Summer School

s-Science with Many-core CPU/GPU
Processors

Lecture 6
CUDA Performance Considerations

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

Objective

« Putting the CUDA performance knowledge to work

— Plausible strategies may or may not lead to performance
enhancement

— Different constraints dominate in different application
situations

— Case studies help to establish intuition, idioms and ideas

 Algorithm patterns that can result in both better
efficiency as well as better HW utilization

This lecture covers useful strategies for tuning
CUDA application performance on many-core
pProcessors.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

Computational Thinking Skills

 The ability to translate/formulate domain problems
Into computational models that can be solved
efficiently by available computing resources

— Understanding the relationship between the domain problem
and the computational models

— Understanding the strength and limitations of the
computing devices

— Designing the model implementations to steer away
from the limitations

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 3
Portugal, June 14-18, 2010

How thread blocks are partitioned

« Thread blocks are partitioned into warps

— Thread IDs within a warp are consecutive and increasing
— Warp 0 starts with Thread ID 0

 Partitioning is always the same
— Thus you can use this knowledge in control flow

— However, the exact size of warps may change from generation to
generation

— (Covered next)

« However, DO NOT rely on any ordering between warps

— If there are any dependencies between threads, you must
__syncthreads() to get correct results

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

Control Flow Instructions

« Main performance concern with branching is divergence
— Threads within a single warp take different paths

— Different execution paths are serialized in current GPUs
« The control paths taken by the threads in a warp are traversed one at a
time until there is no more.
- A common case: avoid divergence when branch condition is a
function of thread ID

— Example with divergence:
e If (threadldx.x > 2) { }
« This creates two different control paths for threads in a block

« Branch granularity < warp size; threads 0, 1 and 2 follow different path
than the rest of the threads in the first warp

— Example without divergence:
« If (threadIdx.x / WARP SIZE > 2) { }
« Also creates two different control paths for threads in a block

« Branch granularity is a whole multiple of warp size; all threads in any
given warp follow the same path

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 5
Portugal, June 14-18, 2010

Parallel Reduction

* Given an array of values, “reduce” them to a single
value In parallel
« Examples

— sum reduction: sum of all values in the array
— Max reduction: maximum of all values in the array

« Typically parallel implementation:
— Recursively halve # threads, add two values per thread
— Takes log(n) steps for n elements, requires n/2 threads

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

A Vector Reduction Example

« Assume an in-place reduction using shared memory
— The original vector is in device global memory
— The shared memory is used to hold a partial sum vector

— Each iteration brings the partial sum vector closer to the
final sum

— The final solution will be in element 0

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

A simple implementation

« Assume we have already loaded array into
__shared float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;
stride < blockDim.x; stride *= 2)
{
__syncthreads() ;
if (t ¥ (2*stride) == 0)
partialSum[t] += partialSum|[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 8
Portugal, June 14-18, 2010

Vector Reduction with Branch Divergence

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

_
anea
e
IIRES
- .

/

HNENER
HEANEN

|-

iteratio

IREEER

I

B

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Array elements — » 9
Portugal, June 14-18, 2010

Some Observations

 |In each iterations, two control flow paths will be sequentially
traversed for each warp
— Threads that perform addition and threads that do not

— Threads that do not perform addition may cost extra cycles depending
on the implementation of divergence

« No more than half of threads will be executing at any time
— All odd index threads are disabled right from the beginning!

— On average, less than % of the threads will be activated for all warps
over time.

— After the 5™ iteration, entire warps in each block will be disabled, poor
resource utilization but no divergence.

« This can go on for a while, up to 4 more iterations (512/32=16= 24), where
each iteration only has one thread activated until all warps in a block retire

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 10
Portugal, June 14-18, 2010

Shortcomings of the implementation

« Assume we have already loaded array into
__shared float partialSum[]

_ _ BAD: Divergence
unsigned int t = threadlIdx.x; duetointerlgeaved

branch decisions
k= 2)

for (unsigned int stride = 1;

stride < blockDim.x; s

{
__syncthreads() ;
if (t % (2*stride) == 0)
partialSum[t] += partialSum[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 11
Portugal, June 14-18, 2010

A better implementation

« Assume we have already loaded array into
__shared float partialSum[]

unsigned int t = threadIdx.x;
for (unsigned int stride = blockDim.x/2;
stride >= 1; stride >> 1)

__syncthreads() ;
if (t < stride)
partialSum[t] += partialSum|[t+stride];
}

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 12
Portugal, June 14-18, 2010

No Divergence until < 64 sub-sums

Thread 0 Thread 1 Thread 2 Thread 14 Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

Memory Layout of a Matrix in C

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

14

Memory Coalescing

* When accessing global memory, peak performance
utilization occurs when all threads in a Warp access
continuous memory locations.

Not coalesced coalesced

Thread 1——
Thread 2

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

15

Memory Layout of a Matrix in C

AcCcess
direction in
Kernel code

Time Period 1 Time Period 2
T, T, T3 T,|Ty T, T4 T,

M
l

IVIO,O Ml,O MZ,O

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

Memory Layout of a Matrix in C

AcCcess B BT AL N ALY

direction in
Kernel code

—

Time Period 2
T, T, T, T,
A A A A
Tijne Period 1
T, T, T, T,
M
IVIO,O Ml,O MZ,O

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

17

Memory Access Pattern
(Corner Turning)

Original
Access
Pattern
< > Copy into
scratchpad
memory
[]
: .
Tiled
Access Perf
Pattern ertorm
multiplication
with scratchpad
values
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, | 18

Portugal, June 14-18, 2010

Tiled Multiply

Make sure that tiles are all loaded
In vertical patters from the global
memory

Md data can then be accessed from
shared memory in horizontal
direction

(T

«—

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, |

v

Portugal, June 14-18, 2010

Tiling Size Effects

« For good bandwidth utilization, accesses should be aligned and
consist of 16 contiguous words

» Tile size 16X16 minimal required to achieve full coalescing

— Both reduction of global memory accesses and more efficient execution
of the accesses

GFLOPS
LT

tiled
only
tiled
only
tiled
only
tiled
only

tiled &
unrolled
tiled &
unrolled
tiled &
unrolled
tiled &
unrolled

not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 20
Portugal, June 14-18, 2010

Programmer View of Register File

A G80SM has 8192 registers 4 blocks 3 blocks

— This Is an implementation
decision, not part of CUDA

— Registers are dynamically
partitioned across all Blocks
assigned to the SM

— Once assigned to a Block, the
register is NOT accessible by
threads in other Blocks

— Each thread in the same Block
only access registers assigned to
itself

« A GT200 SM: 16K registers
« A Fermi SM: 32K registers

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

21

Matrix Multiplication Example

« |f each Block has 16X16 threads and each thread uses

10 registers, how many thread can run on each SM?

— Each Block requires 10*256 = 2560 registers

— 8192 = 3 * 2560 + change

— S0, three blocks can run on an SM as far as registers are

concerned

« How about if each thread increases the use of registers

by 17

— Each Block now requires 11*256 = 2816 registers

— 8192 < 2816 *3

— Only two Blocks can run on an SM, 1/3 reduction of
thread-level parallelism (TLP)!!!

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 22
Portugal, June 14-18, 2010

How about GT200

If each thread uses 10 registers,

— 16,384 = 2560 * 6 + change

— 6 thread blocks fit into a GT200 SM
If each thread uses 11 registers

— 16384 = 2816 * 5 + change

The drop is from 6 to 5, not nearly as steep as in G80.

However, the number of threads in each GT200 SM
cannot exceed 1024 (<256*5)

— S0, registers are no loner a bottleneck!

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 23
Portugal, June 14-18, 2010

How about Fermi?

If each thread uses 10 registers,
— 32,768 = 2560 * 12 + change
— 12 thread blocks fit into a GT200 SM
If each thread uses 11 registers
— 32,768= 2816 * 11 + change
The drop is from 12 to 11, the effect is probably not
very significant.

Same comment as GT200 on thread number.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

24

More on Dynamic Partitioning

« Dynamic partitioning of SM resources gives more
flexibility to compilers/programmers

— One can run a smaller number of threads that require many
registers each or a large number of threads that require few
registers each

 This allows for finer grain threading than traditional CPU threading
models.

— The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 25
Portugal, June 14-18, 2010

ILP vs. TLP Example

« Assume that a kernel has 256-thread Blocks, 4 independent
Instructions for each global memory load in the thread

program, and each thread uses 10 registers, global loads have
200 cycles

— 3 Blocks can run on each SM

 |f a compiler can use one more register to change the
dependence pattern so that 8 independent instructions exist for
each global memory load
— Only two can run on each SM

— However, one only needs 200/(8*4) = 7 Warps to tolerate the memory
latency

— Two Blocks have 16 Warps. The performance can be actually higher!

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 26
Portugal, June 14-18, 2010

Resource Allocation Example

Thread Contexts

A A

SP7

SPO

32KB Register File

A A

16KB Shared Memory

)

/

(a) Pre-“optimization”

Insufficient
registers to allocate
3 blocks

N a

-

Thread Contexts A

-

SP7

SPO

32KB Register File , ;

16KB Shared Memory

))

%

(b) Post-“optimization”

Increase in per-thread performance, but fewer threads:

Lower overall performance in this case 27

Tiled Multiply

« Each computes one square sub-matrix
Pd,, of size TILE_WIDTH

« Each thread computes one element of Pd,,

* Reduced loads from global memory (Md) to
shared memory

 Reduced instruction overhead
— More work done in each iteration

TILE_WIDT ; > <

>

© David Kirk/NVIDIA and Wen-mei W, Hwu Braga,

tX
012 TILE_WIDTH-1

|

Portugal, June 14-18, 2010

Prefetching

« One could double buffer the computation, getting
better instruction mix within each thread

— This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

__syncthreads()

Compute current tile

__syncthreads()
h

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

Load next tile from global memory

Loop {

Deposit current tile to shared memory
syncthreads()

Load next tile from global memory

Compute current tile

__syncthreads()
}

29

Prefetch

* Deposit blue tile from register into

shared memory I Il
» Syncthreads
« Load orange tile into register

« Compute Blue tile

» Deposit orange tile into shared
memory

— |

(> S

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010

Instruction Mix Considerations

for (int k = 0; k < BLOCK SIZE; ++k)
Pvalue += Ms[ty] [k] * Ns[k] [tx];

There are very few mul/add between branches
and address calculation.

LLoop unrolling can help.

Pvalue += Ms[ty][k] * Ns[k][tx] + ..

Ms[ty] [k+15] * Ns[k+15] [tx];

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

31

Unrolling

Ctemp = 0;

for (...) {
__shared float As[l6][1l6];
__shared float Bs[lo6][16];

// load input tile elements
As[ty] [tx] = AlindexA];
Bs[ty]l [tx] = B[indexB];
indexA += 16;

indexB += 16 * widthB;

avncrthraada l\ .

// compute results for ti
for (i = 0; i < 16; i++)
{
Ctemp += As[ty] [i]
* Bs[i][tx];

h)
J

__syncthreads() ;

}
ClindexC] = Ctemp;

(b) Tiled Version

Ctemp = 0;

for (...) {
__shared float As[l6][1l6];
__shared float Bs[l6][16];

// load input tile elements
As[ty] [tx] = AlindexA];
Bs[ty]l [tx] = B[indexB];
indexA += 16;

indexB += 16 * widthB;
__syncthreads() ;

// compute results for tild
Ctemp +=
As[ty] [0] * Bs[O] [tx];
Ctemp +=
As[ty] [15] * Bs[15] [tx]
S USe

__syncthreads() ;
}

(c) Unrolled Version

Removal of branch instructions and address calculations

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

Clindexc] - cremp; [TIOFE Fegisters?

32

How Close Are We to Best Performance?

* |nvestigated applications with many optimizations

« Exhaustive optimization space search
— Applied many different, controllable optimizations
— Parameterized code by hand

« Hand-optimized code is deficient
— Generally >15% from the best configuration

— Trapped at local maxima
— Often non-intuitive mix of optimizations

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 33
Portugal, June 14-18, 2010

Matrix Multiplication Space

140
120 50% Performance Increase
Over Hand-Optimized Version Bunroll 1
100 =
p) 80 L |PM || [®Munroll 2
al
O 60 — L_| (Ounroll 4
T =
LL 40 —] = |Ocomplete
(D IS unroll
20 — N 1=
[
(LT 5
0 —
© < © < © < © < © < © <
€ S € 3 € S € b € 3 € b
sl el s|e|s|els|els|e]s]|e
cC (O] c O] c (O] c (O] c O] c] H H H
= s = = s = | Optimizations
1x1 1x2 1x4 1x1 1x2 1x4
8x8 tiles 16x16 tiles

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

34
Portugal, June 14-18, 2010

Some More Plausible Ideas

* One might be able to use texture memory for M
accesses to reduce register usage

 Let us know If you get more than 120 GFLOPs
(including CPU/GPU data transfers) for matrix
multiplication. We know it can be done.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010

35

Major GPU Performance Detractors

 Long-latency operations
— Avold stalls by executing other threads

« Stalls and bubbles in the pipeline
— Barrier synchronization
— Branch divergence

 Shared resource saturation
— Global memory bandwidth
— Local memory capacity

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 36
Portugal, June 14-18, 2010

High Performance CPU/GPU Data
Transfers

» Page-Locked or Pinned Memory Buffer
— Allows OS to avoid copying the user buffer to kernel buffer
— Higher-performance CPU/GPU data copies

 cudaMallocHost() or cudaHostAlloc()
— functions in the runtime API.

— The bandwidthTest.cu program in the CUDA SDK shows
how to use these functions as well as how to measure
memory transfer performance.

« Pinned memory is scarce resource, overuse can reduce
overall system performance

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 37
Portugal, June 14-18, 2010

Hiding the Cost of CPU/GPU Data
Transfers

 Data transfers between the host and the device using
cudaMemcpy() are blocking transfers;
— Control is returned to the host thread only after the data
transfer is complete.
« The cudaMemcpyAsync() function is a non-blocking
variant of cudaMemcpy()
— Control is returned immediately to the host thread.
— Asynchronous transfer requires pinned host memory

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 38
Portugal, June 14-18, 2010

Asynchronous Data Transfers

« An aysnchronous transfer call contains an additional
argument, a stream ID.

« A stream Is a sequence of operations that are
performed in order on the device.

— Operations in different streams can be interleaved and in

some cases overlapped—a property that can be used to hide
data transfers between the host and the device.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

39
Portugal, June 14-18, 2010

Hiding Data Transfer COst

 Asynchronous transfers enable overlap of data
transfers with computation.

— Overlap host computation with asynchronous data transfers
and with device computations.

— For example, host computation in the routine cpuFunction()
Is performed while data is transferred to the device and a
kernel using the device is executed.

« cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);
 kernel<<<grid, block>>>(a_d);
 cpuFunction();

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 40
Portugal, June 14-18, 2010

Some Resources

« CUDA Occupancy Calculator
— Based on resource usage
— Number of blocks that will be active on each SM

« CUDA Parallel Nsight

— Dynamic events such as non-coalesced memory access and
control divergence

« ADAPT

— Interactive effects of multiple events on performance
— Source code association

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 41
Portugal, June 14-18, 2010

