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Summer School 

s-Science with Many-core CPU/GPU 
Processors  

Lecture 3:  
Part 1: CUDA Threads 
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Block IDs and Thread IDs 

•  Each thread uses IDs to 
decide what data to work on 
–  Block ID: 1D or 2D 
–  Thread ID: 1D, 2D, or 3D  

•  Simplifies memory 
addressing when 
processing 
multidimensional data 
–  Image processing 
–  Solving PDEs on volumes 
–  … 
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Matrix Multiplication Using 
Multiple Blocks 
•  Break-up Pd into tiles 
•  Each block calculates one 

tile 
–  Each thread calculates one 

element 
–  Block size equal tile size 
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P1,0!P0,0!

P0,1!

P2,0! P3,0!

P1,1!
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Block(0,0)! Block(1,0)!

Block(1,1)!Block(0,1)!

TILE_WIDTH = 2!

A Small Example 
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Pd1,0!

A Small Example: Multiplication 
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Revised Matrix Multiplication 
Kernel using Multiple Blocks 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 

float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]; 

Pd[Row*Width+Col] = Pvalue; 
} 
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    // Setup the execution configuration 
  dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH); 
  dim3 dimBlock(TILE_WIDTH, TILE_WIDTH); 

    // Launch the device computation threads! 
    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); 

Revised Step 5: Kernel Invocation 
(Host-side Code)  
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CUDA Thread Block 
•  All threads in a block execute the same 

kernel program (SPMD) 
•  Programmer declares block: 

–  Block size 1 to 512 concurrent threads 
–  Block shape 1D, 2D, or 3D 
–  Block dimensions in threads 

•  Threads have thread id numbers within block 
–  Thread program uses thread id to select 

work and address shared data 

•  Threads in the same block share data and 
synchronize while doing their share of the 
work 

•  Threads in different blocks cannot cooperate 
–  Each block can execute in any order relative 

to other blocs! 

CUDA Thread Block 

Thread Id #: 
0 1 2 3 …          m    

Thread program 

Courtesy: John Nickolls, 
NVIDIA!
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Transparent Scalability 
•  Hardware is free to assigns blocks to any 

processor at any time 
–  A kernel scales across any number of 

parallel processors 
Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any order relative 
to other blocks. !

time!
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Example: Executing Thread Blocks 

•  Threads are assigned to Streaming 
Multiprocessors in block granularity 
–  Up to 8 (?) blocks to each SM as 

resource allows 
–  Fermi SM can take up to 1536 threads 

•  Could be 256 (threads/block) * 6 
blocks  

•  Or 512 (threads/block) * 3 blocks, etc. 

•  Threads run concurrently 
–  SM maintains thread/block id #s 
–  SM manages/schedules thread 

execution 

t0 t1 t2 … tm 

Blocks 

SP 

Shared 
Memory 

MT IU 

SP 

Shared 
Memory 

MT IU 

t0 t1 t2 … tm 

Blocks 

SM 1 SM 0 
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Example: Thread Scheduling 

•  Each Block is executed as 32-
thread Warps 
–  An implementation decision, 

not part of the CUDA 
programming model 

–  Warps are scheduling units 
in SM 

•  If 3 blocks are assigned to an 
SM and each block has 256 
threads, how many Warps are 
there in an SM? 
–  Each Block is divided into 

256/32 = 8 Warps 
–  There are 8 * 3 = 24 Warps  

…!
t0 t1 t2 … t31 

…!
…!

t0 t1 t2 … t31 
…!Block 1 Warps Block 2 Warps 

…!
t0 t1 t2 … t31 

…!Block 1 Warps 

Register File 
(128 KB) 

L1 
(16 KB) 

Shared Memory 
(48 KB) 
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Example: Thread Scheduling (Cont.) 

•  SM implements zero-overhead warp scheduling 
–  At any time, 1 or 2 of the warps is executed by SM 
–  Warps whose next instruction has its operands ready for 

consumption are eligible for execution 
–  Eligible Warps are selected for execution on a prioritized 

scheduling policy 
–  All threads in a warp execute the same instruction when selected 
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Block Granularity Considerations 
•  For Matrix Multiplication using multiple blocks, should I 

use 8X8, 16X16 or 32X32 blocks? 

–  For 8X8, we have 64 threads per Block. Since each SM can take 
up to 1536 threads, there are 24 Blocks. However, each SM can 
only take up to 8 Blocks, only 512 threads will go into each SM! 

–  For 16X16, we have 256 threads per Block. Since each SM can 
take up to 1536 threads, it can take up to 6 Blocks and achieve 
full capacity unless other resource considerations overrule. 

–  For 32X32, we have 1024 threads per Block. Only one can fit into 
an SM!  And, some capacity is wasted. 
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Some Additional API Features 
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Application Programming Interface 

•  The API is an extension to the C programming 
language 

•  It consists of: 
–  Language extensions 

•  To target portions of the code for execution on the device 

–  A runtime library split into: 
•  A common component providing built-in vector types and a 

subset of the C runtime library in both host and device 
codes 

•  A host component to control and access one or more 
devices from the host 

•  A device component providing device-specific functions 
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Language Extensions: 
Built-in Variables 

•  dim3 gridDim; 
–  Dimensions of the grid in blocks (gridDim.z 

unused) 
•  dim3 blockDim; 

–  Dimensions of the block in threads 
•  dim3 blockIdx; 

–  Block index within the grid 

•  dim3 threadIdx; 
–  Thread index within the block 

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!



17 

Common Runtime Component: 
Mathematical Functions 

•  pow, sqrt, cbrt, hypot 
•  exp, exp2, expm1 
•  log, log2, log10, log1p 
•  sin, cos, tan, asin, acos, atan, atan2 
•  sinh, cosh, tanh, asinh, acosh, atanh 
•  ceil, floor, trunc, round 
•  Etc. 

–  When executed on the host, a given function uses 
the C runtime implementation if available 

–  These functions are only supported for scalar types, 
not vector types 
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Device Runtime Component: 
Mathematical Functions 

•  Some mathematical functions (e.g. sin(x)) 
have a less accurate, but faster device-only 
version (e.g. __sin(x)) 
–  __pow 
–  __log, __log2, __log10 
–  __exp 
–  __sin, __cos, __tan 
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Host Runtime Component 
•  Provides functions to deal with: 

–  Device management (including multi-device systems) 
–  Memory management 
–  Error handling 

•  Initializes the first time a runtime function is called 

•  A host thread can invoke device code on only one 
device 
–  Multiple host threads required to run on multiple 

devices 
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Device Runtime Component: 
Synchronization Function 

•  void __syncthreads(); 
•  Synchronizes all threads in a block 
•  Once all threads have reached this point, 

execution resumes normally 
•  Used to avoid RAW / WAR / WAW hazards 

when accessing shared or global memory 
•  Allowed in conditional constructs only if the 

conditional is uniform across the entire thread 
block 
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Summer School 

s-Science with Many-core CPU/GPU 
Processors  

Lecture 3:  
Part 2: CUDA Memories 
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Implementation of  CUDA Memories 

•  Each thread can: 
–  Read/write per-thread 

registers 
–  Read/write per-thread 

local memory 
–  Read/write per-block 

shared memory 
–  Read/write per-grid 

global memory 
–  Read/only per-grid 

constant memory 

Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 
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•   __device__ is optional when used with  
__shared__, or  __constant__ 

•  Automatic variables without any qualifier reside in 
a register 
–  Except arrays that reside in local memory 

23!

CUDA Variable Type Qualifiers 
Variable declaration Memory Scope Lifetime 

                        int LocalVar; local thread thread 
__device__ __shared__   int SharedVar; shared block block 
__device__              int GlobalVar; global grid application 
__device__ __constant__ int ConstantVar; constant grid application 

© David Kirk/NVIDIA and Wen-mei W. Hwu 
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Where to Declare Variables? 

Can host access it?!

Outside of "
any Function! In the kernel!

yes! no!
global!
constant!

register (automatic)!
shared!
local!
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A Common Programming Strategy 
•  Global memory resides in device memory (DRAM) 

- much slower access than shared memory 
•  So, a profitable way of performing computation on 

the device is to tile data to take advantage of fast 
shared memory: 
–  Partition data into subsets that fit into shared memory 
–  Handle each data subset with one thread block by: 

•  Loading the subset from global memory to shared memory, 
using multiple threads to exploit memory-level parallelism 

•  Performing the computation on the subset from shared 
memory; each thread can efficiently multi-pass over any data 
element 

•  Copying results from shared memory to global memory 
© David Kirk/NVIDIA and Wen-mei W. Hwu 
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A Common Programming Strategy 
(Cont.) 

•  Constant memory also resides in device memory 
(DRAM) - much slower access than shared 
memory 
–  But… cached! 
–  Highly efficient access for read-only data 

•  Carefully divide data according to access patterns 
–  R/Only  constant memory (very fast if in cache) 
–  R/W shared within Block  shared memory (very fast) 
–  R/W within each thread  registers (very fast) 
–  R/W inputs/results  global memory (very slow) 

For texture memory usage, see courses.ece.uiuc.edu/ece498/al. 
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GPU Atomic Integer Operations 

•  Atomic operations on integers in global memory: 
–  Associative operations on signed/unsigned ints 
–  add, sub, min, max, ... 
–  and, or, xor 
–  Increment, decrement 
–  Exchange, compare and swap 

•  Requires hardware with compute capability 1.1 
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Matrix Multiplication using  
Shared Memory 
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Revised Matrix Multiplication 
Kernel using Multiple Blocks 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 
// Calculate the row index of the Pd element and M 

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column idenx of Pd and N 

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 

float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 

for (int k = 0; k < Width; ++k) 
    Pvalue += Md[Row][k] * Nd[k][Col]; 

Pd[Row][Col] = Pvalue; 
} 
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Grid 

Global Memory 

Block (0, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Thread (0, 0) 

Registers 

Thread (1, 0) 

Registers 

Host 

Constant Memory 

How about performance on G80? 

•  All threads access global memory 
for their input matrix elements 

–  Two memory accesses (8 bytes) 
per floating point multiply-add 

–  4B/s of memory bandwidth/
FLOPS 

–  4*346.5 = 1386 GB/s required to 
achieve peak FLOP rating 

–  86.4 GB/s limits the code at 
21.6 GFLOPS 

•  The actual code runs at about 15 
GFLOPS 

•  Need to drastically cut down 
memory accesses to get closer to 
the peak 346.5 GFLOPS 

© David Kirk/NVIDIA and Wen-mei W. Hwu 
Braga, Portugal, June 14-18, 2010 



31!

Idea: Use Shared Memory to reuse 
global memory data 

•  Each input element is 
read by WIDTH 
threads. 

•  Load each element into 
Shared Memory and 
have several threads 
use the local version to 
reduce the memory 
bandwidth 
–  Tiled algorithms 
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WIDTH WIDTH 

ty!

tx!
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Tiled Multiply 
•  Break up the execution of the 

kernel into phases so that the 
data accesses in each phase is 
focused on one subset (tile) of 
Md and Nd 
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Pd1,0!

A Small Example 

Md2,0!

Md1,1!

Md1,0!Md0,0!

Md0,1!

Md3,0!

Md2,1!

Pd0,0!
Md3,1! Pd0,1!

Pd2,0!Pd3,0!

Nd0,3!Nd1,3!

Nd1,2!

Nd1,1!

Nd1,0!Nd0,0!

Nd0,1!

Nd0,2!

Pd1,1!

Pd0,2! Pd2,2!Pd3,2!Pd1,2!

Pd3,1!Pd2,1!

Pd0,3! Pd2,3!Pd3,3!Pd1,3!
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Every M and N Element is used exactly 
twice in generating a 2X2 tile of P 

P0,0 

thread0,0 

P1,0 

thread1,0 
P0,1 

thread0,1 
P1,1 

thread1,1 
M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0 

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1 

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2 

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3 

Access!
order!
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Pd1,0!Md2,0!

Md1,1!

Md1,0!Md0,0!

Md0,1!

Md3,0!

Md2,1!

Pd0,0!
Md3,1! Pd0,1!

Pd2,0!Pd3,0!

Nd0,3!Nd1,3!

Nd1,2!

Nd1,1!

Nd1,0!Nd0,0!

Nd0,1!

Nd0,2!

Pd1,1!

Pd0,2! Pd2,2!Pd3,2!Pd1,2!

Pd3,1!Pd2,1!

Pd0,3! Pd2,3!Pd3,3!Pd1,3!

Breaking Md and Nd into Tiles 
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Each phase uses one tile from Md and 
one from Nd 

Step 4 Step 5 Step 6 

T0,0 Md0,0  
↓ 
Mds0,0 

Nd0,0 

↓  
Nds0,0 

PValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1 

Md2,0  
↓  
Mds0,0  

Nd0,2 

↓  
Nds0,0 

PValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1 

T1,0 Md1,0 

↓ 
Mds1,0  

Nd1,0 

↓  
Nds1,0 

PValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1 

Md3,0  
↓  
Mds1,0  

Nd1,2 

↓  
Nds1,0 

PValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1 

T0,1 Md0,1 

↓ 
Mds0,1 

Nd0,1 

↓  
Nds0,1 

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1 

Md2,1 
↓  
Mds0,1 

Nd0,3 

↓  
Nds0,1 

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1 

T1,1 Md1,1 

↓ 
Mds1,1 

Nd1,1 

↓  
Nds1,1 

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1 

Md3,1  
↓  
Mds1,1  

Nd1,3 

↓  
Nds1,1 

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1 

!Phase 1! !Phase 2!

time 
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First-order Size Considerations 

•  Each thread block should have many threads 
–  TILE_WIDTH of 16 gives 16*16 = 256 threads 

•  There should be many thread blocks 
–  A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks 

•  Each thread block perform 2*256 = 512 float 
loads from global memory for 256 * (2*16) = 
8,192 mul/add operations.  
–  Memory bandwidth no longer a limiting factor 

© David Kirk/NVIDIA and Wen-mei W. Hwu 
Braga, Portugal, June 14-18, 2010 



38!

CUDA Code – Kernel Execution 
Configuration 

// Setup the execution configuration 

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH); 
dim3 dimGrid(Width  / TILE_WIDTH,  
      Width /  TILE_WIDTH); 

© David Kirk/NVIDIA and Wen-mei W. Hwu 
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Tiled Matrix Multiplication Kernel 
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 
1.  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH]; 
2.  __shared__ float Nds[TILE_WIDTH][TILE_WIDTH]; 

3.  int bx = blockIdx.x;  int by = blockIdx.y; 
4.  int tx = threadIdx.x; int ty = threadIdx.y; 

// Identify the row and column of the Pd element to work on 
5.  int Row = by * TILE_WIDTH + ty; 
6.  int Col = bx * TILE_WIDTH + tx; 

7.  float Pvalue = 0; 
// Loop over the Md and Nd tiles required to compute the Pd element 
8.   for (int m = 0; m < Width/TILE_WIDTH; ++m) { 
// Coolaborative loading of Md and Nd tiles into shared memory 
9.    Mds[tx][ty] = Md[(m*TILE_WIDTH + tx)*Width+Row]; 
10.    Nds[tx][ty] = Nd[Col*Width+(m*TILE_WIDTH + ty)]; 
11.    __syncthreads(); 
12.   for (int k = 0; k < TILE_WIDTH; ++k) 
13.    Pvalue += Mds[tx][k] * Nds[k][ty]; 
14.  __synchthreads(); 
15.}   
16.   Pd[Row*Width+Col] = Pvalue; 
} 
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Tiled Multiply 
•  Each block computes one 

square sub-matrix Pdsub of size 
TILE_WIDTH 

•  Each thread computes one 
element of Pdsub 

m!

k!bx!

by!

k!

m!
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Shared Memory and Threading 
•  Each SM in Fermi has 16KB or 48KB shared memory* 

–  SM size is implementation dependent! 
–  For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB 

of shared memory.  
–  Can potentially have up to 8 Thread Blocks actively executing  

•  This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 
threads per block) 

–  The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB 
shared memory usage per thread block, allowing 2 or 6 thread 
blocks active at the same time 

•  Using 16x16 tiling, we reduce the accesses to the global 
memory by a factor of 16 
–  The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 

GFLOPS! 

    *Configurable vs L1, total 64KB 
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Tiling Size Effects (G80) 
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•  Global variables declaration 
‒  __host__ 
‒  __device__... __global__, __constant__, __texture__ 

•  Function prototypes 
‒  __global__ void kernelOne(…) 
‒  float handyFunction(…) 

•  Main () 
‒  allocate memory space on the device ‒ cudaMalloc(&d_GlblVarPtr, bytes ) 
‒  transfer data from host to device ‒ cudaMemCpy(d_GlblVarPtr, h_Gl…) 
‒  execution configuration setup 
‒  kernel call ‒ kernelOne<<<execution configuration>>>( args… ); 
‒  transfer results from device to host ‒ cudaMemCpy(h_GlblVarPtr,…) 
‒  optional: compare against golden (host computed) solution 

•  Kernel ‒ void kernelOne(type args,…) 
‒  variables declaration - local, __shared__ 

•  automatic variables transparently assigned to registers or local memory 
‒  syncthreads()… 

•  Other functions 
‒  float handyFunction(int inVar…);      

      

Summary- Typical Structure of a 
CUDA Program 

repea
t!
as 
neede
d!
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