
Dense linear algebra for hybrid
GPU-multicore systems.

Application to linear systems.

Marc Baboulin

Universidade de Coimbra (Portugal)

joint work with
Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory)

and Stanimire Tomov (University of Tennessee)

Marc Baboulin 1/45 Dense linear algebra for hybrid GPU-multicore systems

General framework

How to speed up numerical simulations ?
Exploit advances in hardware (e.g multicore, GPUs,
FPGAs, Cell),
manage to use hardware efficiently for HPC applications
Better numerical methods

Impact on numerical libraries
Dense Linear Algebra (DLA) calculations
LAPACK, ScaLAPACK, sparse solvers, iterative
solvers...have to be rethought and rewritten

Marc Baboulin 2/45 Dense linear algebra for hybrid GPU-multicore systems

Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion

Marc Baboulin 3/45 Dense linear algebra for hybrid GPU-multicore systems

Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion

Marc Baboulin 4/45 Dense linear algebra for hybrid GPU-multicore systems

Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion

Marc Baboulin 5/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion

Marc Baboulin 6/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion

Marc Baboulin 7/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Hardware to software trends

Processor speed improves 59% / year but memory bandwidth
only by 23%, latency by 5.5%

Marc Baboulin 8/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

GPUs evolution

Used in applications far beyond graphics (GPGPU)
High bandwidth
Significantly outperform current multicores for linear
algebra calculations (since 2008)
More programmability (CUDA)
Multiple levels of memory hierarchy
Numerical libraries available (CUDA...)
New generation supports double precision arithmetic

Marc Baboulin 9/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Marc Baboulin 10/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Hardware to software trends

Marc Baboulin 11/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Heterogeneity-aware algorithms

Architecture trends have moved towards heterogeneous
(CPU+GPU) designs
Objective: fully exploit the power that each of the hybrid
components offers
There are significant differences between the new
algorithms and those for conventional CPUs
Need for linear algebra routines for hybrid systems: there
is no self contained library like LAPACK

Marc Baboulin 12/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

MAGMA project

MAGMA: Matrix Algebra on GPU and Multicore
Architectures
DLA library for heterogeneous/hybrid architectures starting
with current Multicore+GPU systems
aims to fastest possible time to an accurate solution
Similar to LAPACK in functionality and interface
Institutions: U. Tennessee, U. California Berkeley, U.
Coimbra, U. Colorado Denver, INRIA
Funding: DOE, NSF, FCT
Industrial support: Microsoft, NVIDIA, MathWorks
Other projects: FLAME (UT Austin), ViennaCL

Marc Baboulin 13/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

MAGMA project

MAGMA version 0.2
http://icl.cs.utk.edu/magma/

Single GPU, one-sided matrix factorizations and solvers,
including mixed-precision iterative refinement solvers
Precision: single, double, single complex, double complex
LAPACK-style interfaces (prefixed by magma)
MAGMA BLAS : complementary to CUBLAS
Work in progress: two-sided factorizations, eigensolvers,
multiple GPUs
MAGMA users do not have to know CUDA in order to use
the library

Marc Baboulin 14/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

GPUs for linear algebra calculations

Design philosophy:
Represent LAPACK algorithms as a collection of
BLAS-based tasks and dependencies among them
→ rely on high performance of BLAS implementations for
current multicore and GPUs
Reuse parts of LAPACK in a systematic way
Abstract us from specificities in programming a GPU
Properly schedule the tasks execution over the multicore
and the GPU

Marc Baboulin 15/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Task splitting and scheduling

Algorithms as Directed Acyclic Graph (DAG)
(small tasks/tiles for multicore)

Marc Baboulin 16/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Task splitting and scheduling

DAGs for hybrid systems
(both small and large tasks)

Marc Baboulin 17/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

GPUs for linear algebra calculations

Principles of hybrid implementation:
BLAS-level parallelism where the matrix resides on the
GPU (BLAS calls replaced by CUBLAS)
Offload to the CPU small kernels that are inefficient for the
GPU
Use asynchronism between CPU and GPU whenever
possible

Marc Baboulin 18/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Example: Cholesky factorization

Marc Baboulin 19/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

1024 3072 5184 7040 9088
0

40

80

120

160

200

240 FERMI MAGMA

FERMI ASM

ISTANBUL PLASMA

ISTANBUL MKL

GTX280 MAGMA

Matrix Size

G
F

lo
p/

s
LU factorization in double precision

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
 SP/DP peak is 1030 / 515 GFlop/s

ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz
 SP/DP peak is 1075 / 538 GFlop/s

Marc Baboulin 20/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Time breakdown for MAGMA QR (single precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz) - GeForce GTX 280 (240 Cores @ 1.30 GHz).

Marc Baboulin 21/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

0

50

100

150

200

250

300

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,000

G
F
l
o
p
/
s

Matrix size

MAGMA v0.2 - Performance on GTX280

magma_sgetrf_gpu
 magma_sgeqrf_gpu
magma_spotrf_gpu

Performance of one-sided factorizations (single precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz) - GeForce GTX 280 (240 Cores @ 1.30 GHz).

Marc Baboulin 22/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

0

10

20

30

40

50

60

70

80

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,00010,000

G
F
l
o
p
/
s

Matrix size

MAGMA v0.2 - Performance on GTX280

magma_dgetrf_gpu
 magma_dgeqrf_gpu
magma_dpotrf_gpu

Performance of one-sided factorizations (double precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz) - GeForce GTX 280 (240 Cores @ 1.30 GHz).

Marc Baboulin 23/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion

Marc Baboulin 24/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Marc Baboulin 25/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Mixed precision algorithms

Bulk of the computation in 32-bit arithmetic
Postprocess the 32-bit solution by refining it into a solution
that is 64-bit accurate
Problem must be ”not ill-conditioned”
Software details in:
M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, S. Tomov,
Accelerating scientific computations with mixed precision algorithms.

Computer Physics Communications , Vol. 180, No 12, pp. 2526-2533 (2009).

Marc Baboulin 26/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Mixed precision algorithms

Example of the Cholesky factorization

1: LLT← A (εs) O(n3)
2: solve Ly = b (εs) O(n2)

3: solve LT x0 = y (εs) O(n2)
do k = 1,2, ...

4: rk ← b − Axk−1 (εd)
5: solve Ly = rk (εs)
6: solve LT zk = y (εs)
7: xk ← xk−1 + zk (εd)

check convergence
done

Marc Baboulin 27/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Mixed precision Cholesky factorization

1 2 3 4 5 6 7
0

50

100

150

200

250

300

SP Factorization
Mixed Prec. Solver
CPU Iterations
Mixed Prec. Solver
GPU Iterations
DP Solver

Matrix Size x 1,000

G
fl

o
p

/s

Slide 15 / 13

Solving Ax = b in DP accuracy, A is SPD
(Performance on an Intel Xeon @ 2.33 GHz + NVIDIA GeForce GTX 280)

Marc Baboulin 28/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

 27/29

Linear Solvers

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

200

250

300

350

Solving Ax = b using LU factorization

Intel(R) Xeon(R)E541@2.34GHz / 8 Cores + GTX 280 @1.30GHz / 240 Cores

SP Factorization

SP Solve

MP Solve

DP Factorization

DP Solve

Matrix Size

G
F

lo
p/

s

 Direct solvers
 ­ Factor and do triangular solves
 in the same, working precision
 Mixed Precision Iterative Refinement

 ­ Factor in single (i.e. the bulk of the computation
 in fast arithmetic) and use it as preconditioner
 in simple double precision iteration, e.g.
 x

i+1
 = x

i
 + (LU

SP
)­1 P (b – A x

i
)

Marc Baboulin 29/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion

Marc Baboulin 30/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion

Marc Baboulin 31/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

The issue of pivoting in linear systems

General square system Ax = b, solved by Gaussian
Elimination (GE)
We interchange rows: partial pivoting (PP)→ stability
Factorization PA = LU, where P permutation matrix
Partial pivoting implemented in LAPACK, matlab...
No floating point operation in pivoting but it involves
irregular movement of data
Communication overhead due to pivoting: O(n2)
comparisons, for some architectures (multicore, GPUs), up
to 50% of the global computational time

Marc Baboulin 32/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Other approaches

Communication avoiding algorithms:
L. Grigori, J. Demmel, and H. Xiang, Communication avoiding Gaussian

elimination Supercomupting 2008 proceedings.

J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, Communication-optimal

parallel and sequential QR and LU factorizations, In review, SISC.
Minimize the number of messages exchanged during the
panel factorization, stable in practice.
GPU algorithms:
V. Volkov, J. Demmel, LU, QR, Cholesky factorizations using vector

capabilities of GPUs, Lapack Working note 204.
Reduce the pivoting overhead from 56% to 1-10% by using
innovative data structure.

Marc Baboulin 33/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Random butterfly transformation (RBT)

[Parker,95] proposed to make the matrix sufficiently
”random” so that, with probability close to 1, pivoting is not
needed
Precondition A with random matrices: UAV
to solve Ax = b, we instead solve (UAV)y = Ub followed
by x = Vy
Random matrices U and V are chosen among a particular
class of matrices called ”butterfly matrices” which are of

the form
(

P Q
R S

)
. where P, Q, R and S are diagonal

n/2× n/2 matrices.

Marc Baboulin 34/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Random butterfly transformation (RBT)

Method: LU with no pivoting on a preconditioned matrix
The preconditioning is ”cheap” (O(n2) operations)
We do not pivot (RBT NP) or just within the first few rows of
the panel (RBT LP)
→ we have a fully BLAS 3 algorithm
RBT may require some steps of iterative refinement in the
working precision
We take advantage of the GPU for all these calculations
(preconditioning, factorization in SP, iterative refinement)
More details in [Baboulin, Dongarra, Tomov, 2008]

Marc Baboulin 35/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion

Marc Baboulin 36/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Experiments with RBT LU

we apply RBT to A and then factorize using an algorithm
for GE (without pivoting) to UAV ,
matrices of size 1024 from Higham’s collection

we report ω = maxi
|ri |

(|A|·|x̄ |+|b|)i
(iterative refinement if

ω > (n + 1)u)

Matrix chebspec circul condex fiedler orthog gfpp
Cond 6 · 1014 5 · 102 1 · 102 2 · 105 1 · 100 2 · 102

GEPP 5 · 10−16 1 · 10−15 2 · 10−15 2 · 10−15 2 · 10−15 2 · 10−2

iter 0 0 0 0 0 10
GE 5 · 10−16 1 · 10−15 4 · 10−15 Fail Fail Fail
iter 0 1 0 − − −
QR 9 · 10−16 2 · 10−15 3 · 10−15 6 · 10−15 3 · 10−16 1 · 10−16

iter 0 0 0 0 0
RBT+GE 6 · 10−14 1 · 10−15 4 · 10−15 1 · 10−15 4 · 10−16 2 · 10−16

iter 3 1 1 1 2 1

Marc Baboulin 37/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Bound on the probability of the occurrence of small pivots:
Prob({|upp| < ε; p = 1..n}) ≤ c(n)εe

1
2 ε2

, where upp is the pivot at step p.

Marc Baboulin 38/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Backward error results for LU

If GE produces computed LU factors L̂ and Û, and a computed
solution x̂ to Ax = b. Then

(A+∆A)x̂ = b, ‖∆A‖∞ ≤ nu‖A‖∞
(

3 + 5‖L‖∞
‖U‖∞
‖A‖∞

)
+O(u2)

We define ρL = ‖L‖∞ and ρU = ‖U‖∞/‖A‖∞.

Bound on the probability of large growth factors (no pivoting)

Prob(ρU > n2.5)→ 0 as n→∞
Prob(ρL > n3)→ 0 as n→∞

Marc Baboulin 39/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Hybrid RBT LU factorization

Load splitting for a hybrid LU factorization (8 cores+GPU)

Marc Baboulin 40/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Accuracy of RBT

Marc Baboulin 41/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Performance of RBT LU factorization (single precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz) - GeForce GTX 280 (240 Cores @ 1.30 GHz).

Marc Baboulin 42/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Randomization in linear systems
Accuracy and performance results

Performance of RBT LU factorization (double precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz), GeForce GTX 280 (240 Cores @ 1.30 GHz).

Marc Baboulin 43/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

MAGMA version 0.2 available with linear system solvers
(single and double precision): LU, QR, Cholesky
factorizations, including mixed precision iterative
refinement
Statistical approach very promising for accelerating linear
algebra computations on multicore-GPU architectures
(linear systems, condition number estimates)
Future work: least squares (with mixed precision) and
eigenvalue solvers, condition estimates
More details at http://icl.cs.utk.edu/magma/

Marc Baboulin 44/45 Dense linear algebra for hybrid GPU-multicore systems

Taking advantage of new parallel architectures
Getting faster through statistics

Conclusion

Some references for this talk

[1] S. Tomov, J. Dongarra, M. Baboulin,
Towards dense linear algebra for hybrid GPU accelerated manycore systems.
Parallel Computing, Vol. 36, No 5&6, pp. 232-240 (2010).
[2] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, S. Tomov,
Accelerating scientific computations with mixed precision algorithms.
Computer Physics Communications , Vol. 180, No 12, pp. 2526-2533 (2009).
[3] S. Tomov, J. Dongarra,
Accelerating the reduction to upper-Hessenberg form through hybrid GPU-based
computing.
LAPACK Working Note 219 (2009).
[4] M. Baboulin, J. Demmel, J. Dongarra, S. Tomov, V. Volkov,
Enhancing the performance of dense linear algebra on GPUs.
Supercomputing (SC’08), Austin, USA, Nov. 15-21, 2008.
[5] M. Baboulin, J. Dongarra, S. Tomov,
Some issues in dense linear algebra for multicore and special purpose
architectures.
Springer LCNS Series, 9th International Workshop on State-of-the-Art in Scientific and
Parallel Computing (PARA’08).

Marc Baboulin 45/45 Dense linear algebra for hybrid GPU-multicore systems

	Main Talk
	Taking advantage of new parallel architectures
	Towards hybrid GPU-multicore algorithms
	Mixed precision algorithms

	Getting faster through statistics
	Randomization in linear systems
	Accuracy and performance results

	Conclusion

