures starting
with current Multicore+GPU systems
aims to fastest possible time to an accurate solution
Similar to LAPACK in functionality and interface
Institutions: U. Tennessee, U. California Berkeley, U.
Coimbra, U. Colorado Denver, INRIA
Funding: DOE, NSF, FCT
Industrial support: Microsoft, NVIDIA, MathWorks
Other projects: FLAME (UT Austin), ViennaCL
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MAGMA project

MAGMA version 0.2
http://icl.cs.utk.edu/magma/

Single GPU, one-sided matrix factorizations and solvers,
including mixed-precision iterative refinement solvers
Precision: single, double, single complex, double complex
LAPACK-style interfaces (prefixed by magma)
MAGMA BLAS : complementary to CUBLAS
Work in progress: two-sided factorizations, eigensolvers,
multiple GPUs
MAGMA users do not have to know CUDA in order to use
the library
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GPUs for linear algebra calculations

Design philosophy:
Represent LAPACK algorithms as a collection of
BLAS-based tasks and dependencies among them
→ rely on high performance of BLAS implementations for
current multicore and GPUs
Reuse parts of LAPACK in a systematic way
Abstract us from specificities in programming a GPU
Properly schedule the tasks execution over the multicore
and the GPU
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Task splitting and scheduling

Algorithms as Directed Acyclic Graph (DAG)
(small tasks/tiles for multicore)
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Task splitting and scheduling

DAGs for hybrid systems
(both small and large tasks)
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GPUs for linear algebra calculations

Principles of hybrid implementation:
BLAS-level parallelism where the matrix resides on the
GPU (BLAS calls replaced by CUBLAS)
Offload to the CPU small kernels that are inefficient for the
GPU
Use asynchronism between CPU and GPU whenever
possible
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Example: Cholesky factorization

Marc Baboulin 19/45 Dense linear algebra for hybrid GPU-multicore systems



Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

   

1024 3072 5184 7040 9088
0

40

80

120

160

200

240 FERMI MAGMA

FERMI ASM

ISTANBUL PLASMA

ISTANBUL MKL

GTX280 MAGMA

Matrix Size

G
F

lo
p/

s
LU factorization in double precision

FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz
                  SP/DP peak is 1030 / 515 GFlop/s 

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
                  SP/DP peak is 1075 / 538 GFlop/s   

Marc Baboulin 20/45 Dense linear algebra for hybrid GPU-multicore systems



Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Time breakdown for MAGMA QR (single precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz) - GeForce GTX 280 (240 Cores @ 1.30 GHz).
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Mixed precision algorithms

Bulk of the computation in 32-bit arithmetic
Postprocess the 32-bit solution by refining it into a solution
that is 64-bit accurate
Problem must be ”not ill-conditioned”
Software details in:
M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, S. Tomov,
Accelerating scientific computations with mixed precision algorithms.

Computer Physics Communications , Vol. 180, No 12, pp. 2526-2533 (2009).
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Mixed precision algorithms

Example of the Cholesky factorization

1: LLT← A (εs) O(n3)
2: solve Ly = b (εs) O(n2)

3: solve LT x0 = y (εs) O(n2)
do k = 1,2, ...

4: rk ← b − Axk−1 (εd )
5: solve Ly = rk (εs)
6: solve LT zk = y (εs)
7: xk ← xk−1 + zk (εd )

check convergence
done
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Mixed precision Cholesky factorization
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Solving Ax = b in DP accuracy, A is SPD
(Performance on an Intel Xeon @ 2.33 GHz + NVIDIA GeForce GTX 280)

Marc Baboulin 28/45 Dense linear algebra for hybrid GPU-multicore systems



Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

    27/29

Linear Solvers

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

200

250

300

350

Solving Ax = b using LU factorization 

Intel(R) Xeon(R)E541@2.34GHz / 8 Cores + GTX 280 @1.30GHz / 240 Cores

SP Factorization

SP Solve

MP Solve

DP Factorization

DP Solve

Matrix Size

G
F

lo
p/

s

 Direct solvers
   ­ Factor and do triangular solves 
      in the same, working precision
 Mixed Precision Iterative Refinement

   ­ Factor in single (i.e. the bulk of the computation
      in fast arithmetic) and use it as preconditioner
      in simple double precision iteration, e.g. 
      x

i+1
 = x
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SP
)­1 P (b – A x
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)
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The issue of pivoting in linear systems

General square system Ax = b, solved by Gaussian
Elimination (GE)
We interchange rows: partial pivoting (PP)→ stability
Factorization PA = LU, where P permutation matrix
Partial pivoting implemented in LAPACK, matlab...
No floating point operation in pivoting but it involves
irregular movement of data
Communication overhead due to pivoting: O(n2)
comparisons, for some architectures (multicore, GPUs), up
to 50% of the global computational time
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Other approaches

Communication avoiding algorithms:
L. Grigori, J. Demmel, and H. Xiang, Communication avoiding Gaussian

elimination Supercomupting 2008 proceedings.

J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, Communication-optimal

parallel and sequential QR and LU factorizations, In review, SISC.
Minimize the number of messages exchanged during the
panel factorization, stable in practice.
GPU algorithms:
V. Volkov, J. Demmel, LU, QR, Cholesky factorizations using vector

capabilities of GPUs, Lapack Working note 204.
Reduce the pivoting overhead from 56% to 1-10% by using
innovative data structure.
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Random butterfly transformation (RBT)

[ Parker,95 ] proposed to make the matrix sufficiently
”random” so that, with probability close to 1, pivoting is not
needed
Precondition A with random matrices: UAV
to solve Ax = b, we instead solve (UAV )y = Ub followed
by x = Vy
Random matrices U and V are chosen among a particular
class of matrices called ”butterfly matrices” which are of

the form
(

P Q
R S

)
. where P, Q, R and S are diagonal

n/2× n/2 matrices.
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Random butterfly transformation (RBT)

Method: LU with no pivoting on a preconditioned matrix
The preconditioning is ”cheap” (O(n2) operations)
We do not pivot (RBT NP) or just within the first few rows of
the panel (RBT LP)
→ we have a fully BLAS 3 algorithm
RBT may require some steps of iterative refinement in the
working precision
We take advantage of the GPU for all these calculations
(preconditioning, factorization in SP, iterative refinement)
More details in [ Baboulin, Dongarra, Tomov, 2008 ]
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Experiments with RBT LU

we apply RBT to A and then factorize using an algorithm
for GE (without pivoting) to UAV ,
matrices of size 1024 from Higham’s collection

we report ω = maxi
|ri |

(|A|·|x̄ |+|b|)i
(iterative refinement if

ω > (n + 1)u)

Matrix chebspec circul condex fiedler orthog gfpp
Cond 6 · 1014 5 · 102 1 · 102 2 · 105 1 · 100 2 · 102

GEPP 5 · 10−16 1 · 10−15 2 · 10−15 2 · 10−15 2 · 10−15 2 · 10−2

# iter 0 0 0 0 0 10
GE 5 · 10−16 1 · 10−15 4 · 10−15 Fail Fail Fail
# iter 0 1 0 − − −
QR 9 · 10−16 2 · 10−15 3 · 10−15 6 · 10−15 3 · 10−16 1 · 10−16

# iter 0 0 0 0 0
RBT+GE 6 · 10−14 1 · 10−15 4 · 10−15 1 · 10−15 4 · 10−16 2 · 10−16

# iter 3 1 1 1 2 1
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Bound on the probability of the occurrence of small pivots:
Prob({|upp| < ε; p = 1..n}) ≤ c(n)εe

1
2 ε2

, where upp is the pivot at step p.
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Backward error results for LU

If GE produces computed LU factors L̂ and Û, and a computed
solution x̂ to Ax = b. Then

(A+∆A)x̂ = b, ‖∆A‖∞ ≤ nu‖A‖∞
(

3 + 5‖L‖∞
‖U‖∞
‖A‖∞

)
+O(u2)

We define ρL = ‖L‖∞ and ρU = ‖U‖∞/‖A‖∞.

Bound on the probability of large growth factors (no pivoting)

Prob(ρU > n2.5)→ 0 as n→∞
Prob(ρL > n3)→ 0 as n→∞
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Hybrid RBT LU factorization

Load splitting for a hybrid LU factorization (8 cores+GPU)
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Accuracy of RBT
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Performance of RBT LU factorization (single precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz) - GeForce GTX 280 (240 Cores @ 1.30 GHz).
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Performance of RBT LU factorization (double precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz), GeForce GTX 280 (240 Cores @ 1.30 GHz).
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MAGMA version 0.2 available with linear system solvers
(single and double precision): LU, QR, Cholesky
factorizations, including mixed precision iterative
refinement
Statistical approach very promising for accelerating linear
algebra computations on multicore-GPU architectures
(linear systems, condition number estimates)
Future work: least squares (with mixed precision) and
eigenvalue solvers, condition estimates
More details at http://icl.cs.utk.edu/magma/
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Some references for this talk

[1] S. Tomov, J. Dongarra, M. Baboulin,
Towards dense linear algebra for hybrid GPU accelerated manycore systems.
Parallel Computing, Vol. 36, No 5&6, pp. 232-240 (2010).
[2] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, S. Tomov,
Accelerating scientific computations with mixed precision algorithms.
Computer Physics Communications , Vol. 180, No 12, pp. 2526-2533 (2009).
[3] S. Tomov, J. Dongarra,
Accelerating the reduction to upper-Hessenberg form through hybrid GPU-based
computing.
LAPACK Working Note 219 (2009).
[4] M. Baboulin, J. Demmel, J. Dongarra, S. Tomov, V. Volkov,
Enhancing the performance of dense linear algebra on GPUs.
Supercomputing (SC’08), Austin, USA, Nov. 15-21, 2008.
[5] M. Baboulin, J. Dongarra, S. Tomov,
Some issues in dense linear algebra for multicore and special purpose
architectures.
Springer LCNS Series, 9th International Workshop on State-of-the-Art in Scientific and
Parallel Computing (PARA’08).
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