
Summer School

e-Science with Many-core CPU/GPU
Processors

Lecture 5
Multiple GPUs in an MPI Cluster

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

Why Clusters for HPC?

•  Clusters are a major workforce in HPC
–  Q: How many systems in top500 are clusters?
–  A: 410 out of 500

Top 500: Architecture Top 500: Performance
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal,
June 14-18, 2010!

Why GPUs in HPC Clusters?

5800 5950 Ultra
6800 Ultra

7800 GTX

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal,
June 14-18, 2010!

GPU Performance Trends

Current GPU Clusters at NCSA
•  Lincoln

–  Production system available
via the standard NCSA/
TeraGrid HPC allocation

•  AC
–  Experimental system

available for exploring
GPU computing

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

NCSA Linux Cluster AC
•  HP xw9400 workstation

–  2216 AMD Opteron 2.4 GHz
dual socket dual core

–  8 GB DDR2
–  Infiniband QDR

•  Tesla S1070 1U 4-GPU
Server
–  1.3 GHz Tesla T10

processors
–  4x4 GB GDDR3 SDRAM

•  Cluster
–  Servers: 32
–  Accelerator Units: 32 (128

GPUS, 128 TF SP, 10 TF
DP)

IB

Tesla S1070

T10 T10

PCIe
interface

DRAM DRAM

T10 T10

PCIe
interface

DRAM DRAM

HP xw9400
workstation

PCIe x16 PCIe x16

QDR IB

Nallatech
H101
FPGA
card

PCI-X

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

•  Dell PowerEdge 1955
server
–  Intel 64 (Harpertown) 2.33

GHz dual socket quad core
–  16 GB DDR2
–  Infiniband SDR

•  Tesla S1070 1U GPU
Computing Server
–  1.3 GHz Tesla T10

processors
–  4x4 GB GDDR3 SDRAM

•  Cluster
–  Servers: 192
–  Accelerator Units: 96

•  Two Compute Nodes

Tesla S1070

Dell PowerEdge
1955 server

IB

T10 T10

PCIe interface

DRAM DRAM

T10 T10

PCIe interface

DRAM DRAM

Dell PowerEdge
1955 server

PCIe x8 PCIe x8

SDR IB SDR IB

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

HPL Benchmark for
Lincoln

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0

500

1000

1500

2000

2500

1 node 2 nodes 4 nodes 8 nodes 16
nodes

32
nodes

%
 o

f p
ea

k

ac
hi

ev
ed

 G
FL

O
PS

system size

Lincoln (GFLOPS)

Lincoln (% of peak)

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June 14-18, 2010!

Direct Self-Consistent Field
Computations on GPU Clusters

Guochun Shi,
Volodymyr Kindratenko

National Center for
Supercomputing Applications

University of Illinois at
Urbana-Champaign

Ivan Ufimtsev,
Todd Martinez

Department of Chemistry
Stanford University

Why do we need to deal with…
Energy (HΨ = EΨ):
 Quantifies intra/intermolecular interactions
 Drives chemistry, little interesting happens on flat surface

Geometry optimization (∇RE = 0)
 Searches for stable atomic arrangements (molecular shapes)

Molecular dynamics (∂2R/ ∂t2 = -1/M ∇RE)
 The chemistry itself (at some, sometimes crude, approximation)
 Studies system at atomistic time, and length scales

Quantum Chemistry

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Exact energy is a hard problem

water molecule: 10 electrons, 30 dimensions

Antisymmetry:

3,628,000 permutations

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Hartree-Fock approximation is one of
the simplest
Ψ is an antisymmetrized product of N 1-electron orbitals ψ

Expand ψ over predefined basis set ϕ

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Hartree-Fock Self Consistent Field (SCF)
procedure

Repeat until Ck+1 more or less equals Ck

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Hartree-Fock equations

•  All matrices are of N×N size (N ~ 1,000 … 10,000)
•  N3 operations to solve HF equations (need to deal with
diagonalization)
•  N4 operations to get F

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

2e integral grid

SIMD warp

Most negligibly small integrals
will be calculated

SIMD warp

Only significant integrals will be
calculated

[i
j|

|kl]
leaves only N2 out of N4 integrals

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

J-matrix implementation

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

K-matrix implementation

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Node execution time breakdown

0

2

4

6

8

10

12

14

16

18

olestra

runtime
(seconds

)

J

K

J/K reduction

LA

uncounted

KPQ

JPQ

0.00

50.00

100.00

150.00

200.00

250.00

bpti

runtime
(seconds)

J

K

LA

uncounted

J/K reduction

KPQ

JPQ

•  Each node contains 8 CPU cores and 2 GPUs.

•  The J and K matrices computation and Linear Algebra (LA)
computation dominate the overall execution time

•  Pair quantity computations can be significant
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

GPU cluster parallelization strategy

•  Each GPU has a global id
–  nodeid * num_gpu_per_node + local_gpu_index

•  J matrix work distribution (diagram)

•  K matrix work distribution (diagram)

•  LA using SCALAPACK

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Parallelization strategy (II)

•  Start as MPI program, each
node has as many MPI
processes as CPU cores

•  One MPI process per node
is designated as “master”

•  The master MPI processes
create threads for
controlling GPUs as well as
CPU work threads

•  MPI processes/GPU
management threads/CPU
work threads are awaken or

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

node
0

Computing J and K matrices on
GPUs

Reduction of J and K matrices, form
the Fock matrix

Pair-quantity computing on
CPU

Distribute the Fock matrix, do
linear algebra, compute matrix C
and P, gather P

Broadcast P

node
1

node
2

node
3

MPI process

CPU work thread

CPU thread for
managing GPU
kernels

Fock
matrix

Distr-ed fork matrix
Distr-ed P matrix

P matrix

Partial J and K

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Performance: load balancing

0

10

20

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Node Index

Unbalanced K matrix
computation

K matrix

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
C

om
pu

ta
tio

n
tim

e
(s

ec
on

ds
)

Node Index

balanced J matrix
Computation

J matrix

0
5

10
15
20
25
30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Node Index

balanced K matrix
Computation

K matrix

•  Sorting for pair quantity
computations and work selection
strategy makes the computation
on GPUs well balanced, reducing
performance degradation

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Atoms Electrons Orbitals S shells P shells

Olestra 453 1366 2131 1081 350

BPTI 875 3400 4893 2202 897

CspA 1732 6290 8753 4220 1511

Performance

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 1 2 4 8 16 32

Olestra

0.00

50.00

100.00

150.00

200.00

250.00

1 2 4 8 16 32 64 128

BPTI

0.00

100.00

200.00

300.00

400.00

500.00

600.00

2 4 8 16 32 64 128

CspA

of nodes

R
un

tim
e

(s
)

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Scalabilty of J, K andi LA

0

5

10

15

20

25

30

35

40

0 1 2 4 8 16 32

Olestra

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1 2 4 8 16 32 64 128

BPTI

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00

2 4 8 16 32 64 128

CspA

•  J and K matrices computation can scale well to 128 nodes

•  Linear Algebra scales only up to 16 nodes even for CsPA
molecule

number of nodes

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

0

50

100

150

200

250

300

350

400

450

2 4 8 16 32 64 128

tim
e

pe
r i

te
ra

tio
n

(s
ec

s)

of cluster nodes

P matrix assembly diagonalization dgemm

Performance: Linear Algebra breakdown

•  Diagonization scales the worst, dgemm is also important

•  A fast, scalable GPU based SCALAPACK is needed
•  Magma from UTK?
•  Cula?

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Results: Olestra molecule

Olestra molecule consisting of 453 atoms (a small example model
used of testing the developed software) can be computed by the
state-of-the-art quantum chemistry software package GAMESS
running on an Intel Pentium D 3 GHz processor in over 12,408
seconds whereas our 8-node GPU cluster implementation performs
the same computation in just over 5 seconds, a 2,452× speedup.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Example: CspA molecule

For larger models, one SCF iteration for Cold shock protein A
(CspA) molecule consisting of 1,732 atoms can be done in 88
seconds on a 16 node GPU cluster.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Accelerating Biomolecular
Modeling

with CUDA and GPU Clusters

James Phillips
John Stone
Klaus Schulten
http://www.ks.uiuc.edu/Research/gpu/

Computational Microscopy

Ribosome: synthesizes proteins from
genetic information, target for antibiotics

Silicon nanopore: bionanodevice for
sequencing DNA efficiently

NAMD: Practical Supercomputing
•  35,000 users can’t all be computer experts.

–  18% are NIH-funded; many in other countries.
–  8200 have downloaded more than one version.

•  User experience is the same on all platforms.
–  No change in input, output, or configuration files.
–  Run any simulation on any number of processors.
–  Precompiled binaries available when possible.

•  Desktops and laptops – setup and testing
–  x86 and x86-64 Windows, and Macintosh
–  Allow both shared-memory and network-based parallelism.

•  Linux clusters – affordable workhorses
–  x86, x86-64, and Itanium processors
–  Gigabit ethernet, Myrinet, InfiniBand, Quadrics, Altix, etc

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Our Goal: Practical Acceleration

•  Broadly applicable to scientific computing
–  Programmable by domain scientists
–  Scalable from small to large machines

•  Broadly available to researchers
–  Price driven by commodity market
–  Low burden on system administration

•  Sustainable performance advantage
–  Performance driven by Moore’s law
–  Stable market and supply chain

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

•  Spatially decompose
data and communication.
•  Separate but related
work decomposition.
•  “Compute objects”
facilitate iterative,
measurement-based load
balancing system.

NAMD Hybrid Decomposition
Kale et al., J. Comp. Phys. 151:283-312, 1999.

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

NAMD Code is Message-Driven

•  No receive calls as in “message passing”
•  Messages sent to object “entry points”
•  Incoming messages placed in queue

–  Priorities are necessary for performance
•  Execution generates new messages
•  Implemented in Charm++ on top of MPI

–  Can be emulated in MPI alone
–  Charm++ provides tools and idioms
–  Parallel Programming Lab: http://charm.cs.uiuc.edu/

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

System Noise Example
Timeline from Charm++ tool “Projections” http://

charm.cs.uiuc.edu/

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

NAMD Overlapping Execution

Objects are assigned to processors and queued as data arrives.

Phillips et al., SC2002.

Offload to GPU

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

MPI Message-Driven CUDA Kernels?

•  No, CUDA Kernels are too coarse-grained.
–  CPU needs fine-grained work to interleave and pipeline.
–  GPU needs large numbers of tasks submitted all at

once.
•  No, CUDA lacks priorities.

–  FIFO isn’t enough.
•  Perhaps in a future interface:

–  Stream data to GPU.
–  Append blocks to a running kernel invocation.
–  Stream data out as blocks complete.

•  Fermi looks very promising!
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Nonbonded Forces on CUDA GPU
•  Start with most expensive calculation: direct nonbonded interactions.
•  Decompose work into pairs of patches, identical to NAMD structure.
•  GPU hardware assigns patch-pairs to multiprocessors dynamically.

16kB Shared Memory
Patch A Coordinates & Parameters

32kB Registers
Patch B Coords, Params, & Forces

Texture Unit
Force Table
Interpolation

Constants
Exclusions

8kB cache
8kB cache

32-way SIMD Multiprocessor
32-256 multiplexed threads

768 MB Main Memory, no cache, 300+ cycle latency

Force computation on single multiprocessor (GeForce 8800 GTX has 16)

Stone et al., J. Comp. Chem. 28:2618-2640, 2007.
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

texture<float4> force_table;
__constant__ unsigned int exclusions[];
__shared__ atom jatom[];
atom iatom; // per-thread atom, stored in registers
float4 iforce; // per-thread force, stored in registers
for (int j = 0; j < jatom_count; ++j) {
 float dx = jatom[j].x - iatom.x; float dy = jatom[j].y - iatom.y; float dz = jatom[j].z - iatom.z;
 float r2 = dx*dx + dy*dy + dz*dz;
 if (r2 < cutoff2) {
 float4 ft = texfetch(force_table, 1.f/sqrt(r2));
 bool excluded = false;
 int indexdiff = iatom.index - jatom[j].index;
 if (abs(indexdiff) <= (int) jatom[j].excl_maxdiff) {
 indexdiff += jatom[j].excl_index;
 excluded = ((exclusions[indexdiff>>5] & (1<<(indexdiff&31))) != 0);
 }
 float f = iatom.half_sigma + jatom[j].half_sigma; // sigma
 f *= f*f; // sigma^3
 f *= f; // sigma^6
 f *= (f * ft.x + ft.y); // sigma^12 * fi.x - sigma^6 * fi.y
 f *= iatom.sqrt_epsilon * jatom[j].sqrt_epsilon;
 float qq = iatom.charge * jatom[j].charge;
 if (excluded) { f = qq * ft.w; } // PME correction
 else { f += qq * ft.z; } // Coulomb
 iforce.x += dx * f; iforce.y += dy * f; iforce.z += dz * f;
 iforce.w += 1.f; // interaction count or energy
 }
} Stone et al., J. Comp. Chem. 28:2618-2640, 2007.

Nonbonded Forces
CUDA Code

Force Interpolation

Exclusions

Parameters

Accumulation
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Overlapping GPU and CPU
with Communication

Remote Force Local Force GPU

CPU

Other Nodes/Processes

Local Remote

x
f f

f

f

Local x

x

Update

One Timestep

x

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

“Remote Forces”

•  Forces on atoms in a local
patch are “local”

•  Forces on atoms in a remote
patch are “remote”

•  Calculate remote forces first
to overlap force
communication with local
force calculation

•  Not enough work to overlap
with position communication

Local
Patch

Remote
Patch

Local
Patch

Remote
Patch

Remote
Patch

Remote
Patch

Work done by one processor

Actual Timelines from NAMD
Generated using Charm++ tool “Projections” http://

charm.cs.uiuc.edu/
Remote Force Local Force

x
f f

x

GPU

CPU

f

f

x

x

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

NCSA “4+4” QuadroPlex Cluster

2.4 GHz Opteron + Quadro FX 5600

fa
st

er

6.76 3.33

CUDA/OpenCL Wrapper Library

•  Basic operation principle:
–  Use /etc/ld.so.preload to overload (intercept) a subset of CUDA/OpenCL

functions, e.g. {cu|cuda}{Get|Set}Device, clGetDeviceIDs, etc
•  Purpose:

–  Enables controlled GPU device visibility and access, extending resource
allocation to the workload manager

–  Prove or disprove feature usefulness, with the hope of eventual uptake
or reimplementation of proven features by the vendor

–  Provides a platform for rapid implementation and testing of HPC relevant
features not available in NVIDIA APIs

•  Features:
–  NUMA Affinity mapping

•  Sets thread affinity to CPU core nearest the gpu device
–  Shared host, multi-gpu device fencing

•  Only GPUs allocated by scheduler are visible or accessible to user
•  GPU device numbers are virtualized, with a fixed mapping to a physical

device per user environment
•  User always sees allocated GPU devices indexed from 0

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

CUDA/OpenCL Wrapper Library
•  Features (cont’d):

–  Device Rotation (deprecated)
•  Virtual to Physical device mapping rotated for each process

accessing a GPU device
•  Allowed for common execution parameters (e.g. Target gpu0

with 4 processes, each one gets separate gpu, assuming 4
gpus available)

•  CUDA 2.2 introduced compute-exclusive device mode, which
includes fallback to next device. Device rotation feature may
no longer needed

–  Memory Scrubber
•  Independent utility from wrapper, but packaged with it
•  Linux kernel does no management of GPU device memory
•  Must run between user jobs to ensure security between users

•  Availability
–  NCSA/UofI Open Source License
–  https://sourceforge.net/projects/cudawrapper/

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

CUDA Memtest
•  4GB of Tesla GPU memory is not ECC protected
•  Hunt for “soft error”
•  Features

–  Full re-implementation of every test included in memtest86
–  Random and fixed test patterns, error reports, error addresses, test

specification

–  Email notification
–  Includes additional stress test for software and hardware errors

•  Usage scenarios
–  Hardware test for defective GPU memory chips
–  CUDA API/driver software bugs detection
–  Hardware test for detecting soft errors due to non-ECC memory

•  No soft error detected in 2 years x 4 gig of cumulative runtime
•  Availability

–  NCSA/UofI Open Source License
–  https://sourceforge.net/projects/cudagpumemtest/

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

GPU Node Pre/Post Allocation
Sequence

•  Pre-Job (minimized for rapid device acquisition)
–  Assemble detected device file unless it exists
–  Sanity check results
–  Checkout requested GPU devices from that file
–  Initialize CUDA wrapper shared memory segment with unique key

for user (allows user to ssh to node outside of job environment and
have same gpu devices visible)

•  Post-Job
–  Use quick memtest run to verify healthy GPU state
–  If bad state detected, mark node offline if other jobs present on

node
–  If no other jobs, reload kernel module to “heal” node (for CUDA 2.2

driver bug)
–  Run memscrubber utility to clear gpu device memory
–  Notify of any failure events with job details
–  Terminate wrapper shared memory segment
–  Check-in GPUs back to global file of detected devices © David Kirk/NVIDIA and Wen-mei W. Hwu Braga,

Portugal, June 14-18, 2010!

NCSA “8+2” Lincoln Cluster
•  How to share a GPU among 4 CPU cores?

–  Send all GPU work to one process?
–  Coordinate via messages to avoid conflict?
–  Or just hope for the best?

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

NCSA Lincoln Cluster Performance
(8 Intel cores and 2 NVIDIA Telsa GPUs per node)

2 GPUs = 24 cores
4 GPUs

8 GPUs
16 GPUs

CPU cores

STMV (1M atoms) s/step

~2.8

NCSA Lincoln Cluster Performance
(8 cores and 2 GPUs per node)

2 GPUs = 24 cores
4 GPUs

8 GPUs
16 GPUs

CPU cores

STMV s/step

8 GPUs =
96 CPU cores

~5.6 ~2.8

No GPU Sharing (Ideal World)

Remote Force Local Force GPU 1

x
f f

x

Remote Force Local Force GPU 2

x
f f

x

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

GPU Sharing (Desired)

Remote Force Local Force

Client 2

x
f f

x

Remote Force Local Force

Client 1

x
f f

x

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

GPU Sharing (Feared)

Remote
Force

Local
Force

Client 2

x
f f

x

Remote
Force

Local
Force

Client 1

x
f f

x

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

GPU Sharing (Observed)

Remote
Force

Local
Force

Client 2

x
f f

x

Remote
Force

Local
Force

Client 1

x
f f

x

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

GPU Sharing (Explained)

•  CUDA is behaving reasonably, but
•  Force calculation is actually two kernels

–  Longer kernel writes to multiple arrays
–  Shorter kernel combines output

•  Possible solutions:
–  Modify CUDA to be less “fair” (please!)
–  Use locks (atomics) to merge kernels (not G80)
–  Explicit inter-client coordination

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

Inter-client Communication

•  First identify which processes share a GPU
–  Need to know physical node for each process
–  GPU-assignment must reveal real device ID
–  Threads don’t eliminate the problem
–  Production code can’t make assumptions

•  Token-passing is simple and predictable
–  Rotate clients in fixed order
–  High-priority, yield, low-priority, yield, …

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, June 14-18, 2010!

