
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

1

Summer School

e-Science with Many-core CPU/GPU
Processors

Lecture 11: Case Study 4
Cut-off Binning for Data and Parallelism

Scalability

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

2

Acknowledgement

•  Additional Information and References:
–  http://www.ks.uiuc.edu/Research/gpu/
–  http://www.ks.uiuc.edu/Research/vmd/

•  Acknowledgement, questions, source code requests:
–  Chris Rodrigues
–  John Stone johns@ks.uiuc.edu
–  Klaus Schulten
–  Theoretical and Computational Biophysics Group, NIH

Resource for Macromolecular Modeling and Bioinformatics
Beckman Institute for Advanced Science and Technology

•  NIH support: P41-RR05969

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

3

Outline

•  Explore CUDA versions of the direct Coulomb
summation (DCS) algorithm
–  Used for ion placement and time-averaged electrostatic

potential calculations
–  Detailed look at a few CUDA implementations of DCS
–  Multi-GPU DCS potential map calculation

•  Experiences integrating CUDA kernels into VMD

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, 2010! 4

Algorithm for Pair Potentials

•  At each grid point, sum
the electrostatic potential
from all atoms

•  Highly data-parallel
•  But has quadratic

complexity
–  Number of grid points ×

number of atoms
–  Both proportional to volume

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, 2010! 5

Algorithm for Pair Potentials
With a Cutoff

•  Ignore atoms beyond a
cutoff distance, rc
–  Typically 8Å–12Å
–  Long-range potential may

be computed separately

•  Number of atoms within
cutoff distance is roughly
constant
–  On the order of 1000

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, 2010! 6

Spatial Sorting

•  Presort atoms into bins by
location in space

•  Each bin holds several
atoms

•  Cutoff potential only uses
bins within rc
–  Yields a linear complexity

cutoff potential algorithm

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

7

Large-bin Cutoff Kernel

•  6× speedup relative to CPU version
•  Work-inefficient

–  Coarse spatial hashing into (24Å)3 bins
–  Only 6.5% of the atoms a thread tests are within the

cutoff distance

•  Better adaptation of the algorithm to the GPU will
gain another 2.5×

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

8

Design Considerations for the New
Cutoff Kernel

•  High memory throughput to atom data essential
–  Group threads together for locality
–  Fetch blocks of data into shared memory
–  Structure atom data to allow fetching

•  After taking care of memory demand, optimize to
reduce instruction count
–  Loop and instruction-level optimization

© David Kirk/NVIDIA and Wen-mei W. Hwu
Braga, Portugal, 2010! 9

Improving Work Efficiency

•  (4Å)3 cube of the potential map
computed by each thread block
–  8×8×8 potential map points
–  128 threads per block
–  34% of atoms are within cutoff distance

•  Thread block needs atom data up to the
cutoff distance
–  Use a sphere of bins
–  All threads in a block scan the same atoms

•  No hardware penalty for multiple
simultaneous reads of the same address

•  Simplifies fetching of data

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

10

Another thread block runs �
while this one waits �

Caching Atom Data
•  >200 cycle global memory latency
•  Effectively 1 cycle shared memory latency
•  Shared memory used in software as a cache

–  Threads in a thread block collectively load one bin at a
time into shared memory

–  Once loaded, threads scan atoms in shared memory
–  Reuse: Loaded bins used 128 times

Threads individually�
compute potentials �

using bin in shared mem�

Collectively�
load next �

bin�

Write bin to �
shared�

memory�Su
sp

en
d� Data returned

from global
memory� Re

ad
y�

Time �

Execution cycle of a thread block�

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

11

High-Throughput Access to Atom Data

•  Full global memory bandwidth only with 64-byte,
64-byte-aligned memory accesses
–  Each bin is exactly 128 bytes
–  Bins stored in a 3D array
–  32 threads in each block load one bin, which is processed

by all threads in the block
•  128 bytes = 8 atoms (x,y,z,q)

–  Nearly uniform density of atoms in typical systems
•  1 atom per 10 Å3

–  Bins hold atoms from exactly (4Å)3 of space
–  Number of atoms in a bin varies

•  For water test systems, 5.35 atoms in a bin on average

•  Some bins overfull

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

12

Handling Overfull Bins

•  2.6% of atoms exceed bin capacity
•  Spatial sorting puts these into a list of extra atoms
•  Extra atoms processed by the CPU

–  Computed with CPU-optimized algorithm
–  Takes about 66% as long as GPU computation
–  Overlapping GPU and CPU computation yields in

additional speedup

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

13

GPU Thread Optimization

•  Each thread computes
potentials at four potential
map points
–  Reuse x and z components of

distance calculation
–  Check x and z components

against cutoff distance
(cylinder test)

•  Exit inner loop early upon
encountering the first empty
slot in a bin

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

14

GPU Thread Inner Loop
for (i = 0; i < BIN_DEPTH; i++) {!
 aq = AtomBinCache[i].w;!
 if (aq == 0) break;!

 dx = AtomBinCache[i].x - x;!
 dz = AtomBinCache[i].z - z;!
 dxdz2 = dx*dx + dz*dz;!
 if (dxdz2 < cutoff2) continue;!

 dy = AtomBinCache[i].y - y;!
 r2 = dy*dy + dxdz2;!
 if (r2 < cutoff2)!
 poten0 += aq * rsqrtf(r2);!

 dy = dy - 2 * grid_spacing;!
 /* Repeat three more times */!
}!

Exit when an empty
atom bin entry is

encountered

Cylinder test

Cutoff test���
and potential value

calculation

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

15

Cutoff Summation Runtime

50k–1M atom structure size

GPU cutoff with
CPU overlap:
12x-21x faster
than CPU core

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

16

Cutoff Summation Speedup

50k–1M atom structure size

Diminished
overlap

benefit due
to limited
queue size���
(16 entries)

Cutoff
summation
alone 9-13×
faster than

CPU

17!

(a) Direct summation
At each grid point, sum the
electrostatic potential from
all charges

(b) Cutoff summation
Electrostatic potential from
nearby charges summed;
spatially sort charges first

(c) Cutoff summation using
direct summation kernel
Spatially sort charges into
bins; adapt direct
summation to process a bin

Figure 10.2 Cutoff Summation algorithm!
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

18

Summary
•  Cutoff pair potentials heavily used in molecular

modeling applications
•  Use CPU to regularize the work given to the GPU

to optimize its performance
–  GPU performs very well on 64-byte-aligned array data

•  Run CPU and GPU concurrently to improve
performance

•  Use shared memory as a program-managed cache

Data Scalability with Cut-off Methods

19

Rodrigues, et al, ACM Computing Frontier 2008 !
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

20

Experiences Integrating CUDA Kernels
Into VMD

•  VMD: molecular
visualization and analysis

•  State-of-the-art simulations
require more viz/analysis
power than ever before

•  For some algorithms, CUDA
can bring what was
previously supercomputer
class performance to an
appropriately equipped
desktop workstation Ribosome: 260,790 atoms

before adding solvent/
ions!

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

21

VMD/CUDA Integration Observations
•  Single VMD binary must run on all hardware,

whether CUDA accelerators are installed or not
•  Must maintain both CPU and CUDA versions of

kernels
•  High performance requirements mean that the CPU

kernel may use a different memory layout and
algorithm strategy than CUDA, so they could be
entirely different bodies of code to maintain

•  Further complicated by the need to handle both single-
threaded and multithreaded compilations, support for
many platforms, etc…

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

22

VMD/CUDA Integration Observations (2)

•  Evolutionary approach to acceleration:
As new CUDA kernels augment existing CPU kernels, the
original class/function becomes a wrapper that dynamically
executes the best CPU/GPU kernels at runtime

•  VMD’s current CUDA kernels are always faster than the CPU,
so its runtime strategy can be nearly as simple as:

 int err = 1; // force CPU execution if CUDA is not compiled in
 #if defined(VMDCUDA)
 if (cudagpucount > 0)
 err=CUDAKernel(); // try CUDA kernel if GPUs are available
 #endif
 if (err)
 err=CPUKernel(); // if no CUDA GPUs or an error occurred, try on CPU
 …

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

23

VMD/CUDA Integration Observations (3)

•  Graceful behavior under errors or resource exhaustion
conditions is trickier to deal with:
–  CPU kernel becomes the fallback in most cases
–  What to do when the CPU version is 100x slower than

CUDA?!? A CPU fallback isn’t very helpful in this case.
Aborting or issuing a performance warning to the user may
be more appropriate.

•  All of these design problems already existed:
–  Not specific to CUDA
–  CUDA just adds another ply to the existing situation for

codes that employ multiple computation strategies

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

24

VMD/CUDA Code Organization

•  Main application holds data needed for execution
strategy, CPU/GPU load balancing, etc.

•  Single header file containing all the CUDA kernel
function prototypes, easy inclusion in other src files

•  Separate .cu files for each kernel:
–  each in their compilation unit
–  no need to worry about multiple kernels sharing space for

constant buffers etc…

