

Why Clusters for HPC?

• Clusters are a major workforce in HPC

- Q: How many systems in top500 are clusters?

Why GPUs in HPC Clusters? 1200 GTX 285 1000 GTX 280 800 GFlop/s 8800 Ultra 600 8800 GTX Intel CPU 400 7900 GTX 200 Intel Xeon Quad-core 3 GHz 0 9/22/02 2/4/04 6/18/05 10/31/06 3/14/08

Current GPU Clusters at NCSA

Lincoln

 Production system available via the standard NCSA/ TeraGrid HPC allocation

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June 14-18, 2010

- AC
 - Experimental system available for exploring GPU computing

NCSA Linux Cluster AC

- HP xw9400 workstation
 - 2216 AMD Opteron 2.4 GHz dual socket dual core
 - 8 GB DDR2
 - Infiniband QDR
- Tesla S1070 1U 4-GPU Server
 - 1.3 GHz Tesla T10 processors
 - 4x4 GB GDDR3 SDRAM
- Cluster
 - Servers: 32
 - Accelerator Units: 32 (128 GPUS, 128 TF SP, 10 TF DP)

NCSA Linux Cluster Lincoln

- Dell PowerEdge 1955 server
 - Intel 64 (Harpertown) 2.33
 GHz dual socket quad core
 - 16 GB DDR2
 - Infiniband SDR
- Tesla S1070 1U GPU Computing Server
 - 1.3 GHz Tesla T10 processors
 - 4x4 GB GDDR3 SDRAM
- Cluster
 - Servers: 192

 Accelerator Units: 96
 © David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June 14-18, 2010

Direct Self-Consistent Field Computations on GPU Clusters

Guochun Shi, Volodymyr Kindratenko National Center for Supercomputing Applications University of Illinois at Urbana-Champaign Ivan Ufimtsev, Todd Martinez Department of Chemistry Stanford University

Quantum Chemistry

Energy ($H\Psi = E\Psi$):

Quantifies intra/intermolecular interactions Drives chemistry, little interesting happens on flat surface

Geometry optimization ($\nabla_{\mathbf{R}} E = 0$)

Searches for stable atomic arrangements (molecular shapes)

Molecular dynamics ($\partial^2 \mathbf{R} / \partial t^2 = -1/\mathbf{M} \nabla_{\mathbf{R}} E$)

The chemistry itself (at some, sometimes crude, approximation) Studies system at atomistic time, and length scales

Exact energy is a hard problem

$$\Psi(\mathbf{r}_{i}) = ?$$

$$E = ?$$

$$\left\{-\frac{1}{2}\sum_{r}\left\{\frac{\partial^{2}}{\partial x_{i}^{2}} + \frac{\partial^{2}}{\partial y_{i}^{2}} + \frac{\partial^{2}}{\partial z_{r}^{2}}\right\} - \sum_{i=1}^{r} \frac{Z_{i}}{|\mathbf{r}_{i} - \mathbf{R}_{i}|} + \sum_{i=r}^{r} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{i}|}\right\} \Psi(\mathbf{r}_{i}) = \mathcal{E}\Psi(\mathbf{r}_{i})$$

$$\Psi(...,\mathbf{r}_{i},...,\mathbf{r}_{j},...) = -\Psi(...,\mathbf{r}_{j},...,\mathbf{r}_{i},...)$$

Hartree-Fock approximation is one of the simplest

$$\Psi = A[\varphi_1(r_1)\varphi_2(r_2)...\varphi_n(r_n)]$$

Expand ψ over predefined basis set ϕ

$$\psi_i(r) = \sum_{j=1}^{n} C_{ij} \varphi_j(r)$$

 $\Psi \Leftrightarrow C_n = ?$

Hartree-Fock Self Consistent Field (SCF) procedure F(C)C = FSC

$$\mathbf{F}_{k+1}(\mathbf{C}) = \mathbf{F}(\mathbf{C}_{k})$$
$$\mathbf{F}_{k+1}\mathbf{C}_{k+1} = E\mathbf{S}\mathbf{C}_{k+1}$$

Repeat until C_{k+1} more or less equals C_k

Hartree-Fock equations

F(C)C = ESC

$$F_0(\mathbf{C}) - H_0^{max} + J_0(\mathbf{C}) - \frac{1}{2}K_0(\mathbf{C})$$

$$I_{ij} = \sum_{i,j} [ij \mid kl] P_{ii}(\mathbf{C})$$

$$K_{ij} = \sum_{i,j} [ik \mid ji] P_u(\mathbf{C})$$

$$[\dot{q} | kl] = \iint \varphi_{i}(r_{1})\varphi_{i}(r_{2}) \frac{1}{|r_{1} - r_{2}|} \varphi_{i}(r_{2})\varphi_{i}(r_{2})dr_{i}dr_{2}$$

• All matrices are of $N \times N$ size ($N \sim 1,000 \dots 10,000$)

• N^3 operations to solve HF equations (need to deal with diagonalization)

• N⁴ operations to get **F** © David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June 14-18, 2010

2e integral grid

$$[ij + kl] = \iint \varphi_i(r_1) \varphi_j(r_1) \frac{1}{|r_1 - r_2|} \varphi_i(r_2) \varphi_i(r_2) d\mathbf{r}_i d\mathbf{r}_i$$

 $[ij + kl] = \sqrt{[ij + ij]} \sqrt{[kl + kl]} \ge 10^{-11}$

leaves only N^2 out of N^4 integrals

J-matrix implementation

Portugal, June 14-18, 2010

Node execution time breakdown

- Each node contains 8 CPU cores and 2 GPUs.
- The J and K matrices computation and Linear Algebra (LA) computation dominate the overall execution time
- Pair quantity computations can be significant © David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June 14-18, 2010

GPU cluster parallelization strategy

- Each GPU has a global id
 nodeid * num gpu per node + local gpu index
- J matrix work distribution (diagram)
- K matrix work distribution (diagram)
- LA using SCALAPACK

Parallelization strategy (II)

- Start as MPI program, each node has as many MPI processes as CPU cores
- One MPI process per node is designated as "master"
- The master MPI processes create threads for controlling GPUs as well as CPU work threads

Performance: load balancing

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June 14-18, 2010

Performance

	Atoms	Electrons	Orbitals	S shells	P shells
Olestra	453	1366	2131	1081	350
BPTI	875	3400	4893	2202	897
CspA	1732	6290	8753	4220	1511

Scalabilty of J, K andi LA

- J and K matrices computation can scale well to 128 nodes
- Linear Algebra scales only up to 16 nodes even for CsPA molecule

Performance: Linear Algebra breakdown

- Diagonization scales the worst, dgemm is also important
- A fast, scalable GPU based SCALAPACK is needed
 - Magma from UTK?

Results: Olestra molecule

Olestra molecule consisting of 453 atoms (a small example model used of testing the developed software) can be computed by the state-of-the-art quantum chemistry software package GAMESS running on an Intel Pentium D 3 GHz processor in over 12,408 seconds whereas our 8-node GPU cluster implementation performs the same computation in just over 5 seconds, a 2,452× speedup. © David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June 14-18, 2010

Example: CspA molecule

For larger models, one SCF iteration for Cold shock protein A (CspA) molecule consisting of 1,732 atoms can be done in 88 seconds on a 16 node GPU cluster.

Accelerating Biomolecular Modeling with CUDA and GPU Clusters

http://www.ks.uiuc.edu/Research/gpu/

Computational Microscopy

Ribosome: synthesizes proteins from genetic information, target for antibiotics

Silicon nanopore: bionanodevice for sequencing DNA efficiently

NAMD: Practical Supercomputing

- 35,000 users can't all be computer experience
 - 18% are NIH-funded; many in other countries
 - 8200 have downloaded more than one version.
- User experience is the same on all platforms.
 - No change in input, output, or configuration files.
 - Run any simulation on any number of processors
 - Precompiled binaries available when possible.
- Desktops and laptops setup and testing
 - x86 and x86-64 Windows, and Macintosh
 - Allow both shared-memory and network-based parallelis
- Linux clusters affordable workhorses
 - x86, x86-64, and Itanium processors
 - Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Our Goal: Practical Acceleration

- Broadly applicable to scientific computing
 - Programmable by domain scientists
 - Scalable from small to large machines
- Broadly available to researchers
 - Price driven by commodity market
 - Low burden on system administration
- Sustainable performance advantage
 - Performance driven by Moore's law
 - Stable market and supply chain

NAMD Hybrid Decomposition

• Spatially decompose data and communication.

- Separate but related work decomposition.
- "Compute objects" facilitate iterative, measurement-based load balancing system.

NAMD Code is Message-Driven

- No receive calls as in "message passing"
- Messages sent to object "entry points"
- Incoming messages placed in queue
 Priorities are necessary for performance
- Execution generates new messages
- Implemented in Charm++ on top of MPI
 - Can be emulated in MPI alone
 - Charm++ provides tools and idioms
 - Parallel Programming Lab: http://charm.cs.uiuc.edu/

System Noise Example

Timeline from Charm++ tool "Projections" http:// charm.cs.uiuc.edu/

NAMD Overlapping Execution

Objects are assigned to processors and queued as data arrives.

MPI Message-Driven CUDA Kernels?

- No, CUDA Kernels are too coarse-grained.
 - CPU needs fine-grained work to interleave and pipeline.
 - GPU needs large numbers of tasks submitted all at once.
- No, CUDA lacks priorities.
 - FIFO isn't enough.
- Perhaps in a future interface:
 - Stream data to GPU.
 - Append blocks to a running kernel invocation.
 - Stream data out as blocks complete.
- Fermi looks very promising!

Nonbonded Forces on CUDA GPU

- Start with most expensive calculation: direct nonbonded interactions.
- Decompose work into pairs of patches, identical to NAMD structure.
- GPU hardware assigns patch-pairs to multiprocessors dynamically.

Portugal, June 14-18, 2010

	texture <float4> force_table;</float4>				
	constant unsigned int exclusions[];				
	shared atom jatom[];				
atom iatom; // per-thread atom, stored in registers					
	float4 iforce; // per-thread force, stored in registers				
	for (int $j = 0$; $j < jatom_count$; ++ j) {				
	float $dx = jatom[j].x - iatom.x;$ float $dy = jatom[j].y - iatom.y;$ float $dz = jatom[j].z - iatom.z;$				
	float $r^2 = dx^*dx + dy^*dy + dz^*dz;$				
	if $(r_2 < cutoff_2)$ {				
	float4 ft = texfetch(force_table, 1.f/sqrt(r2));	Force Interpolation			
	bool excluded = false;				
	int indexdiff = iatom.index - jatom[j].index;	Exclusions			
$if (abs(indexdiff) \le (int) jatom[j].excl_maxdiff) {$					
	indexdiff += jatom[j].excl_index;				
	excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);				
	float $f = iatom.half_sigma + jatom[j].half_sigma; // sigma$				
	$I^* = I^*I_{i}^* / sigma^3$	Parameters			
	I = I; // sigma'b				
	I = (I + II.X + II.Y); // sigma (I2 + II.X - sigma (6 + II.Y)); // sigma (I2 + II.X - sigma (6 + II.Y)); // sigma (I2 + II.X - sigma (6 + II.Y)); // sigma (I2 + II.X - sigma (6 + II.Y)); // sigma (I2 + II.X - sigma (12 +				
	I *= latom.sqrt_epsilon * jatom[j].sqrt_epsilon;				
	if $(avaluded)$ $(f = ag * ft w) // DME$ correction				
	$\frac{1}{1 - qq} + \frac{1}{1 - qq} + \frac{1}{1 - qq} + \frac{1}{1 - qq}$				
	$\frac{\text{else } \{1 + - qq + 11.2, \}}{\text{if or oo } y + - dy + f} = \frac{1}{16} \text{ or oo } y + - dz + f$				
	$\frac{1}{10000000000000000000000000000000000$	Accumulation			
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,					
Portugal, June 14-18, 2010					
	j				

Overlapping GPU and CPU with Communication

One Timestep

"Remote Forces"

- Forces on atoms in a local patch are "local"
- Forces on atoms in a remote patch are "remote"
- Calculate remote forces first to overlap force communication with local force calculation
- Not enough work to overlap with position communication

NCSA "4+4" QuadroPlex Cluster

CUDA/OpenCL Wrapper Library

- Basic operation principle:
 - Use /etc/ld.so.preload to overload (intercept) a subset of CUDA/OpenCL functions, e.g. {cu|cuda}{Get|Set}Device, clGetDeviceIDs, etc
- Purpose:
 - Enables controlled GPU device visibility and access, extending resource allocation to the workload manager
 - Prove or disprove feature usefulness, with the hope of eventual uptake or reimplementation of proven features by the vendor
 - Provides a platform for rapid implementation and testing of HPC relevant features not available in NVIDIA APIs

• Features:

- NUMA Affinity mapping
 - Sets thread affinity to CPU core nearest the gpu device
- Shared host, multi-gpu device fencing
 - Only GPUs allocated by scheduler are visible or accessible to user
 - GPU device numbers are virtualized, with a fixed mapping to a physical device per user environment
 - User always sees allocated GPU devices indexed from 0

CUDA/OpenCL Wrapper Library

- Features (cont'd):
 - Device Rotation (deprecated)
 - Virtual to Physical device mapping rotated for each process accessing a GPU device
 - Allowed for common execution parameters (e.g. Target gpu0 with 4 processes, each one gets separate gpu, assuming 4 gpus available)
 - CUDA 2.2 introduced compute-exclusive device mode, which includes fallback to next device. Device rotation feature may no longer needed
 - Memory Scrubber
 - Independent utility from wrapper, but packaged with it
 - Linux kernel does no management of GPU device memory
 - Must run between user jobs to ensure security between users
- Availability

- NCSA/Uofl Open Source License © David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June https://sourceforge.net/projects/cudawrapper/

CUDA Memtest

- 4GB of Tesla GPU memory is not ECC protected
- Hunt for "soft error"
- Features
 - Full re-implementation of every test included in memtest86
 - Random and fixed test patterns, error reports, error addresses, test specification
 - Email notification
 - Includes additional stress test for software and hardware errors
- Usage scenarios
 - Hardware test for defective GPU memory chips
 - CUDA API/driver software bugs detection
 - Hardware test for detecting soft errors due to non-ECC memory
- No soft error detected in 2 years x 4 gig of cumulative runtime
- Availability

– NCSA/Uofl Open Source License © David Kirk/NVIDIA and Wep-mei W. Hwu Braga, Portugal, Juntipsis/sourceforge.net/projects/cudagpumemtest/

GPU Node Pre/Post Allocation Pre-Job (minimized for rapid device acquisition)

- - Assemble detected device file unless it exists
 - Sanity check results
 - Checkout requested GPU devices from that file
 - Initialize CUDA wrapper shared memory segment with unique key for user (allows user to ssh to node outside of job environment and have same gpu devices visible)
- Post-Job •
 - Use quick memtest run to verify healthy GPU state
 - If bad state detected, mark node offline if other jobs present on node
 - If no other jobs, reload kernel module to "heal" node (for CUDA 2.2 driver bug)
 - Run memscrubber utility to clear gpu device memory
 - Notify of any failure events with job details
 - Terminate wrapper shared memory segment

© David Kirk/NVIDIA and Wermei W. Hwu Braga Portugal, June C4-18-CK10 GPUs back to global file of detected devices

NCSA "8+2" Lincoln Cluster

- How to share a GPU among 4 CPU cores?
 - Send all GPU work to one process?
 - Coordinate via messages to avoid conflict?
 - Or just hope for the best?

NCSA Lincoln Cluster Performance

(8 Intel cores and 2 NVIDIA Telsa GPUs per node)

NCSA Lincoln Cluster Performance

(8 cores and 2 GPUs per node)

No GPU Sharing (Ideal World)

Portugal, June 14-18, 2010

GPU Sharing (Observed)

GPU Sharing (Explained)

- CUDA is behaving reasonably, but
- Force calculation is actually two kernels
 - Longer kernel writes to multiple arrays
 - Shorter kernel combines output
- Possible solutions:
 - Modify CUDA to be less "fair" (please!)
 - Use locks (atomics) to merge kernels (not G80)
 - Explicit inter-client coordination

Inter-client Communication

- First identify which processes share a GPU
 - Need to know physical node for each process
 - GPU-assignment must reveal real device ID
 - Threads don't eliminate the problem
 - Production code can't make assumptions
- Token-passing is simple and predictable
 - Rotate clients in fixed order
 - High-priority, yield, low-priority, yield, ...