
NVIDIA Update
June 2010

©NVIDIA 2010

1



Outline

• Hardware:

– GPU Hardware in General

– Fermi Review

• Software:• Software:

– Programming Languages

– Programming Tools

– Libraries

2

©NVIDIA 2010



HARDWARE

3

©NVIDIA 2010



GPU from a High Level

• GPU:
– A number of multiprocessors (several to tens)

– Memory

• Each multiprocessor (SM) has its own:
– Control unit:

• Decodes/issues instructions

• Schedules threads SMSM• Schedules threads

– Pipelines for execution:
• int, fp32, fp64, special-function, etc.

– Registers

– Shared memory (SMEM)
• Programmer-managed scratch-pad memory

– L1 data cache, constant cache
• Hw-managed caches

– Texture unit
• Hw-managed cache for textures

• Interpolation/conversion unit

4

DRAM

SM

L1, SMEM

SM

L1, SMEM

L2

Not to scale

Previous to Fermi: no L1, L2

©NVIDIA 2010



GPU Instruction Issue

• In-order issue

• Instructions are issued per warp
– Warp = 32 consecutive threads

• Think: 32-thread vector

– Maximum perf: 32 threads execute the same instruction– Maximum perf: 32 threads execute the same instruction

– Each thread CAN execute its own code path
• HW handles branching/predication

• Performance reduction when paths diverge within a warp
– Entire warp must “execute” the paths taken by threads in a warp

• No performance reduction if:
– All threads in a warp branch together

– Threads in different warps take different code paths

5

©NVIDIA 2010



Registers and Warp Scheduling

• Registers (and other thread state) are 
partitioned among threads
– No overhead to store/restore state when switching 

threads

• Instruction and memory latency is hidden by:• Instruction and memory latency is hidden by:
– Switching threads

• Not caches, like on CPUs

• 100s of concurrent threads per multiprocessor
– Run-time scheduled at warp granularity

• Think: extreme hyperthreading

– Independent instructions from the same thread
• Thread blocks when instruction argument isn’t available

6

©NVIDIA 2010



Memory Access

• Memory accesses are issued per warp

– Think: vector of 32 addresses

• A bus connects memory and multiprocessors

– Bus transactions are contiguous, aligned memory regions

– Transaction size varies from 32 to 128 bytes– Transaction size varies from 32 to 128 bytes

• Throughput

– Maximum throughput when a warp addresses and utilizes 
entire regions

– Arbitrary addressing patterns within warp ARE allowed

• Performance degradation due to multiple partially-used 
transactions per access

7

©NVIDIA 2010



Fermi Multiprocessor (1)

• Up to 1536 concurrent threads

• 32K 32-bit registers
– Up to 63 registers per thread (21 if threads fully populated)

• Instruction throughput:
– 2 fp32 pipes, each: 1 warp (32 threads) / 2 cycles– 2 fp32 pipes, each: 1 warp (32 threads) / 2 cycles

– 2 int32 pipes, each : 1 warp / 2 cycles

– fp64: 1 warp / 4 cycles

– SFU: 1 warp / 16 cycles

• Dual-issue:
– Greatly improved over previous generation GPUs

– Instructions from 2 different warps to 2 different pipes

8

©NVIDIA 2010



Fermi Multiprocessor (2)

• 64K total smem/L1

• Programmer chooses smem/L1 breakdown:
– 48KB smem, 16KB L1

– 16KB smem, 48KB L1

• Shared memory
– 32 banks, each 32 bits wide (Previous generation had 16 banks)– 32 banks, each 32 bits wide (Previous generation had 16 banks)

– Improvements over previous generation:
• Multicasting (previously only broadcast)

• No bank-conflicts when accessing 64-, 128-bit words

• L1 cache
– 128-byte line

– Programmer can choose a path (compiler flag) where access 
granularity is 32B (but without the possibility of hitting in L1)

– Not coherent across multiprocessors

9

©NVIDIA 2010



Fermi Multiprocessor (3)

• Addressing:
– Generic address space

• Same assembly instruction can be used for gmem, smem, ...
– Prev gen needed specific instructions for each memory

• Enables function calling on GPU

– 32-bit or 64-bit addresses– 32-bit or 64-bit addresses
• Default based on the OS

• 64-bit integer arithmetic
– No native int64 instructions

– But there is magic to minimize needed int32 
instructions

10

©NVIDIA 2010



Fermi Multiprocessor (4)

• 64KB of constant memory, as in prev gen
– Declare with __constant__ qualifier

– Cached, read-only access (4B / warp / SM)

• Addition: uniform memory access
– Uniform = same across a threadblock– Uniform = same across a threadblock

• For example: stencil coefficients for FD

– Can be used for any address in global memory
• Thus: no limit on size, no need for __constant__ declaration

• Cached (read-only, write-unaware cache, 4B / warp / SM)

– Requirements:
• Kernel pointer argument must be const qualified

• Dereferencing must not depend on thread ID

11

©NVIDIA 2010



Fermi Memory

• L1 cache described under Multiprocessor (2)

• L2 cache:

– 768 KB per GPU

• Coherent across multiprocessors and CPU

– All accesses to GPU DRAM go through L2– All accesses to GPU DRAM go through L2

• Including CPU-GPU memcopies

• GPU memory (DRAM)

– 6 partitions of GDDR5

– Additional improvements over previous generation:

• available ECC (driver option)

12

©NVIDIA 2010



Fermi C2050
• 14 multiprocessors

• Clocks:
– Core: 1150 MHz

– Mem: 1500 MHz

• Throughputs:
– Instruction: 515 Ginstr/s

• Fp32: 1030 Gflops/s peak• Fp32: 1030 Gflops/s peak

• Fp64:      515 Gflops/s peak

– Memory:
• Shared memory: 1030 GB/s aggregate

• L1: 1030 GB/s aggregate

• L2: 230 GB/s (not affected by ECC)

• DRAM: 144 GB/s (115 GB/s with ECC)

• Perfect balance:
– 3.5 : 1 instructions : gmem bytes ( 4.5 : 1 if ECC is on )

– Higher = instruction bound;   lower = memory bound

13

©NVIDIA 2010



Additional New Capabilities

• Fermi can execute several kernels concurrently

– Threadblocks from one kernel are launched first

– If there are resources available, threadblocks from a kernel 
in another stream are launched

• Fermi has 2 copy-engines• Fermi has 2 copy-engines

– Can concurrently copy CPU-GPU and GPU-CPU across PCIe

• PCIe is duplex, so aggregate bandwidth is doubled in such cases

– Previous generation could only do one copy

• ECC:

– DRAM, L2, L1, shared memory

14

©NVIDIA 2010



Programming for Fermi

• Largely the same as for previous generations

• Biggest difference: memory is accessed in groups of 32 threads 
(previously 16), matches instruction-issue width
– The 32 addresses of a warp would ideally fully utilize cache line(s): 

address a contiguous, aligned region

– What this means to code:
• 2D/3D threadblocks should be a multiple of 32 “wide”• 2D/3D threadblocks should be a multiple of 32 “wide”

• Data should be a multiple of 32 in the fastest-varying dimension

• L1/L2 Caches:
– Not designed for CPU-style reuse, so don’t worry about blocking

• If you can block, you should be blocking for shared memory

– Designed to improve perf for misaligned access, small strides, some 
register spilling

– Some knobs to experiment with:
• 16KB vs 48 KB L1  (configurable from source code per kernel)

• 32B vs 128B “granularity”  (only 128B allows hitting in L1), compiler option

15

©NVIDIA 2010



SOFTWARE

16

©NVIDIA 2010



Software

• Languages and APIs

– CUDA C (C++)

– CUDA Fortran

– OpenCL

– DirectCompute– DirectCompute

• Developer tools

– Debuggers

– Profilers

– IDEs

– Libraries

17

©NVIDIA 2010



CUDA

GPU Computing ApplicationsGPU Computing Applications

Direct Direct 

18

NVIDIA GPUNVIDIA GPU
with the CUDA Parallel Computing Architecturewith the CUDA Parallel Computing Architecture

CUDA C/C++CUDA C/C++
OpenCLOpenCL

Direct Direct 
ComputeCompute

FortranFortran Python,Python,
Java, .NET, …Java, .NET, …

Over 60,000 developers

Running in Production 
since 2008 

SDK + Libs + Visual 
Profiler and Debugger

1st GPU demo

Shipped 1st OpenCL
Conformant Driver

Public Availability

SDK + Visual Profiler

Microsoft API for
GPU Computing

Supports all CUDA-
Architecture GPUs 
(DX10 and DX11)

PyCUDA

jCUDA

CUDA.NET

OpenCL.NET

PGI Accelerator

PGI CUDA Fortran

©NVIDIA 2010



CUDA C Compiler Features

CUDA  Toolkit 3.1CUDA  Toolkit 3.1CUDA  Toolkit 3.0CUDA  Toolkit 3.0CUDA  Toolkit 2.3CUDA  Toolkit 2.3

January

2009

“May”

2010

March

2010

19

•• Function Pointers *Function Pointers *

•• Printf *Printf *

•• Virtual Functions Virtual Functions 

•• Recursion *Recursion *

•• New/Delete New/Delete 

•• Malloc / Free *Malloc / Free *

•• Virtual Base ClassesVirtual Base Classes•• Class TemplatesClass Templates

•• Class Class InheritanceInheritance

••Launch boundsLaunch bounds

•• Function TemplatesFunction Templates

* Enhancement to CUDA C

©NVIDIA 2010



CUDA C++
• C++ Features:

– Classes with static methods (mostly) worked prior to CUDA 3.0

– CUDA 3.0 officially supports inheritance and templates

– More C++ functionality is coming in CUDA 3.1 and later

– Note that calls like new/delete will be functional, but 
performance could suffer:

• Memory is an atomic resource, you likely have 1000s of concurrent • Memory is an atomic resource, you likely have 1000s of concurrent 
threads

• One caveat:
– Methods must be qualified with __device__ for execution on GPU

– There is no perfect solution:
• Not all methods written for CPU can be compiled for GPU

– Think: methods that spawn pthreads, open windows, open sockets, etc.

• Compiling only the needed methods can cause problems with dynamic 
linking

20

©NVIDIA 2010



CUDA Fortran

• CUDA Fortran

– Collaboration between PGI and NVIDIA

– Host and GPU (kernel) code is in Fortran

• Host (CPU) code similar to CUDA C run-time

• Some CUDA C features are still missing• Some CUDA C features are still missing

– Strongly typed (the location of data)

• No need for special allocation/deallocation

• Transfers between CPU and GPU are initiated by assignments

• PGI Accelerator

– Source directives (a la OpenMP), auto-generated kernels

– CAPS HMPP is another such tool

21

©NVIDIA 2010

http://www.pgroup.com/resources/cudafortran.htm



CUDA-GDB

• Executes on GPU hardware
– Not in emulation on CPU

• Support
– Currently in beta, supports CUDA C

– Integrated into GDB on all supported Linux distributions

• What you would expect from a debugger:• What you would expect from a debugger:
– Breakpoints

– Step-through the code

– Inspect the contents of variables and memory

• Can be used from:
– DDD, Emacs, ...

• Upcoming features:
– Machine assembly debugging

– Performance improvements

22

©NVIDIA 2010



CUDA-GDB

23

©NVIDIA 2010



CUDA-MemCheck

• Detects/tracks memory errors
– Out of bounds accesses

– Misaligned accesses (types must be aligned on their size)

• Integrated into CUDA-GDB

• Linux and WinXP

• Win7 and Vista support coming• Win7 and Vista support coming

24

©NVIDIA 2010



CUDA/OpenCL Profiling

• Hardware counters
– Memory transactions, instructions, hits/misses, ...

– Counted per multiprocessor(s), extrapolated to full GPU

• Timing:
– Kernel/memcopy times– Kernel/memcopy times

– Kernel/memcopy timestamps

– Kernel occupancy

• Command-line profiler
– Part of the GPU driver (all OSs)

• Enabled/disabled via environment variables

• Configured via a file, output to a logfile

– 4 counters per run (GT200)

25

©NVIDIA 2010



CUDA/OpenCL Profiling

• Visual Profiler

– GUI included with the toolkit download (all OSs)

– Automatically runs the app multiple times when  
more than 4 counters are selected

– Derives throughput measurements from counters– Derives throughput measurements from counters

• Memory throughput, instruction throughput

– Various graphical plots of kernels, memcopies

26

©NVIDIA 2010



Nsight

• A full Visual-Studio integrated development environment
– CUDA project build system

– Parallel debugger

– System analyzer

– Graphics inspector

• Supports:• Supports:
– CUDA C, OpenCL, DirectCompute

– DirectX 10, DirectX 11, OpenGL

• Requires:
– Windows 7 or Vista

– Visual Studio 2008 SP1

• Analyze/debug:
– Same workstation (requires 2 GPUs)

– Remotely (across network)

27

©NVIDIA 2010



Nsight GPU Debugging

• Executes on GPU
– Not emulation on CPU

• Currently supports code written in:
– CUDA C

– HLSL

• Provides what you’d expect from a debugger:• Provides what you’d expect from a debugger:
– Breakpoints

– Variable and memory inspection

• Enhancements for parallel code:
– Conditional breakpoints 

• Use thread/block ID, variable values

• Choose to break when condition is true or when it changes

– Inspection navigation across threads/blocks

28

©NVIDIA 2010



Nsight Analysis

• Capture data for:

– CPU threads

– CUDA/OpenCL calls

– Graphics API calls– Graphics API calls

• View a correlated trace timeline of CPU and 

GPU events

• Get profiler information for every kernel

– GPU counters and derived analysis

29

©NVIDIA 2010



Nsight Analysis: Correlated Trace Plot

30

©NVIDIA 2010



Nsight Analysis: Correlated Trace Plot

31

©NVIDIA 2010



Nsight Analysis: Correlated Trace Plot

32

©NVIDIA 2010



Tool Summary

Tool Type Availability

CUDA-GDB Debugger CUDA toolkit (linux only)

Visual Profiler Profiler CUDA toolkit (all OS)

CUDA-MemCheck Memory Debugger Beta, CUDA toolkit (all OS)

Parallel Nsight, MSVS integration IDE (build/debug/profile) Beta (Win7 or Vista)

33

TotalView Debugger Debugger

Allinea Distributed Debugging Tool Debugger

CUDA-GDB, Eclipse Integration by 

Fixstars on YDEL

IDE (build/debug)

©NVIDIA 2010



Instructional Resources

• CUDA toolkit:
– Programming Guides, Best Practices Guides, compiler/profiler documentation

• Programming basics:
– CUDA C:

• http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webina
rs_Introduction_to_CUDA. {wmv,pdf}

• {wmv, pdf} = {video, slides}

– OpenCL: GTC session 1409– OpenCL: GTC session 1409

• Advanced programming (optimization):
– CUDA C: 

• GTC session 1029 (slides and video)

• CUDA Tutorials at Supercomputing: http://gpgpu.org/{sc2007,sc2008,sc2009}

– OpenCL: GTC session 1068

– Kernel optimization is identical for CUDA C and OpenCL

• GTC Materials for all sessions:
– http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm

34

©NVIDIA 2010


