
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
1

Summer School

s-Science with Many-core CPU/GPU

Processors

Lecture 6

CUDA Performance Considerations

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
2

Objective

• Putting the CUDA performance knowledge to work

– Plausible strategies may or may not lead to performance

enhancement

– Different constraints dominate in different application

situations

– Case studies help to establish intuition, idioms and ideas

• Algorithm patterns that can result in both better

efficiency as well as better HW utilization

This lecture covers useful strategies for tuning

CUDA application performance on many-core

processors.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
3

Computational Thinking Skills

• The ability to translate/formulate domain problems

into computational models that can be solved

efficiently by available computing resources

– Understanding the relationship between the domain problem

and the computational models

– Understanding the strength and limitations of the

computing devices

– Designing the model implementations to steer away

from the limitations

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
4

How thread blocks are partitioned

• Thread blocks are partitioned into warps

– Thread IDs within a warp are consecutive and increasing

– Warp 0 starts with Thread ID 0

• Partitioning is always the same

– Thus you can use this knowledge in control flow

– However, the exact size of warps may change from generation to
generation

– (Covered next)

• However, DO NOT rely on any ordering between warps

– If there are any dependencies between threads, you must
__syncthreads() to get correct results

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
5

Control Flow Instructions

• Main performance concern with branching is divergence
– Threads within a single warp take different paths

– Different execution paths are serialized in current GPUs
• The control paths taken by the threads in a warp are traversed one at a

time until there is no more.

• A common case: avoid divergence when branch condition is a
function of thread ID
– Example with divergence:

• If (threadIdx.x > 2) { }

• This creates two different control paths for threads in a block

• Branch granularity < warp size; threads 0, 1 and 2 follow different path
than the rest of the threads in the first warp

– Example without divergence:
• If (threadIdx.x / WARP_SIZE > 2) { }

• Also creates two different control paths for threads in a block

• Branch granularity is a whole multiple of warp size; all threads in any
given warp follow the same path

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
6

Parallel Reduction

• Given an array of values, “reduce” them to a single

value in parallel

• Examples

– sum reduction: sum of all values in the array

– Max reduction: maximum of all values in the array

• Typically parallel implementation:

– Recursively halve # threads, add two values per thread

– Takes log(n) steps for n elements, requires n/2 threads

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
7

A Vector Reduction Example

• Assume an in-place reduction using shared memory

– The original vector is in device global memory

– The shared memory is used to hold a partial sum vector

– Each iteration brings the partial sum vector closer to the

final sum

– The final solution will be in element 0

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
8

A simple implementation

• Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x; stride *= 2)

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
9

Vector Reduction with Branch Divergence

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
10

Some Observations

• In each iterations, two control flow paths will be sequentially
traversed for each warp

– Threads that perform addition and threads that do not

– Threads that do not perform addition may cost extra cycles depending
on the implementation of divergence

• No more than half of threads will be executing at any time

– All odd index threads are disabled right from the beginning!

– On average, less than ¼ of the threads will be activated for all warps
over time.

– After the 5th iteration, entire warps in each block will be disabled, poor
resource utilization but no divergence.

• This can go on for a while, up to 4 more iterations (512/32=16= 24), where
each iteration only has one thread activated until all warps in a block retire

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
11

Shortcomings of the implementation

• Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;

stride < blockDim.x; stride *= 2)

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}

BAD: Divergence

due to interleaved

branch decisions

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
12

A better implementation

• Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x/2;

stride >= 1; stride >> 1)

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
13

Thread 0

No Divergence until < 64 sub-sums

0 1 2 3 … 13 1514 181716 19

0+16 15+311

3

4

Thread 1 Thread 2 Thread 14 Thread 15

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
14

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
15

Memory Coalescing

• When accessing global memory, peak performance

utilization occurs when all threads in a Warp access

continuous memory locations.

Md Nd

W
ID

T
H

WIDTH

Thread 1

Thread 2

Not coalesced coalesced

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
16

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access

direction in

Kernel code

…

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
17

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access

direction in

Kernel code

…

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
18

Memory Access Pattern

(Corner Turning)
Md Nd

W
ID

T
H

WIDTH

Md Nd

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
19

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by
ty

2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Make sure that tiles are all loaded

in vertical patters from the global

memory

• Md data can then be accessed from

shared memory in horizontal

direction

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
20

Tiling Size Effects

• For good bandwidth utilization, accesses should be aligned and

consist of 16 contiguous words

• Tile size 16X16 minimal required to achieve full coalescing

– Both reduction of global memory accesses and more efficient execution

of the accesses

G
F

L
O

P
S

0

10

20

30

40

50

60

70

80

90

100

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
lle

d

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
lle

d

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
lle

d

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
lle

d

no t tiled 4x4 tile s 8x8 tile s 1 2 x1 2 tile s 16x16 tile s

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
21

Programmer View of Register File

• A G80 SM has 8192 registers

– This is an implementation

decision, not part of CUDA

– Registers are dynamically

partitioned across all Blocks

assigned to the SM

– Once assigned to a Block, the

register is NOT accessible by

threads in other Blocks

– Each thread in the same Block

only access registers assigned to

itself

• A GT200 SM: 16K registers

• A Fermi SM: 32K registers

4 blocks 3 blocks

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
22

Matrix Multiplication Example

• If each Block has 16X16 threads and each thread uses
10 registers, how many thread can run on each SM?

– Each Block requires 10*256 = 2560 registers

– 8192 = 3 * 2560 + change

– So, three blocks can run on an SM as far as registers are
concerned

• How about if each thread increases the use of registers
by 1?

– Each Block now requires 11*256 = 2816 registers

– 8192 < 2816 *3

– Only two Blocks can run on an SM, 1/3 reduction of
thread-level parallelism (TLP)!!!

How about GT200

• If each thread uses 10 registers,

– 16,384 = 2560 * 6 + change

– 6 thread blocks fit into a GT200 SM

• If each thread uses 11 registers

– 16384 = 2816 * 5 + change

• The drop is from 6 to 5, not nearly as steep as in G80.

• However, the number of threads in each GT200 SM

cannot exceed 1024 (<256*5)

– So, registers are no loner a bottleneck!
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
23

How about Fermi?

• If each thread uses 10 registers,

– 32,768 = 2560 * 12 + change

– 12 thread blocks fit into a GT200 SM

• If each thread uses 11 registers

– 32,768= 2816 * 11 + change

• The drop is from 12 to 11, the effect is probably not

very significant.

• Same comment as GT200 on thread number.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
24

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
25

More on Dynamic Partitioning

• Dynamic partitioning of SM resources gives more

flexibility to compilers/programmers

– One can run a smaller number of threads that require many

registers each or a large number of threads that require few

registers each

• This allows for finer grain threading than traditional CPU threading

models.

– The compiler can tradeoff between instruction-level

parallelism and thread level parallelism

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
26

ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent

instructions for each global memory load in the thread

program, and each thread uses 10 registers, global loads have

200 cycles

– 3 Blocks can run on each SM

• If a compiler can use one more register to change the

dependence pattern so that 8 independent instructions exist for

each global memory load

– Only two can run on each SM

– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory

latency

– Two Blocks have 16 Warps. The performance can be actually higher!

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
27

TB0 TB1 TB2

32KB Register File

………

16KB Shared Memory

SP0 SP7

(a) Pre-“optimization”

Thread Contexts

Resource Allocation Example

32KB Register File

16KB Shared Memory

………

SP0 SP7

(b) Post-“optimization”

Insufficient

registers to allocate

3 blocks

Thread Contexts

X

Increase in per-thread performance, but fewer threads:

Lower overall performance in this case

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
28

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by
ty 2

1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Tiled Multiply

• Each block computes one square sub-matrix

Pdsub of size TILE_WIDTH

• Each thread computes one element of Pdsub

• Reduced loads from global memory (Md) to

shared memory

• Reduced instruction overhead

– More work done in each iteration

Pdsub

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
29

Prefetching

• One could double buffer the computation, getting

better instruction mix within each thread

– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

__syncthreads()

Compute current tile

__syncthreads()

}

Load next tile from global memory

Loop {
Deposit current tile to shared memory

__syncthreads()

Load next tile from global memory

Compute current tile

__syncthreads()

}

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
30

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by
ty

2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

T
IL

E
_

W
ID

T
H

E

W
ID

T
H

W
ID

T
H

Prefetch

• Deposit blue tile from register into

shared memory

• Syncthreads

• Load orange tile into register

• Compute Blue tile

• Deposit orange tile into shared

memory

• ….

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
31

Instruction Mix Considerations

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches

and address calculation.

Loop unrolling can help.

Pvalue += Ms[ty][k] * Ns[k][tx] + …

Ms[ty][k+15] * Ns[k+15][tx];

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
32

Unrolling

Ctemp = 0;
for (...) {

 __shared__ float As[16][16];
 __shared__ float Bs[16][16];

 // load input tile elements
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16 * widthB;

 __syncthreads();

 // compute results for tile
 for (i = 0; i < 16; i++)
 {
 Ctemp += As[ty][i]
 * Bs[i][tx];
 }

 __syncthreads();
}
C[indexC] = Ctemp;

Ctemp = 0;
for (...) {

 __shared__ float As[16][16];
 __shared__ float Bs[16][16];

 // load input tile elements
 As[ty][tx] = A[indexA];
 Bs[ty][tx] = B[indexB];
 indexA += 16;
 indexB += 16 * widthB;

 __syncthreads();

 // compute results for tile
 Ctemp +=
 As[ty][0] * Bs[0][tx];
 ...
 Ctemp +=
 As[ty][15] * Bs[15][tx];

 __syncthreads();
}
C[indexC] = Ctemp;

(b) Tiled Version (c) Unrolled Version

Removal of branch instructions and address calculations

Does this use

more registers?

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
33

How Close Are We to Best Performance?

• Investigated applications with many optimizations

• Exhaustive optimization space search

– Applied many different, controllable optimizations

– Parameterized code by hand

• Hand-optimized code is deficient

– Generally >15% from the best configuration

– Trapped at local maxima

– Often non-intuitive mix of optimizations

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
34

Matrix Multiplication Space
G

F
L

O
P

S

0

20

40

60

80

100

120

140

n
o

r
m

a
l

p
r
e

fe
tc

h

n
o

r
m

a
l

p
r
e

fe
tc

h

n
o

r
m

a
l

p
r
e

fe
tc

h

n
o

r
m

a
l

p
r
e

fe
tc

h

n
o

r
m

a
l

p
r
e

fe
tc

h

n
o

r
m

a
l

p
r
e

fe
tc

h

1x1 1x2 1x4 1x1 1x2 1x4

8x8 t iles 16x16 t iles

unro ll 1

unro ll 2

unro ll 4

c omple te

unro ll

50% Performance Increase

Over Hand-Optimized Version

C
a

n
n

o
t

ru
n

Optimizations

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
35

Some More Plausible Ideas

• One might be able to use texture memory for M

accesses to reduce register usage

• Let us know if you get more than 120 GFLOPs

(including CPU/GPU data transfers) for matrix

multiplication. We know it can be done.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
36

Major GPU Performance Detractors

• Long-latency operations

– Avoid stalls by executing other threads

• Stalls and bubbles in the pipeline

– Barrier synchronization

– Branch divergence

• Shared resource saturation

– Global memory bandwidth

– Local memory capacity

High Performance CPU/GPU Data

Transfers

• Page-Locked or Pinned Memory Buffer

– Allows OS to avoid copying the user buffer to kernel buffer

– Higher-performance CPU/GPU data copies

• cudaMallocHost() or cudaHostAlloc()

– functions in the runtime API.

– The bandwidthTest.cu program in the CUDA SDK shows

how to use these functions as well as how to measure

memory transfer performance.

• Pinned memory is scarce resource, overuse can reduce

overall system performance

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
37

Hiding the Cost of CPU/GPU Data

Transfers

• Data transfers between the host and the device using

cudaMemcpy() are blocking transfers;

– Control is returned to the host thread only after the data

transfer is complete.

• The cudaMemcpyAsync() function is a non-blocking

variant of cudaMemcpy()

– Control is returned immediately to the host thread.

– Asynchronous transfer requires pinned host memory

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
38

Asynchronous Data Transfers

• An aysnchronous transfer call contains an additional

argument, a stream ID.

• A stream is a sequence of operations that are

performed in order on the device.

– Operations in different streams can be interleaved and in

some cases overlapped—a property that can be used to hide

data transfers between the host and the device.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
39

Hiding Data Transfer COst

• Asynchronous transfers enable overlap of data

transfers with computation.

– Overlap host computation with asynchronous data transfers

and with device computations.

– For example, host computation in the routine cpuFunction()

is performed while data is transferred to the device and a

kernel using the device is executed.

• cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);

• kernel<<<grid, block>>>(a_d);

• cpuFunction();

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
40

Some Resources

• CUDA Occupancy Calculator

– Based on resource usage

– Number of blocks that will be active on each SM

• CUDA Parallel Nsight

– Dynamic events such as non-coalesced memory access and

control divergence

• ADAPT

– Interactive effects of multiple events on performance

– Source code association

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010
41

