NVIDIA 2010

NVIDIA Update

June 2010

‘sié \é/i

NVIDIA.

‘SEE \é/i

Out“ne NVIDIA.

 Hardware:
— GPU Hardware in General
— Fermi Review

e Software:
— Programming Languages
— Programming Tools
— Libraries

©ONVIDIA 2010

‘sié ‘\é/i

NVIDIA.

HARDWARE

GPU from a High Level R

* GPU:
— A number of multiprocessors (several to tens)
— Memory

e Each multiprocessor (SM) has its own:

— Control unit:
* Decodes/issues instructions

e Schedules threads SM SM

— Pipelines for execution: o000
* int, fp32, fp64, special-function, etc. L1, SMEM L1, SMEM
— Registers S g S g
— Shared memory (SMEM)
e Programmer-managed scratch-pad memory L2
— L1 data cache, constant cache
* Hw-managed caches DRAM
— Texture unit S)/

* Hw-managed cache for textures Not to scale
* Interpolation/conversion unit Previous to Fermi: no L1, L2

©ONVIDIA 2010

‘sié \é/i

NVIDIA.

GPU Instruction Issue

* |In-order issue

* Instructions are issued per warp

— Warp = 32 consecutive threads
e Think: 32-thread vector

— Maximum perf: 32 threads execute the same instruction

— Each thread CAN execute its own code path
 HW handles branching/predication

* Performance reduction when paths diverge within a warp
— Entire warp must “execute” the paths taken by threads in a warp

* No performance reduction if:
— All threads in a warp branch together
— Threads in different warps take different code paths

©ONVIDIA 2010

‘sié \é/i

NVIDIA.

Registers and Warp Scheduling

* Registers (and other thread state) are
partitioned among threads

— No overhead to store/restore state when switching
threads

* Instruction and memory latency is hidden by:

— Switching threads
* Not caches, like on CPUs

* 100s of concurrent threads per multiprocessor
— Run-time scheduled at warp granularity

* Think: extreme hyperthreading

— Independent instructions from the same thread
* Thread blocks when instruction argument isn’t available

©ONVIDIA 2010

‘sié ‘\é/i

NVIDIA.

Memory Access

 Memory accesses are issued per warp
— Think: vector of 32 addresses

* A bus connects memory and multiprocessors
— Bus transactions are contiguous, aligned memory regions
— Transaction size varies from 32 to 128 bytes
 Throughput

— Maximum throughput when a warp addresses and utilizes
entire regions

— Arbitrary addressing patterns within warp ARE allowed

* Performance degradation due to multiple partially-used
transactions per access

©ONVIDIA 2010

‘SEE \é/i

NVIDIA.

Fermi Multiprocessor (1)

Up to 1536 concurrent threads

32K 32-bit registers
— Up to 63 registers per thread (21 if threads fully populated)

* Instruction throughput:
— 2 fp32 pipes, each: 1 warp (32 threads) / 2 cycles
— 2int32 pipes, each : 1 warp / 2 cycles
— fp64: 1 warp / 4 cycles
— SFU: 1 warp / 16 cycles
* Dual-issue:
— Greatly improved over previous generation GPUs
— Instructions from 2 different warps to 2 different pipes

©ONVIDIA 2010

‘sié ‘\é/i

NVIDIA.

Fermi Multiprocessor (2)

* 64K total smem/L1

* Programmer chooses smem/L1 breakdown:
— 48KB smem, 16KB L1
— 16KB smem, 48KB L1

 Shared memory
— 32 banks, each 32 bits wide (Previous generation had 16 banks)

— Improvements over previous generation:
* Multicasting (previously only broadcast)
* No bank-conflicts when accessing 64-, 128-bit words

L1 cache
— 128-byte line

— Programmer can choose a path (compiler flag) where access
granularity is 32B (but without the possibility of hitting in L1)

— Not coherent across multiprocessors

©ONVIDIA 2010

‘sié \é/i

NVIDIA.

Fermi Multiprocessor (3)

* Addressing:

— Generic address space

e Same assembly instruction can be used for gmem, smem, ...
— Prev gen needed specific instructions for each memory

e Enables function calling on GPU

— 32-bit or 64-bit addresses
e Default based on the OS

* 64-bit integer arithmetic
— No native int64 instructions

— But there is magic to minimize needed int32
instructions

©ONVIDIA 2010

‘SEE \é/i

NVIDIA.

Fermi Multiprocessor (4)

* 64KB of constant memory, as in prev gen
— Declare with constant qualifier
— Cached, read-only access (4B / warp / SM)

e Addition: uniform memory access

— Uniform = same across a threadblock
* For example: stencil coefficients for FD

— Can be used for any address in global memory
* Thus: no limit on size, no need for __constant__ declaration
* Cached (read-only, write-unaware cache, 4B / warp / SM)
— Requirements:
* Kernel pointer argument must be const qualified
* Dereferencing must not depend on thread ID

11
©ONVIDIA 2010

‘sié ‘\é/i

NVIDIA.

Fermi Memory

* L1 cache described under Multiprocessor (2)

L2 cache:
— /68 KB per GPU

e Coherent across multiprocessors and CPU

— All accesses to GPU DRAM go through L2
* Including CPU-GPU memcopies

e GPU memory (DRAM)
— 6 partitions of GDDR5

— Additional improvements over previous generation:
 available ECC (driver option)

12
©ONVIDIA 2010

Fermi C2050 isa

* 14 multiprocessors

e Clocks:
— Core: 1150 MHz
— Mem: 1500 MHz

 Throughputs:

— Instruction: 515 Ginstr/s
* Fp32: 1030 Gflops/s peak
 Fp64: 515 Gflops/s peak

— Memory:
* Shared memory: 1030 GB/s aggregate
o L1: 1030 GB/s aggregate
o L2: 230 GB/s (not affected by ECC)
* DRAM: 144 GB/s (115 GB/s with ECC)

* Perfect balance:
— 3.5:1 instructions : gmem bytes (4.5: 1if ECCis on)
— Higher = instruction bound; lower = memory bound

13
©ONVIDIA 2010

Additional New Capabilities ™"

* Fermi can execute several kernels concurrently
— Threadblocks from one kernel are launched first

— If there are resources available, threadblocks from a kernel
in another stream are launched

 Fermi has 2 copy-engines
— Can concurrently copy CPU-GPU and GPU-CPU across PCle

* PCleis duplex, so aggregate bandwidth is doubled in such cases
— Previous generation could only do one copy

 ECC:
— DRAM, L2, L1, shared memory

14
©ONVIDIA 2010

‘sié ‘\é/i

NVIDIA.

Programming for Fermi

* Largely the same as for previous generations

* Biggest difference: memory is accessed in groups of 32 threads
(previously 16), matches instruction-issue width
— The 32 addresses of a warp would ideally fully utilize cache line(s):
address a contiguous, aligned region
— What this means to code:

» 2D/3D threadblocks should be a multiple of 32 “wide”
e Data should be a multiple of 32 in the fastest-varying dimension

 L1/L2 Caches:

— Not designed for CPU-style reuse, so don’t worry about blocking
 If you can block, you should be blocking for shared memory
— Designed to improve perf for misaligned access, small strides, some
register spilling
— Some knobs to experiment with:
 16KB vs 48 KB L1 (configurable from source code per kernel)
e 32Bvs 128B “granularity” (only 128B allows hitting in L1), compiler option

15
©ONVIDIA 2010

‘sié ‘\é/i

NVIDIA.

SOFTWARE

‘sié ‘\é/i

NVIDIA.

Software

 Languages and APIs
— CUDA C (C++)
— CUDA Fortran
— OpenCL
— DirectCompute

* Developer tools
— Debuggers
— Profilers

— IDEs
— Libraries

17
©ONVIDIA 2010

>
C U D A NVIDIA.

OpenCL Cc?rlr:ef;tte Fortran Python,
CUDA C/C++ P Java, .NET, ...
 Over 60,000 developers @ 15t GPU demo @ Microsoft API.for @ PGI Accelerator @ PyCUDA
@ Running in Production @ Shipped 1% OpenCL GPU Computing @ PGI CUDA Fortran @ jCUDA
since 2008 Conformant Driver @ Supports all CUDA- @ CUDA.NET
@ SDK + Libs + Visual @ Public Availability ?S;P;gzc::rs)gil;s @ OpenCL.NET
Profiler and Debugger @ SDK + Visual Profiler

NVIDIA GPU

with the CUDA Parallel Computing Architecture

18
©NVIDIA 2010

<
CUDA C Compiler Features ™%

January March “May”
2009 2010 2010

* Enhancement to CUDA C

19
©NVIDIA 2010

@
CU DA C++ NVIDIA.

e C++ Features:

— Classes with static methods (mostly) worked prior to CUDA 3.0
— CUDA 3.0 officially supports inheritance and templates
— More C++ functionality is coming in CUDA 3.1 and later

— Note that calls like new/delete will be functional, but
performance could suffer:

 Memory is an atomic resource, you likely have 1000s of concurrent
threads

e One caveat:

— Methods must be qualified with device for execution on GPU
— There is no perfect solution:

* Not all methods written for CPU can be compiled for GPU
— Think: methods that spawn pthreads, open windows, open sockets, etc.

* Compiling only the needed methods can cause problems with dynamic
linking

©ONVIDIA 2010

CUDA Fortran AvisA

* CUDA Fortran
— Collaboration between PGI and NVIDIA

— Host and GPU (kernel) code is in Fortran
* Host (CPU) code similar to CUDA C run-time
 Some CUDA C features are still missing

— Strongly typed (the location of data)
* No need for special allocation/deallocation
* Transfers between CPU and GPU are initiated by assignments

e PGI Accelerator

— Source directives (a la OpenMP), auto-generated kernels
— CAPS HMPP is another such tool

http://www.pgroup.com/resources/cudafortran.htm

©ONVIDIA 2010

>
C U DA_G D B NVIDIA.

 Executes on GPU hardware

— Not in emulation on CPU
* Support

— Currently in beta, supports CUDA C

— Integrated into GDB on all supported Linux distributions
 What you would expect from a debugger:

— Breakpoints

— Step-through the code

— Inspect the contents of variables and memory
 Can be used from:

— DDD, Emacs, ...
 Upcoming features:

— Machine assembly debugging

— Performance improvements

22
©ONVIDIA 2010

©NVIDIA 2010

CUDA-GDB

(Im] nx - ssalian@172.16.175.110:1022 - ssalian-linux =] @ |[==a]
-f:; Applications Places System Q|jo %’7 = i) wed Sep 2, 2:43 PM E
PP, g115 DCd ﬂﬂﬂiﬂ'!lﬂ'l’l’!l’lﬂw A
File Edit View FProgram Commands Status Source Data

():|thread1d>§ PO T - e e R R S VR = R C .)

Lookup Findw Break lUstch Print Dieples Plot Hide Foiate Set Undiep

13 totalThreads | |2: blockDim||3: threadld:
0720 = =198 x =10
y=1 Y=
z=1 z=10
Y
¥
e e target code --——--—- =y
ﬁlobal_ void acos_main (struct acosParams parms)
int i;
int totalThreads = gridDim.x < blockDim.x:
int ctastart = blockDim.x = blockIdx.x;: —_—
for (i = ctaStart + threadIdx.x; i =< parms.n; i += totalThreads) { % DDD EI
parms.Tes[i] = acosf(parms.arg[i]l); Ruz -
]
Interrupt A
Breakpoint 2 at 0x8073b40: File acos.cu, line 390. .
[Switching to Thread -1211672806 (LWP 28236)] _Step | stepi |
[Current CUDA Thread <<<(0,0),(0,0,0)>>>] Mext | Nexti
Breakpoint 1, acos_main () at acos.cn:389 MM
(gdb) step Cont | Kill
[Current CUD& Thread <<<(0,0),C0,0,0)>>>]
_Up | Down |
Breakpoint 2, _:acos_m:ain () at acos.cn:390 Undo | Heds
(gdb) graph display totalThreads .
(zdb) graph display blockDin Edit | Make
(gdb) graph display threadldx
(edb)

A Display 3: threadIdx (emabled, scope acos_main, address 0xfEEFfEfa)

B k==

[H Terrminal ” = ssalian - File Browser l[=l 1686 _Linux_debug - F.. H #& DDD;acos.cu

NVIDIA.

23

©ONVIDIA 2010

CUDA-MemCheck

Detects/tracks memory errors
— Qut of bounds accesses

‘s;i Y é/i

NVIDIA.

— Misaligned accesses (types must be aligned on their size)

Integrated into CUDA-GDB
Linux and WinXP
Win7 and Vista support coming

[ichasegdhcp - N 556 Linux debug]$ cuda-memcheck ./ptrchecktest
=s======== [CUDA-MEMCHECK

Checking. ..

Done

Checking...
Error: 3 (65538)
Done

Checking...
Error: 8 (1)
Error: 1 (B)
Error: 2 (0)
Done

unspecified launch failure :; 125
========= Invalid read of size 4

= by thread 5 in block 3
Address 0x00101015 is misaligned

Invalid read of size 4

========= by thread 3 in block 5
========= Address 0x00101028 is out of bounds

at BxBoeeeefe in kernmel2 (/src/gpgpu/cudamemcheck/test/ptrchecktest.cu:27)

at GxBopeeeTe in kernell (/src/gpgpu/cudamemcheck/test/ptrchecktest.cu:lB)

24

CUDA/OpenCL Profiling ™"

 Hardware counters

— Memory transactions, instructions, hits/misses, ...

— Counted per multiprocessor(s), extrapolated to full GPU
 Timing:

— Kernel/memcopy times

— Kernel/memcopy timestamps

— Kernel occupancy
e Command-line profiler

— Part of the GPU driver (all OSs)

* Enabled/disabled via environment variables
* Configured via a file, output to a logfile

— 4 counters per run (GT200)

©ONVIDIA 2010

CUDA/OpenCL Profiling ™"

* Visual Profiler
— GUI included with the toolkit download (all OSs)

— Automatically runs the app multiple times when
more than 4 counters are selected

— Derives throughput measurements from counters
 Memory throughput, instruction throughput

— Various graphical plots of kernels, memcopies

Profiler Oukput Surmmary Table £
GPU o . glob mem read throughput | glob mem write throughput | glob mem overall throughpuk | |)
Method eec ¥oEPL Eimne (GBS (GBS (GBS instruckion throughput
1 EFWd_SD_lEuxlE-_DrderBE 2.09382e4+06 22,15 46,9465 11.6771 S8.62360 0.763973
2 | memcpyHEaD S035094 13.35
3 memcpyDioH 165205 4.45

©ONVIDIA 2010

@
N S i g h t NVIDIA.

e A full Visual-Studio integrated development environment
— CUDA project build system
— Parallel debugger
— System analyzer
— Graphics inspector
 Supports:
— CUDA C, OpenCL, DirectCompute
— DirectX 10, DirectX 11, OpenGL
* Requires:
— Windows 7 or Vista Viossoa%?cudio
— Visual Studio 2008 SP1
* Analyze/debug:
— Same workstation (requires 2 GPUs)
— Remotely (across network)

PARTNER

27

©ONVIDIA 2010

Nsight GPU Debugging R

e Executes on GPU
— Not emulation on CPU

e Currently supports code written in:
— CUDAC
— HLSL

* Provides what you’d expect from a debugger:
— Breakpoints
— Variable and memory inspection
 Enhancements for parallel code:

— Conditional breakpoints
e Use thread/block ID, variable values
* Choose to break when condition is true or when it changes

— Inspection navigation across threads/blocks

28
©ONVIDIA 2010

‘sié ‘\é/i

NVIDIA.

Nsight Analysis

e Capture data for:
— CPU threads
— CUDA/OpenCL calls
— Graphics API calls

 View a correlated trace timeline of CPU and
GPU events

* Get profiler information for every kernel

— GPU counters and derived analysis

29
©ONVIDIA 2010

Nsight Analysis: Correlated Trace Plo

O H @& © » Timeline

Seconds
= Processes
=} smokeParticles.exe [6072]
= Thread 34.9% [6328]
Thread State
= Function Calls

i+

Thread 0.1% [7680]
Thread 0.0% [7496]
Thread 0.0% [4564]
CUDA
Context 0
Context 1 [0]
Driver API
Memery
= Compute
0.1% [115] radixSortBlocks
0.0% [114)] reorderData
0.0% [230] scand
0.0% [15] integrateD
0.0% [115] findRadixOffsets
0.0% [115] vectorAddUniform4
0.0% [15] calcDepthD
Counters
‘ # OpenGL
| B System
= CPU%
Core 0
Core 1

I B =

i *

B B ®

E &

62585424 62587424 62585424 62591424

L L L " | I i i | L M L 1 L

62553424

L

VIDIA.

62595424 62557424 62595424 62600
M | L L L 1 L L L 1 L L L L

cuGLUnmapBufferObjectAsync

O
i - i = = = 1

:—

cuGLUNmapBufferObjectAsync

—

|| | | || - n__
Start 6.2593584
End 6.2594272
Duration 69 ps
Context ID 1
Stream ID 0
API Call ID 7441
Name radixSortBlocks <uint=4 uint=8 bool=1 bool=0,bool=0
Occupancy 05
GridDim 6411
BlockDim 256,11
Regs/Thread 26
StatShm/Block 48

©ONVIDIA 2010

30

Nsight Analysis: Correlated Trace Plo

OES

€ » Timeline

Seconds

= Processes
= smokeParticles.exe [6072]
= Thread 34.9% [6328]
Thread State
= Function Calls

Thread 0.1% [7680]
Thread 0.0% [7496]
Thread 0.0% [4564]
CUDA
Context 0
Context 1 [0]
Driver API
Memory
= Compute
0.1% [115] radixSortBlocks
0.0% [114)] reorderData
0.0% [230] scand
0.0% [15] integrateD

B B

1
i B

B B B

|

3]

*
‘ ® O
\ B Syste
\ E

0.0% [115] findRadixOffsets
0.0% [115] vectorAddUniform4
0.0% [15] calcDepthD

Counters

penGL
m

CPU %

Core 0
Core 1

©ONVIDIA 2010

62585424 6.2587424 62585424 62591424

62593424 625595424 62557424

62595424

62601+

VIDIA.

cuGLUnmap BufferObjectAsync

cuGLUNmapBufferObjectAsync

O
i - i = = = 1

—

—

|| | | || - n__
Start 6.2593584
End 6.2594272
Duration 69 ps
Context ID 1
Stream ID 0
API Call ID 7441
Name radixSortBlocks <uint=4 uint=8 bool=1 bool=0,bool=0
Occupancy 05
GridDim 6411
BlockDim 256,11
Regs/Thread 26
StatShm/Block 48

31

Nsight Analysis: Correlated Trace Plo

O E # © » Timeline

Seconds

= Processes
= smokeParticles.exe [6072]
= Thread 34.9% [6328]
Thread State
= Function Calls

Thread 0.1% [/680]
Thread 0.0% [7496]
Thread 0.0% [4564

B

= CUDA
Context 0
= Context 1 [0]
Driver ARI
Memeory
2 Compute
0.13% [115] radixSortBlocks
L, U5])at3

+ 0.0% [115] findRadixOffsets
® 0.0% [115] vectorAddUniform4
0.0% [15] calcDepthD
+ Counters
OpenGL
B System
\ 8@ CPU%
\ Core 0
\ Core 1
.

.

©ONVIDIA 2010

>

VIDIA.

62585424 62587424 62585424 62591424 62553424 625595424 62557424 62555424 62601+

cuGLUnmap BufferObjectAsync

cuGLUnmapBufterObjectisync

I Duration 69 ps
I Context ID 1
B Stream ID 0
AP1 Call ID 7441
Name radixSortBlocks <uint=4,uint=8 bool=1 bool=0,bool=0
Occupancy 05

\ GeidDim 64,1,1

BlockDim 256,11
| Regs/Thread 26

| StatShm/Block 48

32

Tool Summary

Tool
CUDA-GDB

Visual Profiler

CUDA-MemCheck

Parallel Nsight, MSVS integration
TotalView Debugger

Allinea Distributed Debugging Tool

CUDA-GDB, Eclipse Integration by
Fixstars on YDEL

©ONVIDIA 2010

Type
Debugger

Profiler

Memory Debugger

IDE (build/debug/profile)
Debugger

Debugger

IDE (build/debug)

@

NVIDIA.

Availability
CUDA toolkit (linux only)
CUDA toolkit (all OS)
Beta, CUDA toolkit (all OS)
Beta (Win7 or Vista)

\@

NVIDIA.

Instructional Resources

 CUDA toolkit:
— Programming Guides, Best Practices Guides, compiler/profiler documentation
* Programming basics:

— CUDA C:

* http://developer.download.nvidia.com/CUDA/training/NVIDIA GPU Computing Webina
rs_Introduction to CUDA. {wmv,pdf}

* {wmy, pdf} = {video, slides}
— OpenCL: GTC session 1409
e Advanced programming (optimization):
— CUDAC:

* GTCsession 1029 (slides and video)
* CUDA Tutorials at Supercomputing: http://gpgpu.org/{sc2007,sc2008,sc2009}

— OpenCL: GTC session 1068
— Kernel optimization is identical for CUDA C and OpenCL

e GTC Materials for all sessions:
— http://developer.download.nvidia.com/compute/cuda/docs/GTCO9Materials.htm

34
©ONVIDIA 2010

