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Objective

• Putting the CUDA performance knowledge to work 

– Plausible strategies may or may not lead to performance 

enhancement

– Different constraints dominate in different application 

situations

– Case studies help to establish intuition, idioms and ideas

• Algorithm patterns that can result in both better 

efficiency as well as better HW utilization

This lecture covers useful strategies for tuning 

CUDA application performance on many-core 

processors.
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Computational Thinking Skills

• The ability to translate/formulate domain problems 

into computational models that can be solved 

efficiently by available computing resources

– Understanding the relationship between the domain problem 

and the computational models

– Understanding the strength and limitations of the 

computing devices

– Designing the model implementations to steer away 

from the limitations
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How thread blocks are partitioned

• Thread blocks are partitioned into warps

– Thread IDs within a warp are consecutive and increasing

– Warp 0 starts with Thread ID 0

• Partitioning is always the same

– Thus you can use this knowledge in control flow 

– However, the exact size of warps may change from generation to 
generation

– (Covered next)

• However, DO NOT rely on any ordering between warps

– If there are any dependencies between threads, you must 
__syncthreads() to get correct results
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Control Flow Instructions

• Main performance concern with branching is divergence
– Threads within a single warp take different paths

– Different execution paths are serialized in current GPUs
• The control paths taken by the threads in a warp are traversed one at a 

time until there is no more.

• A common case: avoid divergence when branch condition is a 
function of thread ID
– Example with divergence: 

• If (threadIdx.x > 2) { }

• This creates two different control paths for threads in a block

• Branch granularity < warp size; threads 0, 1 and 2 follow different path 
than the rest of the threads in the first warp

– Example without divergence:
• If (threadIdx.x / WARP_SIZE > 2) { }

• Also creates two different control paths for threads in a block

• Branch granularity is a whole multiple of warp size; all threads in any 
given warp follow the same path
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Parallel Reduction

• Given an array of values, “reduce” them to a single 

value in parallel

• Examples 

– sum reduction: sum of all values in the array

– Max reduction: maximum of all values in the array

• Typically parallel implementation:

– Recursively halve # threads, add two values per thread

– Takes log(n) steps for n elements, requires n/2 threads
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A Vector Reduction Example

• Assume an in-place reduction using shared memory

– The original vector is in device global memory

– The shared memory is used to hold a partial sum vector

– Each iteration brings the partial sum vector closer to the 

final sum

– The final solution will be in element 0
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A simple implementation

• Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;  stride *= 2) 

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}
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Vector Reduction with Branch Divergence
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Some Observations

• In each iterations, two control flow paths will be sequentially 
traversed for each warp

– Threads that perform addition and threads that do not

– Threads that do not perform addition may cost extra cycles depending 
on the implementation of divergence

• No more than half of threads will be executing at any time

– All odd index threads are disabled right from the beginning!

– On average, less than ¼ of the threads will be activated for all warps 
over time.

– After the 5th iteration, entire warps in each block will be disabled, poor 
resource utilization but no divergence.

• This can go on for a while, up to 4 more iterations (512/32=16= 24), where 
each iteration only has one thread activated until all warps in a block retire 
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Shortcomings of the implementation

• Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; 

stride < blockDim.x;  stride *= 2) 

{

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}

BAD: Divergence 

due to interleaved 

branch decisions
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A better implementation

• Assume we have already loaded array into

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x/2; 

stride >= 1;  stride >> 1) 

{

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}
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Thread 0

No Divergence until < 64 sub-sums 
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Memory Coalescing

• When accessing global memory, peak performance 

utilization occurs when all threads in a Warp access 

continuous memory locations.
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Memory Access Pattern

(Corner Turning)
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Tiled Multiply

• Make sure that tiles are all loaded 

in vertical patters from the global 

memory

• Md data can then be accessed from 

shared memory in horizontal 

direction
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Tiling Size Effects

• For good bandwidth utilization, accesses should be aligned and 

consist of 16 contiguous words

• Tile size 16X16 minimal required to achieve full coalescing

– Both reduction of global memory accesses and more efficient execution 

of the accesses
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Programmer View of Register File

• A G80 SM  has 8192 registers

– This is an implementation 

decision, not part of CUDA

– Registers are dynamically 

partitioned across all Blocks 

assigned to the SM

– Once assigned to a Block, the 

register is NOT accessible by 

threads in other Blocks

– Each thread in the same Block 

only access registers assigned to 

itself

• A GT200 SM: 16K registers

• A Fermi SM: 32K registers

4 blocks 3 blocks
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Matrix Multiplication Example

• If each Block has 16X16 threads and each thread uses 
10 registers, how many thread can run on each SM?

– Each Block requires 10*256 = 2560 registers

– 8192 = 3 * 2560 + change

– So, three blocks can run on an SM as far as registers are 
concerned

• How about if each thread increases the use of registers 
by 1?

– Each  Block now requires 11*256 = 2816 registers

– 8192 < 2816 *3

– Only two Blocks can run on an SM, 1/3 reduction of 
thread-level parallelism (TLP)!!!



How about GT200

• If each thread uses 10 registers,

– 16,384 = 2560 * 6 + change 

– 6 thread blocks fit into a GT200 SM

• If each thread uses 11 registers

– 16384 = 2816 * 5 + change

• The drop is from 6 to 5, not nearly as steep as in G80.

• However, the number of threads in each GT200 SM 

cannot exceed 1024 (<256*5)

– So, registers are no loner a bottleneck!
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How about Fermi?

• If each thread uses 10 registers,

– 32,768 = 2560 * 12 + change 

– 12 thread blocks fit into a GT200 SM

• If each thread uses 11 registers

– 32,768= 2816 * 11 + change

• The drop is from 12 to 11, the effect is probably not 

very significant.

• Same comment as GT200 on thread number.
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More on Dynamic Partitioning

• Dynamic partitioning of SM resources gives more 

flexibility to compilers/programmers

– One can run a smaller number of threads that require many 

registers each or a large number of threads that require few 

registers each 

• This allows for finer grain threading than traditional CPU threading 

models.

– The compiler can tradeoff between instruction-level 

parallelism and thread level parallelism
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ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent 

instructions for each global memory load in the thread 

program, and each thread uses 10 registers, global loads have 

200 cycles 

– 3 Blocks can run on each SM

• If a compiler can use one more register to change the 

dependence pattern so that 8 independent instructions exist for 

each global memory load

– Only two can run on each SM

– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory 

latency

– Two Blocks have 16 Warps. The performance can be actually higher!
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TB0 TB1 TB2

32KB Register File

………

16KB Shared Memory

SP0 SP7

(a) Pre-“optimization”

Thread Contexts

Resource Allocation Example

32KB Register File

16KB Shared Memory

………

SP0 SP7

(b) Post-“optimization”

Insufficient 

registers to allocate 

3 blocks

Thread Contexts

X

Increase in per-thread performance, but fewer threads:

Lower overall performance in this case
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Tiled Multiply

• Each block computes one square sub-matrix 

Pdsub of size TILE_WIDTH

• Each thread computes one element of Pdsub

• Reduced loads from global memory (Md) to 

shared memory

• Reduced instruction overhead

– More work done in each iteration

Pdsub
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Prefetching

• One could double buffer the computation, getting 

better instruction mix within each thread

– This is classic software pipelining in ILP compilers

Loop {

Load current tile to shared memory

__syncthreads()

Compute current tile

__syncthreads()

}

Load next tile from global memory

Loop {
Deposit current tile to shared memory

__syncthreads()

Load next tile from global memory

Compute current tile

__syncthreads()

}
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Prefetch

• Deposit blue tile from register into 

shared memory

• Syncthreads

• Load orange tile into register

• Compute Blue tile

• Deposit orange tile into shared 

memory

• ….
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Instruction Mix Considerations

for (int k = 0; k < BLOCK_SIZE; ++k)

Pvalue += Ms[ty][k] * Ns[k][tx];

There are very few mul/add between branches 

and address calculation. 

Loop unrolling can help.

Pvalue += Ms[ty][k] * Ns[k][tx] + …

Ms[ty][k+15] * Ns[k+15][tx];
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Unrolling

Ctemp = 0;
for (...) {

  __shared__ float As[16][16];
  __shared__ float Bs[16][16];

  // load input tile elements
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += 16;
  indexB += 16 * widthB;

  __syncthreads();

  // compute results for tile
  for (i = 0; i < 16; i++)
    {
      Ctemp += As[ty][i]
        * Bs[i][tx];
    }

  __syncthreads();
}
C[indexC] = Ctemp;

Ctemp = 0;
for (...) {

  __shared__ float As[16][16];
  __shared__ float Bs[16][16];

  // load input tile elements
  As[ty][tx] = A[indexA];
  Bs[ty][tx] = B[indexB];
  indexA += 16;
  indexB += 16 * widthB;

  __syncthreads();

  // compute results for tile
  Ctemp +=
     As[ty][0] * Bs[0][tx];
  ...
  Ctemp +=
     As[ty][15] * Bs[15][tx];
 

  __syncthreads();
}
C[indexC] = Ctemp;

(b) Tiled Version (c) Unrolled Version

Removal of branch instructions and address calculations

Does this use 

more registers?
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How Close Are We to Best Performance?

• Investigated applications with many optimizations

• Exhaustive optimization space search

– Applied many different, controllable optimizations

– Parameterized code by hand

• Hand-optimized code is deficient

– Generally >15% from the best configuration

– Trapped at local maxima

– Often non-intuitive mix of optimizations
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Matrix Multiplication Space
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Some More Plausible Ideas

• One might be able to use texture memory for M 

accesses to reduce register usage 

• Let us know if you get more than 120 GFLOPs 

(including CPU/GPU data transfers) for matrix 

multiplication. We know it can be done.
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Major GPU Performance Detractors

• Long-latency operations

– Avoid stalls by executing other threads

• Stalls and bubbles in the pipeline

– Barrier synchronization

– Branch divergence

• Shared resource saturation

– Global memory bandwidth

– Local memory capacity



High Performance CPU/GPU Data 

Transfers

• Page-Locked or Pinned Memory Buffer

– Allows OS to avoid copying the user buffer to kernel buffer

– Higher-performance CPU/GPU data copies 

• cudaMallocHost() or cudaHostAlloc() 

– functions in the runtime API. 

– The bandwidthTest.cu program in the CUDA SDK shows 

how to use these functions as well as how to measure 

memory transfer performance.

• Pinned memory is scarce resource, overuse can reduce 

overall system performance
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Hiding the Cost of CPU/GPU Data 

Transfers

• Data transfers between the host and the device using 

cudaMemcpy() are blocking transfers; 

– Control is returned to the host thread only after the data 

transfer is complete. 

• The cudaMemcpyAsync() function is a non-blocking 

variant of cudaMemcpy()

– Control is returned immediately to the host thread. 

– Asynchronous transfer requires pinned host memory 
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Asynchronous Data Transfers

• An aysnchronous transfer call contains an additional 

argument, a stream ID. 

• A stream is a sequence of operations that are 

performed in order on the device. 

– Operations in different streams can be interleaved and in 

some cases overlapped—a property that can be used to hide 

data transfers between the host and the device. 
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Hiding Data Transfer COst

• Asynchronous transfers enable overlap of data 

transfers with computation. 

– Overlap host computation with asynchronous data transfers 

and with device computations. 

– For example, host computation in the routine cpuFunction() 

is performed while data is transferred to the device and a 

kernel using the device is executed. 

• cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0); 

• kernel<<<grid, block>>>(a_d); 

• cpuFunction(); 
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Some Resources

• CUDA Occupancy Calculator

– Based on resource usage

– Number of blocks that will be active on each SM

• CUDA Parallel Nsight

– Dynamic events such as non-coalesced memory access and 

control divergence

• ADAPT

– Interactive effects of multiple events on performance

– Source code association
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