
1

Summer School

s-Science with Many-core CPU/GPU
Processors

Lecture 3:
Part 1: CUDA Threads

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

2

Block IDs and Thread IDs

•  Each thread uses IDs to
decide what data to work on
–  Block ID: 1D or 2D
–  Thread ID: 1D, 2D, or 3D

•  Simplifies memory
addressing when
processing
multidimensional data
–  Image processing
–  Solving PDEs on volumes
–  …

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

3

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

bx

tx
01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Matrix Multiplication Using
Multiple Blocks
•  Break-up Pd into tiles
•  Each block calculates one

tile
–  Each thread calculates one

element
–  Block size equal tile size

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

4

P1,0!P0,0!

P0,1!

P2,0! P3,0!

P1,1!

P0,2! P2,2! P3,2!P1,2!

P3,1!P2,1!

P0,3! P2,3! P3,3!P1,3!

Block(0,0)! Block(1,0)!

Block(1,1)!Block(0,1)!

TILE_WIDTH = 2!

A Small Example

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

5

Pd1,0!

A Small Example: Multiplication

Md2,0!

Md1,1!

Md1,0!Md0,0!

Md0,1!

Md3,0!

Md2,1!

Pd0,0!

Md3,1! Pd0,1!

Pd2,0!Pd3,0!

Nd0,3!Nd1,3!

Nd1,2!

Nd1,1!

Nd1,0!Nd0,0!

Nd0,1!

Nd0,2!

Pd1,1!

Pd0,2! Pd2,2!Pd3,2!Pd1,2!

Pd3,1!Pd2,1!

Pd0,3! Pd2,3!Pd3,3!Pd1,3!

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Urbana, Illinois, August 10-14, 2009!

6

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Urbana, Illinois, August 10-14, 2009!

7

 // Setup the execution configuration
 dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

 // Launch the device computation threads!
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

Revised Step 5: Kernel Invocation
(Host-side Code)

8

CUDA Thread Block
•  All threads in a block execute the same

kernel program (SPMD)
•  Programmer declares block:

–  Block size 1 to 512 concurrent threads
–  Block shape 1D, 2D, or 3D
–  Block dimensions in threads

•  Threads have thread id numbers within block
–  Thread program uses thread id to select

work and address shared data

•  Threads in the same block share data and
synchronize while doing their share of the
work

•  Threads in different blocks cannot cooperate
–  Each block can execute in any order relative

to other blocs!

CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

Courtesy: John Nickolls,
NVIDIA!

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

9

Transparent Scalability
•  Hardware is free to assigns blocks to any

processor at any time
–  A kernel scales across any number of

parallel processors
Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative
to other blocks. !

time!

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

10

Example: Executing Thread Blocks

•  Threads are assigned to Streaming
Multiprocessors in block granularity
–  Up to 8 (?) blocks to each SM as

resource allows
–  Fermi SM can take up to 1536 threads

•  Could be 256 (threads/block) * 6
blocks

•  Or 512 (threads/block) * 3 blocks, etc.

•  Threads run concurrently
–  SM maintains thread/block id #s
–  SM manages/schedules thread

execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

11

Example: Thread Scheduling

•  Each Block is executed as 32-
thread Warps
–  An implementation decision,

not part of the CUDA
programming model

–  Warps are scheduling units
in SM

•  If 3 blocks are assigned to an
SM and each block has 256
threads, how many Warps are
there in an SM?
–  Each Block is divided into

256/32 = 8 Warps
–  There are 8 * 3 = 24 Warps

…!
t0 t1 t2 … t31

…!
…!

t0 t1 t2 … t31
…!Block 1 Warps Block 2 Warps

…!
t0 t1 t2 … t31

…!Block 1 Warps

Register File
(128 KB)

L1
(16 KB)

Shared Memory
(48 KB)

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

12

Example: Thread Scheduling (Cont.)

•  SM implements zero-overhead warp scheduling
–  At any time, 1 or 2 of the warps is executed by SM
–  Warps whose next instruction has its operands ready for

consumption are eligible for execution
–  Eligible Warps are selected for execution on a prioritized

scheduling policy
–  All threads in a warp execute the same instruction when selected

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

13

Block Granularity Considerations
•  For Matrix Multiplication using multiple blocks, should I

use 8X8, 16X16 or 32X32 blocks?

–  For 8X8, we have 64 threads per Block. Since each SM can take
up to 1536 threads, there are 24 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

–  For 16X16, we have 256 threads per Block. Since each SM can
take up to 1536 threads, it can take up to 6 Blocks and achieve
full capacity unless other resource considerations overrule.

–  For 32X32, we have 1024 threads per Block. Only one can fit into
an SM! And, some capacity is wasted.

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

14

Some Additional API Features

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

15

Application Programming Interface

•  The API is an extension to the C programming
language

•  It consists of:
–  Language extensions

•  To target portions of the code for execution on the device

–  A runtime library split into:
•  A common component providing built-in vector types and a

subset of the C runtime library in both host and device
codes

•  A host component to control and access one or more
devices from the host

•  A device component providing device-specific functions
© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

16

Language Extensions:
Built-in Variables

•  dim3 gridDim;
–  Dimensions of the grid in blocks (gridDim.z

unused)
•  dim3 blockDim;

–  Dimensions of the block in threads
•  dim3 blockIdx;

–  Block index within the grid

•  dim3 threadIdx;
–  Thread index within the block

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

17

Common Runtime Component:
Mathematical Functions

•  pow, sqrt, cbrt, hypot
•  exp, exp2, expm1
•  log, log2, log10, log1p
•  sin, cos, tan, asin, acos, atan, atan2
•  sinh, cosh, tanh, asinh, acosh, atanh
•  ceil, floor, trunc, round
•  Etc.

–  When executed on the host, a given function uses
the C runtime implementation if available

–  These functions are only supported for scalar types,
not vector types

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

18

Device Runtime Component:
Mathematical Functions

•  Some mathematical functions (e.g. sin(x))
have a less accurate, but faster device-only
version (e.g. __sin(x))
–  __pow
–  __log, __log2, __log10
–  __exp
–  __sin, __cos, __tan

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

19

Host Runtime Component
•  Provides functions to deal with:

–  Device management (including multi-device systems)
–  Memory management
–  Error handling

•  Initializes the first time a runtime function is called

•  A host thread can invoke device code on only one
device
–  Multiple host threads required to run on multiple

devices
© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

20

Device Runtime Component:
Synchronization Function

•  void __syncthreads();
•  Synchronizes all threads in a block
•  Once all threads have reached this point,

execution resumes normally
•  Used to avoid RAW / WAR / WAW hazards

when accessing shared or global memory
•  Allowed in conditional constructs only if the

conditional is uniform across the entire thread
block

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

21!

Summer School

s-Science with Many-core CPU/GPU
Processors

Lecture 3:
Part 2: CUDA Memories

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

22!

Implementation of CUDA Memories

•  Each thread can:
–  Read/write per-thread

registers
–  Read/write per-thread

local memory
–  Read/write per-block

shared memory
–  Read/write per-grid

global memory
–  Read/only per-grid

constant memory

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

•  __device__ is optional when used with
__shared__, or __constant__

•  Automatic variables without any qualifier reside in
a register
–  Except arrays that reside in local memory

23!

CUDA Variable Type Qualifiers
Variable declaration Memory Scope Lifetime

 int LocalVar; local thread thread
__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

24

Where to Declare Variables?

Can host access it?!

Outside of "
any Function! In the kernel!

yes! no!
global!
constant!

register (automatic)!
shared!
local!

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

25!

A Common Programming Strategy
•  Global memory resides in device memory (DRAM)

- much slower access than shared memory
•  So, a profitable way of performing computation on

the device is to tile data to take advantage of fast
shared memory:
–  Partition data into subsets that fit into shared memory
–  Handle each data subset with one thread block by:

•  Loading the subset from global memory to shared memory,
using multiple threads to exploit memory-level parallelism

•  Performing the computation on the subset from shared
memory; each thread can efficiently multi-pass over any data
element

•  Copying results from shared memory to global memory
© David Kirk/NVIDIA and Wen-mei W. Hwu

Braga, Portugal, June 14-18, 2010

26!

A Common Programming Strategy
(Cont.)

•  Constant memory also resides in device memory
(DRAM) - much slower access than shared
memory
–  But… cached!
–  Highly efficient access for read-only data

•  Carefully divide data according to access patterns
–  R/Only  constant memory (very fast if in cache)
–  R/W shared within Block  shared memory (very fast)
–  R/W within each thread  registers (very fast)
–  R/W inputs/results  global memory (very slow)

For texture memory usage, see courses.ece.uiuc.edu/ece498/al.
© David Kirk/NVIDIA and Wen-mei W. Hwu

Braga, Portugal, June 14-18, 2010

27!
27

GPU Atomic Integer Operations

•  Atomic operations on integers in global memory:
–  Associative operations on signed/unsigned ints
–  add, sub, min, max, ...
–  and, or, xor
–  Increment, decrement
–  Exchange, compare and swap

•  Requires hardware with compute capability 1.1

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

28!

Matrix Multiplication using
Shared Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

29!

Revised Matrix Multiplication
Kernel using Multiple Blocks

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
// Calculate the row index of the Pd element and M

int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N

int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row][k] * Nd[k][Col];

Pd[Row][Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

30!

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

How about performance on G80?

•  All threads access global memory
for their input matrix elements

–  Two memory accesses (8 bytes)
per floating point multiply-add

–  4B/s of memory bandwidth/
FLOPS

–  4*346.5 = 1386 GB/s required to
achieve peak FLOP rating

–  86.4 GB/s limits the code at
21.6 GFLOPS

•  The actual code runs at about 15
GFLOPS

•  Need to drastically cut down
memory accesses to get closer to
the peak 346.5 GFLOPS

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

31!

Idea: Use Shared Memory to reuse
global memory data

•  Each input element is
read by WIDTH
threads.

•  Load each element into
Shared Memory and
have several threads
use the local version to
reduce the memory
bandwidth
–  Tiled algorithms

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty!

tx!

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

32!

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx 01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Tiled Multiply
•  Break up the execution of the

kernel into phases so that the
data accesses in each phase is
focused on one subset (tile) of
Md and Nd

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

33!

Pd1,0!

A Small Example

Md2,0!

Md1,1!

Md1,0!Md0,0!

Md0,1!

Md3,0!

Md2,1!

Pd0,0!
Md3,1! Pd0,1!

Pd2,0!Pd3,0!

Nd0,3!Nd1,3!

Nd1,2!

Nd1,1!

Nd1,0!Nd0,0!

Nd0,1!

Nd0,2!

Pd1,1!

Pd0,2! Pd2,2!Pd3,2!Pd1,2!

Pd3,1!Pd2,1!

Pd0,3! Pd2,3!Pd3,3!Pd1,3!

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

34

Every M and N Element is used exactly
twice in generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0
P0,1

thread0,1
P1,1

thread1,1
M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access!
order!

© David Kirk/NVIDIA and Wen-mei W. Hwu!
Braga, Portugal, June 14-18, 2010!

35!

Pd1,0!Md2,0!

Md1,1!

Md1,0!Md0,0!

Md0,1!

Md3,0!

Md2,1!

Pd0,0!
Md3,1! Pd0,1!

Pd2,0!Pd3,0!

Nd0,3!Nd1,3!

Nd1,2!

Nd1,1!

Nd1,0!Nd0,0!

Nd0,1!

Nd0,2!

Pd1,1!

Pd0,2! Pd2,2!Pd3,2!Pd1,2!

Pd3,1!Pd2,1!

Pd0,3! Pd2,3!Pd3,3!Pd1,3!

Breaking Md and Nd into Tiles

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

36!

Each phase uses one tile from Md and
one from Nd

Step 4 Step 5 Step 6

T0,0 Md0,0
↓
Mds0,0

Nd0,0

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Md2,0
↓
Mds0,0

Nd0,2

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

T1,0 Md1,0

↓
Mds1,0

Nd1,0

↓
Nds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Md3,0
↓
Mds1,0

Nd1,2

↓
Nds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

T0,1 Md0,1

↓
Mds0,1

Nd0,1

↓
Nds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Md2,1
↓
Mds0,1

Nd0,3

↓
Nds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

T1,1 Md1,1

↓
Mds1,1

Nd1,1

↓
Nds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Md3,1
↓
Mds1,1

Nd1,3

↓
Nds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

!Phase 1! !Phase 2!

time
© David Kirk/NVIDIA and Wen-mei W. Hwu

Braga, Portugal, June 14-18, 2010

37!

First-order Size Considerations

•  Each thread block should have many threads
–  TILE_WIDTH of 16 gives 16*16 = 256 threads

•  There should be many thread blocks
–  A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

•  Each thread block perform 2*256 = 512 float
loads from global memory for 256 * (2*16) =
8,192 mul/add operations.
–  Memory bandwidth no longer a limiting factor

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

38!

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,
 Width / TILE_WIDTH);

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

39!

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[tx][ty] = Md[(m*TILE_WIDTH + tx)*Width+Row];
10.  Nds[tx][ty] = Nd[Col*Width+(m*TILE_WIDTH + ty)];
11.  __syncthreads();
12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[tx][k] * Nds[k][ty];
14. __synchthreads();
15.}
16. Pd[Row*Width+Col] = Pvalue;
}

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

40!

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx 01 TILE_WIDTH-1 2

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W

ID
T

H

Tiled Multiply
•  Each block computes one

square sub-matrix Pdsub of size
TILE_WIDTH

•  Each thread computes one
element of Pdsub

m!

k!bx!

by!

k!

m!

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

41!

Shared Memory and Threading
•  Each SM in Fermi has 16KB or 48KB shared memory*

–  SM size is implementation dependent!
–  For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB

of shared memory.
–  Can potentially have up to 8 Thread Blocks actively executing

•  This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256
threads per block)

–  The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB
shared memory usage per thread block, allowing 2 or 6 thread
blocks active at the same time

•  Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16
–  The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6

GFLOPS!

 *Configurable vs L1, total 64KB
© David Kirk/NVIDIA and Wen-mei W. Hwu

Braga, Portugal, June 14-18, 2010

42!

Tiling Size Effects (G80)

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

43!

•  Global variables declaration
‒  __host__
‒  __device__... __global__, __constant__, __texture__

•  Function prototypes
‒  __global__ void kernelOne(…)
‒  float handyFunction(…)

•  Main ()
‒  allocate memory space on the device ‒ cudaMalloc(&d_GlblVarPtr, bytes)
‒  transfer data from host to device ‒ cudaMemCpy(d_GlblVarPtr, h_Gl…)
‒  execution configuration setup
‒  kernel call ‒ kernelOne<<<execution configuration>>>(args…);
‒  transfer results from device to host ‒ cudaMemCpy(h_GlblVarPtr,…)
‒  optional: compare against golden (host computed) solution

•  Kernel ‒ void kernelOne(type args,…)
‒  variables declaration - local, __shared__

•  automatic variables transparently assigned to registers or local memory
‒  syncthreads()…

•  Other functions
‒  float handyFunction(int inVar…);

Summary- Typical Structure of a
CUDA Program

repea
t!
as
neede
d!

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, June 14-18, 2010

