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Why Clusters for HPC? 

•  Clusters are a major workforce in HPC 
–  Q: How many systems in top500 are clusters? 
–  A: 410 out of 500 

Top 500: Architecture Top 500: Performance 
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Why GPUs in HPC Clusters? 

5800 5950 Ultra 
6800 Ultra 

7800 GTX 
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GPU Performance Trends 



Current GPU Clusters at NCSA 
•  Lincoln 

–  Production system available 
via the standard NCSA/
TeraGrid HPC allocation  

•  AC 
–  Experimental system 

available for exploring 
GPU computing 
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NCSA Linux Cluster AC 
•  HP xw9400 workstation 

–  2216 AMD Opteron 2.4 GHz 
dual socket dual core 

–  8 GB DDR2 
–  Infiniband QDR  

•  Tesla S1070 1U 4-GPU 
Server 
–  1.3 GHz Tesla T10 

processors 
–  4x4 GB GDDR3 SDRAM 

•  Cluster 
–  Servers: 32 
–  Accelerator Units: 32 (128 

GPUS, 128 TF SP, 10 TF 
DP) 

IB 
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•  Dell PowerEdge 1955 
server 
–  Intel 64 (Harpertown) 2.33 

GHz dual socket quad core 
–  16 GB DDR2 
–  Infiniband SDR 

•  Tesla S1070 1U GPU 
Computing Server 
–  1.3 GHz Tesla T10 

processors 
–  4x4 GB GDDR3 SDRAM 

•  Cluster 
–  Servers: 192 
–  Accelerator Units: 96 

•  Two Compute Nodes 

Tesla S1070 

Dell PowerEdge 
1955 server 

IB 

T10 T10 

PCIe interface 

DRAM DRAM 

T10 T10 

PCIe interface 

DRAM DRAM 

Dell PowerEdge 
1955 server 

PCIe x8 PCIe x8 

SDR IB SDR IB 

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/ 
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HPL Benchmark for 
Lincoln 
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Direct Self-Consistent Field 
Computations on GPU Clusters 

Guochun Shi, 
Volodymyr Kindratenko 

National Center for 
Supercomputing Applications 

University of Illinois at 
Urbana-Champaign 

Ivan Ufimtsev, 
Todd Martinez 

Department of Chemistry 
Stanford University 



Why do we need to deal with… 
Energy (HΨ = EΨ): 
     Quantifies intra/intermolecular interactions 
     Drives chemistry, little interesting happens on flat surface 

Geometry optimization (∇RE = 0) 
     Searches for stable atomic arrangements (molecular shapes) 

Molecular dynamics (∂2R/ ∂t2 = -1/M ∇RE) 
     The chemistry itself (at some, sometimes crude, approximation) 
     Studies system at atomistic time, and length scales  

Quantum Chemistry 
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Exact energy is a hard problem 

water molecule: 10 electrons, 30 dimensions 

Antisymmetry: 

3,628,000 permutations 
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Hartree-Fock approximation is one of  
the simplest 
Ψ is an antisymmetrized product of N 1-electron orbitals ψ 

Expand ψ over predefined basis set ϕ 
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Hartree-Fock Self Consistent Field (SCF)  
procedure 

Repeat until Ck+1 more or less equals Ck 
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Hartree-Fock equations 

•  All matrices are of N×N size (N ~ 1,000 … 10,000) 
•  N3 operations to solve HF equations (need to deal with 
diagonalization) 
•  N4 operations to get F 

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 
Portugal, June 14-18, 2010!



2e integral grid 

SIMD warp 

Most negligibly small integrals 
will be calculated 

SIMD warp 

Only significant integrals will be 
calculated 
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|kl] 
leaves only N2 out of N4 integrals 
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J-matrix implementation 
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K-matrix implementation 
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Node execution time breakdown 
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•  Each  node contains 8 CPU cores and 2 GPUs. 

•  The J and K matrices computation and Linear Algebra (LA) 
computation dominate the overall execution time 

•  Pair quantity computations can be significant 
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GPU cluster parallelization strategy 

•  Each GPU has a global id 
–  nodeid  * num_gpu_per_node + local_gpu_index 

•  J matrix work distribution (diagram) 

•  K matrix work distribution (diagram) 

•  LA using SCALAPACK 
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Parallelization strategy (II) 

•  Start as MPI program, each 
node has as many MPI 
processes as CPU cores 

•  One MPI process per node 
is designated as “master” 

•  The master MPI processes 
create threads for 
controlling GPUs as well as 
CPU work threads 

•  MPI processes/GPU 
management threads/CPU 
work threads are awaken or 
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node 
0 
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GPUs 
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the Fock matrix 
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Performance: load balancing 
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•  Sorting for pair quantity 
computations and work selection 
strategy makes the computation 
on GPUs well balanced, reducing 
performance degradation 
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Atoms Electrons Orbitals S shells P shells 

Olestra 453 1366 2131 1081 350 

BPTI 875 3400 4893 2202 897 

CspA 1732 6290 8753 4220 1511 

Performance 
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Scalabilty of J, K andi LA 
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•  J and K matrices computation can scale well to 128 nodes 

•  Linear Algebra scales only up to 16 nodes even for CsPA 
molecule 

number of nodes 
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Performance: Linear Algebra breakdown  

•  Diagonization scales the worst, dgemm is also important 

•  A fast, scalable GPU based SCALAPACK is needed 
•  Magma from UTK? 
•  Cula? 
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Results: Olestra molecule 

Olestra molecule consisting of 453 atoms  (a small example model 
used of testing the developed software) can be computed by the 
state-of-the-art quantum chemistry software package GAMESS 
running on an Intel Pentium D 3 GHz processor in over 12,408 
seconds whereas our 8-node GPU cluster  implementation performs 
the same computation in just over 5 seconds, a 2,452× speedup.  
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Example: CspA molecule 

For larger models, one SCF iteration for Cold shock protein A 
(CspA) molecule consisting of 1,732 atoms can be done in 88 
seconds on a 16 node GPU cluster. 
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Accelerating Biomolecular 
Modeling 

with CUDA and GPU Clusters 

James Phillips 
John Stone 
Klaus Schulten 
http://www.ks.uiuc.edu/Research/gpu/ 



Computational Microscopy 

Ribosome: synthesizes proteins from 
genetic information, target for antibiotics 

Silicon nanopore: bionanodevice for 
sequencing DNA efficiently 



NAMD: Practical Supercomputing 
•  35,000 users can’t all be computer experts. 

–  18% are NIH-funded; many in other countries. 
–  8200 have downloaded more than one version. 

•  User experience is the same on all platforms. 
–  No change in input, output, or configuration files. 
–  Run any simulation on any number of processors. 
–  Precompiled binaries available when possible. 

•  Desktops and laptops – setup and testing 
–  x86 and x86-64 Windows, and Macintosh 
–  Allow both shared-memory and network-based parallelism. 

•  Linux clusters – affordable workhorses 
–  x86, x86-64, and Itanium processors 
–  Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc 

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005. 
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Our Goal: Practical Acceleration 

•  Broadly applicable to scientific computing 
–  Programmable by domain scientists 
–  Scalable from small to large machines 

•  Broadly available to researchers 
–  Price driven by commodity market 
–  Low burden on system administration 

•  Sustainable performance advantage 
–  Performance driven by Moore’s law 
–  Stable market and supply chain 

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 
Portugal, June 14-18, 2010!



•  Spatially decompose 
data and communication. 
•  Separate but related 
work decomposition. 
•  “Compute objects” 
facilitate iterative, 
measurement-based load 
balancing system. 

NAMD Hybrid Decomposition 
Kale et al., J. Comp. Phys. 151:283-312, 1999. 
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NAMD Code is Message-Driven 

•  No receive calls as in “message passing” 
•  Messages sent to object “entry points” 
•  Incoming messages placed in queue 

–  Priorities are necessary for performance 
•  Execution generates new messages 
•  Implemented in Charm++ on top of MPI 

–  Can be emulated in MPI alone 
–  Charm++ provides tools and idioms 
–  Parallel Programming Lab:  http://charm.cs.uiuc.edu/ 
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System Noise Example 
Timeline from Charm++ tool “Projections” http://

charm.cs.uiuc.edu/ 
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NAMD Overlapping Execution 

Objects are assigned to processors and queued as data arrives. 

Phillips et al., SC2002. 

Offload to GPU 
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MPI Message-Driven CUDA Kernels? 

•  No, CUDA Kernels are too coarse-grained. 
–  CPU needs fine-grained work to interleave and pipeline. 
–  GPU needs large numbers of tasks submitted all at 

once. 
•  No, CUDA lacks priorities. 

–  FIFO isn’t enough. 
•  Perhaps in a future interface: 

–  Stream data to GPU. 
–  Append blocks to a running kernel invocation. 
–  Stream data out as blocks complete. 

•  Fermi looks very promising! 
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Nonbonded Forces on CUDA GPU 
•  Start with most expensive calculation: direct nonbonded interactions. 
•  Decompose work into pairs of patches, identical to NAMD structure. 
•  GPU hardware assigns patch-pairs to multiprocessors dynamically. 

16kB Shared Memory 
Patch A Coordinates & Parameters 

32kB Registers 
Patch B Coords, Params, & Forces 

Texture Unit 
Force Table 
Interpolation 

Constants 
Exclusions 

8kB cache 
8kB cache 

32-way SIMD Multiprocessor 
32-256 multiplexed threads 

768 MB Main Memory, no cache, 300+ cycle latency 

Force computation on single multiprocessor (GeForce 8800 GTX has 16) 

Stone et al., J. Comp. Chem. 28:2618-2640, 2007. 
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texture<float4> force_table; 
__constant__ unsigned int exclusions[]; 
__shared__ atom jatom[]; 
atom iatom;      // per-thread atom, stored in registers 
float4 iforce;   // per-thread force, stored in registers 
for ( int j = 0; j < jatom_count; ++j ) { 
  float dx = jatom[j].x - iatom.x;   float dy = jatom[j].y - iatom.y;  float dz = jatom[j].z - iatom.z; 
  float r2 = dx*dx + dy*dy + dz*dz; 
  if ( r2 < cutoff2 ) { 
    float4 ft = texfetch(force_table, 1.f/sqrt(r2)); 
    bool excluded = false; 
    int indexdiff = iatom.index - jatom[j].index; 
    if ( abs(indexdiff) <= (int) jatom[j].excl_maxdiff ) { 
      indexdiff += jatom[j].excl_index; 
      excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0); 
    } 
    float f = iatom.half_sigma + jatom[j].half_sigma;  // sigma 
    f *= f*f;  // sigma^3 
    f *= f;  // sigma^6 
    f *= ( f * ft.x + ft.y );  // sigma^12 * fi.x - sigma^6 * fi.y 
    f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon; 
    float qq = iatom.charge * jatom[j].charge; 
    if ( excluded ) { f = qq * ft.w; }  // PME correction 
    else { f += qq * ft.z; }  // Coulomb 
    iforce.x += dx * f;   iforce.y += dy * f;    iforce.z += dz * f; 
    iforce.w += 1.f;  // interaction count or energy 
  } 
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007. 

Nonbonded Forces 
CUDA Code 

Force Interpolation 

Exclusions 

Parameters 

Accumulation 
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Overlapping GPU and CPU 
with Communication 
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“Remote Forces” 

•  Forces on atoms in a local 
patch are “local” 

•  Forces on atoms in a remote 
patch are “remote” 

•  Calculate remote forces first 
to overlap force 
communication with local 
force calculation 

•  Not enough work to overlap 
with position communication 

Local 
Patch 

Remote 
Patch 

Local 
Patch 

Remote 
Patch 

Remote 
Patch 

Remote 
Patch 

Work done by one processor 



Actual Timelines from NAMD 
Generated using Charm++ tool “Projections” http://

charm.cs.uiuc.edu/ 
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NCSA “4+4” QuadroPlex Cluster 

2.4 GHz Opteron + Quadro FX 5600 

fa
st

er
 

6.76 3.33 



CUDA/OpenCL Wrapper Library 

•  Basic operation principle: 
–  Use /etc/ld.so.preload to overload (intercept) a subset of CUDA/OpenCL 

functions, e.g. {cu|cuda}{Get|Set}Device, clGetDeviceIDs, etc  
•  Purpose: 

–  Enables controlled GPU device visibility and access, extending resource 
allocation to the workload manager 

–  Prove or disprove feature usefulness, with the hope of eventual  uptake 
or reimplementation of proven features by the vendor 

–  Provides a platform for rapid implementation and testing of HPC relevant 
features not available in NVIDIA APIs 

•  Features: 
–  NUMA Affinity mapping 

•  Sets thread affinity to CPU core nearest the gpu device 
–  Shared host, multi-gpu device fencing 

•  Only GPUs allocated by scheduler are visible or accessible to user 
•  GPU device numbers are virtualized, with a fixed mapping to a physical 

device per user environment 
•  User always sees allocated GPU devices indexed from 0 
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CUDA/OpenCL Wrapper Library 
•  Features (cont’d): 

–  Device Rotation (deprecated) 
•  Virtual to Physical device mapping rotated for each process 

accessing a GPU device 
•  Allowed for common execution parameters (e.g. Target gpu0 

with 4 processes, each one gets separate gpu, assuming 4 
gpus available) 

•  CUDA 2.2 introduced compute-exclusive device mode, which 
includes fallback to next device.  Device rotation feature may 
no longer needed 

–  Memory Scrubber 
•  Independent utility from wrapper, but packaged with it 
•  Linux kernel does no management of GPU device memory 
•  Must run between user jobs to ensure security between users 

•  Availability 
–  NCSA/UofI Open Source License 
–  https://sourceforge.net/projects/cudawrapper/ 
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CUDA Memtest 
•  4GB of Tesla GPU memory is not ECC protected 
•  Hunt for “soft error” 
•  Features 

–  Full re-implementation of every test included in memtest86 
–  Random and fixed test patterns,  error reports, error addresses, test 

specification 

–  Email notification 
–  Includes additional stress test for software and hardware errors 

•  Usage scenarios 
–  Hardware test for defective GPU memory chips 
–  CUDA API/driver software bugs detection 
–  Hardware test for detecting soft errors due to non-ECC memory 

•  No soft error detected in 2 years x 4 gig of cumulative runtime 
•  Availability 

–  NCSA/UofI Open Source License 
–  https://sourceforge.net/projects/cudagpumemtest/ 
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GPU Node Pre/Post Allocation 
Sequence 

•  Pre-Job (minimized for rapid device acquisition) 
–  Assemble detected device file unless it exists 
–  Sanity check results 
–  Checkout requested GPU devices from that file 
–  Initialize CUDA wrapper shared memory segment with unique key 

for user (allows user to ssh to node outside of job environment and 
have same gpu devices visible) 

•  Post-Job 
–  Use quick memtest run to verify healthy GPU state 
–  If bad state detected, mark node offline if other jobs present on 

node 
–  If no other jobs, reload kernel module to “heal” node (for CUDA 2.2 

driver bug) 
–  Run memscrubber utility to clear gpu device memory 
–  Notify of any failure events with job details 
–  Terminate wrapper shared memory segment 
–  Check-in GPUs back to global file of detected devices © David Kirk/NVIDIA and Wen-mei W. Hwu Braga, 
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NCSA “8+2” Lincoln Cluster 
•  How to share a GPU among 4 CPU cores? 

–  Send all GPU work to one process? 
–  Coordinate via messages to avoid conflict? 
–  Or just hope for the best? 
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NCSA Lincoln Cluster Performance 
(8 Intel cores and 2 NVIDIA Telsa GPUs per node) 

2 GPUs = 24 cores 
4 GPUs 

8 GPUs 
16 GPUs 

CPU cores 

STMV (1M atoms) s/step 

~2.8 



NCSA Lincoln Cluster Performance 
(8 cores and 2 GPUs per node) 

2 GPUs = 24 cores 
4 GPUs 

8 GPUs 
16 GPUs 

CPU cores 

STMV s/step 

8 GPUs = 
96 CPU cores 

~5.6 ~2.8 



No GPU Sharing (Ideal World) 
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GPU Sharing (Desired) 
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GPU Sharing (Feared) 
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GPU Sharing (Observed) 
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GPU Sharing (Explained) 

•  CUDA is behaving reasonably, but 
•  Force calculation is actually two kernels 

–  Longer kernel writes to multiple arrays 
–  Shorter kernel combines output 

•  Possible solutions: 
–  Modify CUDA to be less “fair” (please!) 
–  Use locks (atomics) to merge kernels (not G80) 
–  Explicit inter-client coordination 
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Inter-client Communication 

•  First identify which processes share a GPU 
–  Need to know physical node for each process 
–  GPU-assignment must reveal real device ID 
–  Threads don’t eliminate the problem 
–  Production code can’t make assumptions 

•  Token-passing is simple and predictable 
–  Rotate clients in fixed order 
–  High-priority, yield, low-priority, yield, … 
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