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MD on GPUs
The good, the bad, and the ugly

Ensemble simulations

Molecular Dynamics
 on CPUs

Should we change 
the way we do HPC?



Molecular Dynamics 
on traditional CPUs



Biomolecular Dynamics

Understand biologyProtein Folding

Free Energy &
Drug Design



Timescales of Motion

Simulations

Extreme detail

Sampling issues?

Parameter quality?

Experiments

Efficient averaging

Less detail

Chemistry
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Where we are
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want to be

Where we 

need to be

BiologyPhysics



• QM
• Car-Parinello dynamics
• Molecular mechanics simulations
• Mesoscopic models

• Which is more important?
• More detailed model
• Better phase-space sampling

Modeling levels
Detailed

Better sampling



Molecular Mechanics



One small step for H2O...



10 ps!

...one giant leap for water!
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Most interesting systems 
are not homogenous...



20 years of CPU Optimization

• Single precision when possible
• Handtuned 1/sqrt(x) instructions
• Single-instruction Multiple-Data
• Don’t calculate zeros

• No charge on an atom? Don’t do coulomb!
• Interaction speci!c kernels
• Complex neighbor lists

• Fancy algorithms to extend timestep
• Bond constraints, virtual sites, etc.

“Save FLOPS”

1 nlist entry
9 interactions



• Δt limited by fast motions - 1fs
• Remove bond vibrations

• SHAKE (iterative, slow) - 2fs
• Problematic in parallel (won’t work)
• Compromise: constrain h-bonds only - 

1.4fs

• GROMACS (LINCS):
• LINear Constraint Solver
• Approximate matrix inversion expansion
• Fast & stable - much better than SHAKE
• Non-iterative
• Enables 2-3 fs timesteps
• Parallelizes (in theory at least)

t=1

t=2’

t=1

t=2’’

LINCS:

t=1

t=2

A) Move w/o constraint

B) Project out motion
along bonds

C) Correct for rotational
extension of bond

Constraints
Stuff that might be hard to port to Cuda (1):



• Next fastest motions is H-angle and 
rotations of CH3/NH2 groups

• Try to remove them:
• Ideal H position from heavy atoms. 

• CH3/NH2 groups are made rigid
• Calculate forces, then project back onto heavy atoms
• Integrate only heavy atom positions, reconstruct H’s

• Enables 5fs timesteps!
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Virtual sites

Interactions Degrees of Freedom

Stuff that might be hard to port to Cuda (2):

Problem-speci!c 
optimization: use our 

knowledge of chemistry



 CPU Parallelization
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FIG. 3: The zones to communicate to the processor of cell 0,
see the text for details.

ensure that all bonded interaction between charge groups

can be assigned to a processor, it is sufficient to ensure

that the charge groups within a sphere of radius rc are

present on at least one processor for every possible cen-

ter of the sphere. In Fig. ?? this means we also need to

communicate volumes B’ and C’. When no bonded inter-

actions are present between charge groups, these volumes

are not communicated. For 2D decomposition A’, B’ and

C’ are the only extra volumes that need to be considered.

For 3D domain decomposition the pictures becomes quite

a bit more complicated, but the procedure is analogous

apart from more extensive book-keeping. All three cases

have been fully implemented for general triclinic cells.

The communication of the coordinates and charge

group indices can be performed efficiently by ’pulsing’ the

information in one direction simultaneously for all cells.

This needs to be repeated for each dimension. Consider

a 3D domain decomposition where we decompose in the

order x, y, z; meaning that the x boundaries are aligned,

the y boundaries are staggered in along the x direction

and the z boundaries are staggered along the x and y

directions. Each processor first sends the zone that its

neighboring cell in -z needs to this cell. Now each pro-

cessor can send the zone it neighboring cell in -y needs,

plus the part of the zone it received from +z, that is also

required by the neighbor in -y. The last step consists

of a pulse in -x where (parts of) 4 zones are sent over.

In this way on 3 communication steps are required to

communicate with 7 processors, while no information is

sent over that is not directly required by the neighbor-

ing processor. The communication of the forces happens

according to the same procedure, but in reversed order

and direction.

Another example of a minor complication in the com-

munication is virtual interaction sites constructed from

atoms in other charge groups. This is used in some poly-

mer (anisotropic united atom) force fields, but GRO-

MACS can also employ virtual sites to entirely remove

hydrogen vibrations and construct the hydrogens in their

equilibrium positions from neighboring heavy atoms each

timestep. Since the constructing atoms are not necessar-

ily interacting on the same node, we have to track the

virtual site coordinate dependencies separately to make

sure they are both available for construction and that

forces are properly communicated back.

III. DYNAMIC LOAD BALANCING

Calculating the forces is by far the most time consum-

ing part in MD simulations. In GROMACS, the force

calculation is preceded by the coordinate communication

and followed by the force communication. We can there-

fore balance the load by determining the time spent in the

force routines on each processor and then adjusting the

volume of every cell in the appropriate direction. The

timings are determined using inline assembly hardware

cycle counters and supported for virtually all modern

processor architectures. For a 3D decomposition with or-

der x, y, z the load balancing algorithm works as follows:

First the timings are accumulated in the z direction to

the processor of cell z=0, independently for each x and y

row. The processor of z=0 sums these timings and sends

the sum to the processor of y=0. This processor sums the

timings again and send the sum to the processor of x=0.

This processor can now shift the x boundaries and send

these to the y=0 processors. They can then determine

the y boundaries, send the x and y boundaries to the

z=0 processors, which can then determine z boundaries

and send all boundaries to the processors along their z

row. With this procedure only the necessary information

is sent to the processors that need it and global commu-

nication is avoided.

As mentioned in the introduction, load imbalance can

come from several sources. One needs to move bound-

aries in a conservative fashion in order to avoid oscil-

lations and instabilities, which could for instance occur

due to statistical fluctuations in the number of particles

in small cells. We found that scaling the relative lengths

of the cells in each dimension with 0.5 times the load

imbalance, with a maximum scaling of 5% produced ef-

ficient and stable load balancing. Of course, with our

current decision to only communicate to nearest neigh-

bors one has to make sure that cells do not get smaller

than the cut-off radius in any dimension, but when/if this

becomes a bottleneck it is straightforward to add another

step of communication. For a large numbers of cells or

inhomogeneous systems two more checks are required. A

first restriction is that boundaries should not move more

than halfway an adjacent cell (where instead of halfway

one could also choose a different value). This prevents

cells from moving so far that a charge group would move

Domain decomposition

Complex
Load balancing

Lots of book-keeping

CPU limit today:
50-150 ns/day

Hard to decrease
# atoms / CPU



Molecular Dynamics 
on Stream Processors



Stream computing

First Gromacs GPU project in 2002 
with Ian Buck & Pat Hanrahan, Stanford
Promise of theoretical high FP

performance on GeForce4
Severe limitations in practice...

Our !rst cards were less fancy!



Lessons:
It’s easy to achieve speedup relative 
to a slow reference implementation

Much harder to beat well-optimized
CPU code that can use >1 core

Don’t write CPU code for GPUs

Find new optimizations instead



Molecular Dynamics on GPUs

Focus on the code where we 
spend all the cycles on the CPU



CPU

GPU

Memory
Memory

Multiprocessors

PCI bus

Bottlenecks

GPU



OpenMM
Not sufficient to accelerate nonbonded 
interactions - need to send to/from GPU

Need to do entire simulation on GPU?

Not fun to rewrite 2M lines-of-code
in a separate CUDA-Gromacs...

~5GB/s

OpenMM: Core MD functionality in separate library
Stanford (Pande), Stockholm (Us), Nvidia & AMD

Fully public API, hardware-agnostic, use anywhere
Peter Eastman, Scott Legrand



Nonbonded Interactions

 Divide into short-range / long-range
 Calculate short-range analytically
 Use approximations for the long-range



O(N2) Algorithm on GPUs

 An efficient algorithm should:
 minimize global memory access
 avoid thread synchronization
 take advantage of symmetry



•   Group atoms into blocks of 32 
•   Interactions divide into 32x32 

tiles 
•   Each tile is processed by a 

group of 32 threads 
–   Load atom coordinates and 

parameters into shared memory 
–   Each thread computes 

interactions of one atom with 32 
atoms 

–   Use symmetry to skip half the 
tiles 
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O(N2) Algorithm on GPUs



•      Each thread loops over atoms in a different 
order 
–  Avoids con$icts between threads 

•   No explicit synchronization needed 
–  Threads in a warp are always synchronized 

Atoms 	
  

Threads
	
  

O(N2) Algorithm on GPUs



•
 

   Traditional O(N) methods (e.g. neighbor lists) slow on GPUs 
–   Out of order memory access 

for i = 1 to numNeighbors
load coordinates and parameters for neighbor[i]
compute force
store force for neighbor[i]

•   Inner loop contains non-coalesced memory access 

slow! 

slow! 

O(N) Algorithm on GPUs
Hard. Why?



Approach 1: Voxels
• Divide space into smaller voxels

• Compute all-vs-all interactions between
adjacent voxels

• LAMMPS, NAMD

• Very efficient when all
particles are identical

• Book-keeping can get
expensive for complex systems

0 32 64 96
0
0

32

64

96

32 64 96 0 32 64 96

(a)

(b)



•   Start with the O(N2)   algorithm 
•   Exclude tiles with no interactions 

–       Like a neighbor list between blocks of 32 atoms 
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Approach 2: Tiles

Problem 1: How do you 
construct good tiles?

Problem 2: How do you 
keep them good?



•    Compute an axis aligned bounding box for 
the 32 atoms in each block 

•   Calculate the distance between boxes

Finding tiles with interactions



• Solvent molecules must be ordered to be 
spatially coherent 

–   Or bounding boxes will be very large 

•  Arrange along a space !lling curve 

•  Reorder every ~100 time steps 

Keeping track of water

Swapping is easy: Same parameters! 



•  Much faster than O(N2)  for large systems 
•  Performance scales linearly 

       But 
•  Computes many more interactions than 

really required 
–   Computes all 1024 interactions in a tile, 

even if few/none are within the cutoff 

Performance?



•   For each tile with interactions: 
–   Compute distance of each atom in one block 

from the bounding box of the other block 
–   Set a $ag for each atom 

Finer-grained neighborlist



    for i = 1 to 32

      if (hasInteractions[i])

        compute interaction with atom i

•    All 32 threads must loop over atoms in the 
same order 

}  on each thread 

Atoms

Threads

–  Requires a reduction to sum 
the forces 

–  For a few atoms, this is still 
much faster 

–  For many atoms, better to just 
compute all interactions 

Tile Force Computation



PME (Long range coulomb)
1. Calculate scaled 

fractionals

2. Calculate B-spline 
coefficient

3. “smear” the charges 
over the grid points 
from spline-coefficient

4. Execute forward FFT

5. Calculate the reciprocal 
energy

 
6. Execute backward FFT

7. Calculate force gradient



CPU
spreading of charges

GPU
gathering of charges

 sort the atoms before gather !

PME (Long range coulomb)



Gromacs & OpenMM in practice
• GPUs supported in Gromacs 4.5

mdrun  ...  -device “OpenMM:Cuda” 

• Same input !les, same output !les: “It just works”

• Subset of features work on GPUs for now (checked)

• No shortcuts taken on the GPU:

• At least same accuracy as on the CPU (<1e-6)

• Potential energies calculated, free energy works

• Prerelease availability: NOW! www.gromacs.org/gpu

http://www.gromacs.org
http://www.gromacs.org


PME Reaction-field
Implicit All-vs-all

Fermi (C20) performance over C10
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1450We’re conservative:
2fs time steps!

BPTI (~21k atoms)
Villin (600 atoms, implicit)

1.5μs/day for 
small proteins!

A millisecondwould take ~1 year



PME Reaction-field
Implicit All-vs-all

GPU performance over x86 CPU
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NB: 2fs steps. GPUs still can’t do vsites & 5fs like CPUs



Limitations
• Still hard to use long time steps on GPUs

• Virtual sites don’t work

• We don’t think you should go higher
than 2fs steps without them

• Many of the CPU “tricks” can easily be written
in Cuda, but we would end of with lots of
kernels that must be called iteratively

• Hard to get multi-node GPU code to beat CPUs

• In the high end, we’re all bandwidth-limited



Hardware Caveats
• Beware of Memory Errors: happens on all hardware

• Gromacs runs tests to check for GPU memory errors

• Low-end consumer cards can sometimes be bad

• Even !ne cards can exhibit random errors

• For production scienti!c work you might want
Tesla-class Fermi cards...

• Why? ECC memory! (C2050/C2070)



Water box on a Nvidia Telsa2050
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GPU weak scaling



Nvidia Tesla 2050 vs Intel Core i7 920 (2.66 GHZ, 4 threads)

GPU 3k GPU 48k CPU r
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=1.5 CPU r
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real space cost ∼ r3
c

FFT cost ∼ spacing−3

for constant accuracy: spacing = rc/a

total cost: Cpp r3
c + CFFT a3 r−3

c

More GPU/CPU comparisons



serial computing stream computing

Tiling circles is difficult

1. You need lots of cubes to cover a sphere
2. All interactions beyond cut-off must be zero



0 2000 4000 6000 8000 10000

pair interactions per µs

GPU 3k, r
c
=1.5, buffered

GPU 48k, r
c
=1.5, buffered

CPU, r
c
=1.5, no water force loops

CPU, r
c
=1.5

CPU, r
c
=0.9

zeros

The Art of Calculating Zeros



Parallelize 
the Problem



2010: ~300,000 cores

2014: ~3M cores
2012: ~1M cores

2016: ~10M cores
2018: ~30M cores

2020: ~100M cores
2022: ~300M cores

~2024: 1B ‘cores’
These will soon be small computers

How will YOU
use a billion cores?



We’re all doing
Embarrassing Parallelism

We’re investing huge efforts in parallelizing algorithms that 
only reach 50-75% scaling efficiency on large problems

But not the way you think.

Not a chance they will scale to 1B cores

Close-to-useless for smaller problems of commercial interest

100% focus on programs, forget the problem we’re solving

Pretty much the de!nition of ‘embarrassing’?
Ask taxpayers to foot the bill



Scaling as an Obsession?

prior to the improvement. The new implementation of the
load balancing is now part of the GIT version of the
GROMACS and will also be included in GROMACS 4.1.

To highlight the computational benefit of using the RF,
the scaling of a simulation of the 3.3 million lignocellulose
system using the PME method is also shown in Figure 9.
The PME simulation was run using NAMD, since this MD
application is known to have good parallel efficiency.57 To
ensure a “fair” comparison between the two electrostatics
methods, some of the parameters of the PME simulation were
adjusted to improve its performance (standard 2 fs time step
for RF and 6 fs full electrostatics time step and neighbor-
list distance update for PME, see Section 2.1 for details). In
particular, the reason the RF calculation is faster than the
PME at low levels of parallelization is that, on a single
processor, the time per step for GROMACS with RF is

shorter than for NAMD with PME. However, we stress that
the aim of this benchmark is a comparison between the
electrostatic treatments and not between the different MD
applications. Two different applications were used simply
because a direct comparison of simulations using different
electrostatics methods with one application is presently not
possible: NAMD, which is presently the most scalable code
using PME on Cray XT, does not have RF implemented,
and GROMACS does not yet have an efficiently scaling PME
implemented, with the consequence that PME calculations
using GROMACS currently scale up to less than 1 000 cores
for large systems (for more details see the Supporting
Information).

The significant difference in the parallel efficiency of the
PME and the RF electrostatics methods, demonstrated in
Figure 9, can be understood by examining the weak scaling
of the parallel FFT required for PME, shown in Figure 11.
In weak scaling, the ratio of the problem size to the number
of cores used in the simulation is held constant. The FFT is
a new and improved implementation, the technical details
of which are presented in Supporting Information, A.3. The
Inset of Figure 11 shows that the new FFT is faster than the
FFTs from LAMMPS-FFT,58 FFTE 4.0,59 and FFTW 3.2.60

In ideal weak scaling, the time, tf, required to perform one

Figure 8. Potentials of mean force for the primary alcohol dihedral ω ) O6-C6-C5-C4: (a) results from all 36 origin chains
and (b) results from all 36 center chains.

Figure 9. Strong scaling of 3.3 million atom biomass system
on Jaguar Cray XT5 with RF. With 12 288 cores the simulation
produces 27.5 ns/day and runs at 16.9TFlops. As a compari-
son, the performance of PME is shown.

Figure 10. Strong scaling of 5.4 million atom system on
Jaguar Cray XT5. With 30 720 cores, 28 ns/day and 33TFlops
are achieved.

Figure 11. Weak scaling of complex-to-complex FFT on Cray
XT5 with FFT implemented as described in Supporting
Information, A.3. The 3.3 million atom system requires the
588 × 128 × 128 FFT. The time required to compute one
FFT step is represented by tf.

ohio2/yct-yct/yct-yct/yct99907/yct2688d07z xppws 23:ver.3 8/11/09 11:00 Msc: ct-2009-00292r TEID: mmh00 BATID: 00000
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prior to the improvement. The new implementation of the
load balancing is now part of the GIT version of the
GROMACS and will also be included in GROMACS 4.1.

To highlight the computational benefit of using the RF,
the scaling of a simulation of the 3.3 million lignocellulose
system using the PME method is also shown in Figure 9.
The PME simulation was run using NAMD, since this MD
application is known to have good parallel efficiency.57 To
ensure a “fair” comparison between the two electrostatics
methods, some of the parameters of the PME simulation were
adjusted to improve its performance (standard 2 fs time step
for RF and 6 fs full electrostatics time step and neighbor-
list distance update for PME, see Section 2.1 for details). In
particular, the reason the RF calculation is faster than the
PME at low levels of parallelization is that, on a single
processor, the time per step for GROMACS with RF is

shorter than for NAMD with PME. However, we stress that
the aim of this benchmark is a comparison between the
electrostatic treatments and not between the different MD
applications. Two different applications were used simply
because a direct comparison of simulations using different
electrostatics methods with one application is presently not
possible: NAMD, which is presently the most scalable code
using PME on Cray XT, does not have RF implemented,
and GROMACS does not yet have an efficiently scaling PME
implemented, with the consequence that PME calculations
using GROMACS currently scale up to less than 1 000 cores
for large systems (for more details see the Supporting
Information).

The significant difference in the parallel efficiency of the
PME and the RF electrostatics methods, demonstrated in
Figure 9, can be understood by examining the weak scaling
of the parallel FFT required for PME, shown in Figure 11.
In weak scaling, the ratio of the problem size to the number
of cores used in the simulation is held constant. The FFT is
a new and improved implementation, the technical details
of which are presented in Supporting Information, A.3. The
Inset of Figure 11 shows that the new FFT is faster than the
FFTs from LAMMPS-FFT,58 FFTE 4.0,59 and FFTW 3.2.60

In ideal weak scaling, the time, tf, required to perform one
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Figure 9. Strong scaling of 3.3 million atom biomass system
on Jaguar Cray XT5 with RF. With 12 288 cores the simulation
produces 27.5 ns/day and runs at 16.9TFlops. As a compari-
son, the performance of PME is shown.

Figure 10. Strong scaling of 5.4 million atom system on
Jaguar Cray XT5. With 30 720 cores, 28 ns/day and 33TFlops
are achieved.

Figure 11. Weak scaling of complex-to-complex FFT on Cray
XT5 with FFT implemented as described in Supporting
Information, A.3. The 3.3 million atom system requires the
588 × 128 × 128 FFT. The time required to compute one
FFT step is represented by tf.

ohio2/yct-yct/yct-yct/yct99907/yct2688d07z xppws 23:ver.3 8/11/09 11:00 Msc: ct-2009-00292r TEID: mmh00 BATID: 00000

H J. Chem. Theory Comput., Vol. xxx, No. xx, XXXX Schulz et al.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

F11

Gromacs has scaled
to 150k cores on 
Jaguar @ ORNL

But: Small systems won’t scale to large numbers of cores!
How can we break this impasse?

...

Only gigantic systems scale - limited number of applications
...
...
...
...

......
1M-100M atoms



Ensemble Simulation

Every dot is a simulation!
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Vesicle fusion - 1.5M atoms



Long fusion trajectories

• Run on In!niband cluster, ~250-500 cores

• 7 vesicle pairs fusing in 100-250ns

• 75-100% POPE lipids

• 2 non-fusing vesicle pairs, 100ns & 500ns

• 50% POPE lipids

• Interesting circumstantial observations, 
but hard to draw conclusions from



Committer Analysis
• Pick 20 conformations along fusion path

• Restart with 20 different random seeds

• ‘Shooting trajectories’

• 8 microseconds of additional simulation

• Run on capacity cluster, 16-32 cores each

• Folding@Home as cluster scheduler

• Calculate fusion probabilities



Stalk commitment



Statistics from 1000’s of runs



Scale the Problem, not Runs

• Stream Computing is the future for all HPC
• We’re doing statistical mechanics!
• No algorithm will parallelize 5000 degrees of 

freedom over 1 billion processors
• Parallelize in the problem domain instead
• Node efficiency becomes the key measure
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