Summer School

s-Science with Many-core CPU/GPU Processors

Lecture 6 CUDA Performance Considerations

Objective

- Putting the CUDA performance knowledge to work
 - Plausible strategies may or may not lead to performance enhancement
 - Different constraints dominate in different application situations
 - Case studies help to establish intuition, idioms and ideas
- Algorithm patterns that can result in both better efficiency as well as better HW utilization

This lecture covers useful strategies for tuning CUDA application performance on many-core processors.

Computational Thinking Skills

- The ability to translate/formulate domain problems into computational models that can be solved efficiently by available computing resources
 - Understanding the relationship between the domain problem and the computational models
 - Understanding the strength and limitations of the computing devices
 - Designing the model implementations to steer away from the limitations

How thread blocks are partitioned

- Thread blocks are partitioned into warps
 - Thread IDs within a warp are consecutive and increasing
 - Warp 0 starts with Thread ID 0
- Partitioning is always the same
 - Thus you can use this knowledge in control flow
 - However, the exact size of warps may change from generation to generation
 - (Covered next)

• However, DO NOT rely on any ordering between warps

If there are any dependencies between threads, you must ______syncthreads() to get correct results

Control Flow Instructions

- Main performance concern with branching is divergence
 - Threads within a single warp take different paths
 - Different execution paths are serialized in current GPUs
 - The control paths taken by the threads in a warp are traversed one at a time until there is no more.
- A common case: avoid divergence when branch condition is a function of thread ID
 - Example with divergence:
 - If (threadIdx.x > 2) { }
 - This creates two different control paths for threads in a block
 - Branch granularity < warp size; threads 0, 1 and 2 follow different path than the rest of the threads in the first warp
 - Example without divergence:
 - If (threadIdx.x / WARP_SIZE > 2) { }
 - Also creates two different control paths for threads in a block
 - Branch granularity is a whole multiple of warp size; all threads in any given warp follow the same path

Parallel Reduction

- Given an array of values, "reduce" them to a single value in parallel
- Examples
 - sum reduction: sum of all values in the array
 - Max reduction: maximum of all values in the array
- Typically parallel implementation:
 - Recursively halve # threads, add two values per thread
 - Takes log(n) steps for n elements, requires n/2 threads

A Vector Reduction Example

- Assume an in-place reduction using shared memory
 - The original vector is in device global memory
 - The shared memory is used to hold a partial sum vector
 - Each iteration brings the partial sum vector closer to the final sum
 - The final solution will be in element 0

A simple implementation

 Assume we have already loaded array into ____shared____float partialSum[]

```
unsigned int t = threadIdx.x;
for (unsigned int stride = 1;
    stride < blockDim.x; stride *= 2)
{
```

__syncthreads(); if (t % (2*stride) == 0) partialSum[t] += partialSum[t+stride];

Vector Reduction with Branch Divergence

Portugal, June 14-18, 2010

Some Observations

- In each iterations, two control flow paths will be sequentially traversed for each warp
 - Threads that perform addition and threads that do not
 - Threads that do not perform addition may cost extra cycles depending on the implementation of divergence
- No more than half of threads will be executing at any time
 - All odd index threads are disabled right from the beginning!
 - On average, less than ¼ of the threads will be activated for all warps over time.
 - After the 5th iteration, entire warps in each block will be disabled, poor resource utilization but no divergence.
 - This can go on for a while, up to 4 more iterations (512/32=16= 2⁴), where each iteration only has one thread activated until all warps in a block retire

Shortcomings of the implementation

 Assume we have already loaded array into _____shared____float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1;
 stride < blockDim.x; str</pre>

= 1; branch decisions stree *= 2)

BAD: Divergence

due to interleaved

__syncthreads(); if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

A better implementation

 Assume we have already loaded array into shared float partialSum[]

Memory Layout of a Matrix in C

M _{0,0}	M _{1,0}	M _{2,0}	M _{3,0}
M _{0,1}	M _{1,1}	M _{2,1}	M _{3,1}
M _{0,2}	M _{1,2}	M _{2,2}	M _{3,2}
M _{0,3}	M _{1,3}	M _{2,3}	M _{3,3}

Memory Coalescing

• When accessing global memory, peak performance utilization occurs when all threads in a Warp access continuous memory locations.

Memory Layout of a Matrix in C

Access direction in Kernel code

Memory Layout of a Matrix in C

Tiled Multiply

- Make sure that tiles are all loaded in vertical patters from the global memory
- Md data can then be accessed from shared memory in horizontal direction

tv

TILE WIDTH

TILE WIDTH

0

by 1

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010

Tiling Size Effects

- For good bandwidth utilization, accesses should be aligned and consist of 16 contiguous words
- Tile size 16X16 minimal required to achieve full coalescing
 - Both reduction of global memory accesses and more efficient execution of the accesses

Programmer View of Register File

- A G80 SM has 8192 registers 4 blocks
 - This is an implementation decision, not part of CUDA
 - Registers are dynamically partitioned across all Blocks assigned to the SM
 - Once assigned to a Block, the register is NOT accessible by threads in other Blocks
 - Each thread in the same Block only access registers assigned to itself
- A GT200 SM: 16K registers
- A Fermi SM: 32K registers

Matrix Multiplication Example

- If each Block has 16X16 threads and each thread uses 10 registers, how many thread can run on each SM?
 - Each Block requires 10*256 = 2560 registers
 - -8192 = 3 * 2560 + change
 - So, three blocks can run on an SM as far as registers are concerned
- How about if each thread increases the use of registers by 1?
 - Each Block now requires 11*256 = 2816 registers
 - -8192 < 2816 * 3
 - Only two Blocks can run on an SM, 1/3 reduction of thread-level parallelism (TLP)!!!

How about GT200

- If each thread uses 10 registers,
 - -16,384 = 2560 * 6 + change
 - 6 thread blocks fit into a GT200 SM
- If each thread uses 11 registers

-16384 = 2816 * 5 + change

- The drop is from 6 to 5, not nearly as steep as in G80.
- However, the number of threads in each GT200 SM cannot exceed 1024 (<256*5)
 - So, registers are no loner a bottleneck!

How about Fermi?

- If each thread uses 10 registers,
 - -32,768 = 2560 * 12 + change
 - 12 thread blocks fit into a GT200 SM
- If each thread uses 11 registers
 32,768= 2816 * 11 + change
- The drop is from 12 to 11, the effect is probably not very significant.
- Same comment as GT200 on thread number.

More on Dynamic Partitioning

- Dynamic partitioning of SM resources gives more flexibility to compilers/programmers
 - One can run a smaller number of threads that require many registers each or a large number of threads that require few registers each
 - This allows for finer grain threading than traditional CPU threading models.
 - The compiler can tradeoff between instruction-level parallelism and thread level parallelism

ILP vs. TLP Example

- Assume that a kernel has 256-thread Blocks, 4 independent instructions for each global memory load in the thread program, and each thread uses 10 registers, global loads have 200 cycles
 - 3 Blocks can run on each SM
- If a compiler can use one more register to change the dependence pattern so that 8 independent instructions exist for each global memory load
 - Only two can run on each SM
 - However, one only needs 200/(8*4) = 7 Warps to tolerate the memory latency
 - Two Blocks have 16 Warps. The performance can be actually higher!

Tiled Multiply

- Each block computes one square sub-matrix Pd_{sub} of size TILE_WIDTH
- Each thread computes one element of Pd_{sub}
- Reduced loads from global memory (Md) to shared memory
- Reduced instruction overhead

by 1

© David Kirk/NVIDIA and Wen-mei W, Hwu Braga,

Portugal, June 14-18, 2010

2

– More work done in each iteration

tv

TILE WIDTH

TILE WIDTH

Prefetching

- One could double buffer the computation, getting better instruction mix within each thread
 - This is classic software pipelining in ILP compilers

Loop { Load current tile to shared memory _syncthreads() Compute current tile _syncthreads() © David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

ugal, June 14-18, 2010

Load next tile from global memory

Loop { Deposit current tile to shared memory ____syncthreads()

Load next tile from global memory

Compute current tile

```
_syncthreads()
```

Prefetch

- Syncthreads
- Load orange tile into register
- Compute Blue tile
- Deposit orange tile into shared memory

tv

TILE WIDTH

0

by 1

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010

Instruction Mix Considerations

```
for (int k = 0; k < BLOCK_SIZE; ++k)
    Pvalue += Ms[ty][k] * Ns[k][tx];</pre>
```

There are very few mul/add between branches and address calculation.

Loop unrolling can help.

```
Pvalue += Ms[ty][k] * Ns[k][tx] + ...
Ms[ty][k+15] * Ns[k+15][tx];
```

Unrolling

Removal of branch instructions and address calculations

How Close Are We to Best Performance?

- Investigated applications with many optimizations
- Exhaustive optimization space search
 - Applied many different, controllable optimizations
 - Parameterized code by hand
- Hand-optimized code is deficient
 - Generally >15% from the best configuration
 - Trapped at local maxima
 - Often non-intuitive mix of optimizations

Matrix Multiplication Space

Some More Plausible Ideas

- One might be able to use texture memory for M accesses to reduce register usage
- Let us know if you get more than 120 GFLOPs (including CPU/GPU data transfers) for matrix multiplication. We know it can be done.

Major GPU Performance Detractors

- Long-latency operations
 - -Avoid stalls by executing other threads
- Stalls and bubbles in the pipeline
 - -Barrier synchronization
 - -Branch divergence
- Shared resource saturation
 - -Global memory bandwidth

— Local memory capacity © David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June 14-18, 2010

High Performance CPU/GPU Data Transfers

- Page-Locked or Pinned Memory Buffer
 - Allows OS to avoid copying the user buffer to kernel buffer
 - Higher-performance CPU/GPU data copies
- cudaMallocHost() or cudaHostAlloc()
 - functions in the runtime API.
 - The bandwidthTest.cu program in the CUDA SDK shows how to use these functions as well as how to measure memory transfer performance.
- Pinned memory is scarce resource, overuse can reduce overall system performance

Hiding the Cost of CPU/GPU Data Transfers

- Data transfers between the host and the device using cudaMemcpy() are blocking transfers;
 - Control is returned to the host thread only after the data transfer is complete.
- The cudaMemcpyAsync() function is a non-blocking variant of cudaMemcpy()
 - Control is returned immediately to the host thread.
 - Asynchronous transfer *requires pinned host memory*

Asynchronous Data Transfers

- An aysnchronous transfer call contains an additional argument, a stream ID.
- A stream is a sequence of operations that are performed in order on the device.
 - Operations in different streams can be interleaved and in some cases overlapped—a property that can be used to hide data transfers between the host and the device.

Hiding Data Transfer COst

- Asynchronous transfers enable overlap of data transfers with computation.
 - Overlap host computation with asynchronous data transfers and with device computations.
 - For example, host computation in the routine cpuFunction() is performed while data is transferred to the device and a kernel using the device is executed.
 - cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);
 - kernel<<<grid, block>>>(a_d);
 - cpuFunction();

Some Resources

- CUDA Occupancy Calculator
 - Based on resource usage
 - Number of blocks that will be active on each SM
- CUDA Parallel Nsight
 - Dynamic events such as non-coalesced memory access and control divergence
- ADAPT
 - Interactive effects of multiple events on performance
 - Source code association