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Summer School  

e-Science with Many-core CPU/GPU 
Processors 

Lecture 11: Case Study 4 
Cut-off Binning for Data and Parallelism 

Scalability 
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Outline 

•  Explore CUDA versions of the direct Coulomb 
summation (DCS) algorithm 
–  Used for ion placement and time-averaged electrostatic 

potential calculations 
–  Detailed look at a few CUDA implementations of DCS 
–  Multi-GPU DCS potential map calculation 

•  Experiences integrating CUDA kernels into VMD 
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Algorithm for Pair Potentials 

•  At each grid point, sum 
the electrostatic potential 
from all atoms 

•  Highly data-parallel 
•  But has quadratic 

complexity 
–  Number of grid points × 

number of atoms 
–  Both proportional to volume 
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Algorithm for Pair Potentials 
With a Cutoff 

•  Ignore atoms beyond a 
cutoff distance, rc 
–  Typically 8Å–12Å 
–  Long-range potential may 

be computed separately 

•  Number of atoms within 
cutoff distance is roughly 
constant 
–  On the order of 1000 
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Spatial Sorting 

•  Presort atoms into bins by 
location in space 

•  Each bin holds several 
atoms 

•  Cutoff potential only uses 
bins within rc 
–  Yields a linear complexity 

cutoff potential algorithm 
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Large-bin Cutoff Kernel 

•  6× speedup relative to CPU version 
•  Work-inefficient 

–  Coarse spatial hashing into (24Å)3 bins 
–  Only 6.5% of the atoms a thread tests are within the 

cutoff distance 

•  Better adaptation of the algorithm to the GPU will 
gain another 2.5× 
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Design Considerations for the New 
Cutoff Kernel 

•  High memory throughput to atom data essential 
–  Group threads together for locality 
–  Fetch blocks of data into shared memory 
–  Structure atom data to allow fetching 

•  After taking care of memory demand, optimize to 
reduce instruction count 
–  Loop and instruction-level optimization 
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Improving Work Efficiency 

•  (4Å)3 cube of the potential map 
computed by each thread block 
–  8×8×8 potential map points 
–  128 threads per block 
–  34% of atoms are within cutoff distance 

•  Thread block needs atom data up to the 
cutoff distance 
–  Use a sphere of bins 
–  All threads in a block scan the same atoms 

•  No hardware penalty for multiple 
simultaneous reads of the same address 

•  Simplifies fetching of data 
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Another thread block runs �
while this one waits �

Caching Atom Data 
•  >200 cycle global memory latency 
•  Effectively 1 cycle shared memory latency 
•  Shared memory used in software as a cache 

–  Threads in a thread block collectively load one bin at a 
time into shared memory 

–  Once loaded, threads scan atoms in shared memory 
–  Reuse: Loaded bins used 128 times 
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High-Throughput Access to Atom Data 

•  Full global memory bandwidth only with 64-byte, 
64-byte-aligned memory accesses 
–  Each bin is exactly 128 bytes 
–  Bins stored in a 3D array 
–  32 threads in each block load one bin, which is processed 

by all threads in the block 
•  128 bytes = 8 atoms (x,y,z,q) 

–  Nearly uniform density of atoms in typical systems 
•  1 atom per 10 Å3 

–  Bins hold atoms from exactly (4Å)3 of space  
–  Number of atoms in a bin varies 

•  For water test systems, 5.35 atoms in a bin on average 

•  Some bins overfull 
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Handling Overfull Bins 

•  2.6% of atoms exceed bin capacity 
•  Spatial sorting puts these into a list of extra atoms 
•  Extra atoms processed by the CPU 

–  Computed with CPU-optimized algorithm 
–  Takes about 66% as long as GPU computation 
–  Overlapping GPU and CPU computation yields in 

additional speedup 
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GPU Thread Optimization 

•  Each thread computes 
potentials at four potential 
map points 
–  Reuse x and z components of 

distance calculation 
–  Check x and z components 

against cutoff distance 
(cylinder test) 

•  Exit inner loop early upon 
encountering the first empty 
slot in a bin 
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GPU Thread Inner Loop 
for (i = 0;  i < BIN_DEPTH;  i++) {!
  aq = AtomBinCache[i].w;!
  if (aq == 0) break;!

  dx = AtomBinCache[i].x - x;!
  dz = AtomBinCache[i].z - z;!
  dxdz2 = dx*dx + dz*dz;!
  if (dxdz2 < cutoff2) continue;!

  dy = AtomBinCache[i].y - y;!
  r2 = dy*dy + dxdz2;!
  if (r2 < cutoff2)!
    poten0 += aq * rsqrtf(r2);!

  dy = dy - 2 * grid_spacing;!
  /* Repeat three more times */!
}!

Exit when an empty 
atom bin entry is 

encountered  

Cylinder test  

Cutoff test���
and potential value 

calculation 
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Cutoff Summation Runtime 

50k–1M atom structure size 

GPU cutoff with 
CPU overlap: 
12x-21x faster 
than CPU core 
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Cutoff Summation Speedup 

50k–1M atom structure size 

Diminished 
overlap 

benefit due 
to limited 
queue size���
(16 entries) 

Cutoff 
summation 
alone 9-13× 
faster than 

CPU 
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(a) Direct summation 
At each grid point, sum the 
electrostatic potential from 
all charges 

(b) Cutoff summation 
Electrostatic potential from 
nearby charges summed; 
spatially sort charges first 

(c) Cutoff summation using 
direct summation kernel 
Spatially sort charges into 
bins; adapt direct 
summation to process a bin 

Figure 10.2 Cutoff Summation algorithm!
© David Kirk/NVIDIA and Wen-mei W. Hwu  Braga, 
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Summary 
•  Cutoff pair potentials heavily used in molecular 

modeling applications 
•  Use CPU to regularize the work given to the GPU 

to optimize its performance 
–  GPU performs very well on 64-byte-aligned array data 

•  Run CPU and GPU concurrently to improve 
performance 

•  Use shared memory as a program-managed cache 



Data Scalability with Cut-off Methods 
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Rodrigues, et al, ACM Computing Frontier 2008 !
© David Kirk/NVIDIA and Wen-mei W. Hwu  Braga, 
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Experiences Integrating CUDA Kernels 
Into VMD 

•  VMD: molecular 
visualization and analysis 

•  State-of-the-art simulations 
require more viz/analysis 
power than ever before 

•  For some algorithms, CUDA 
can bring what was 
previously supercomputer 
class performance to an 
appropriately equipped 
desktop workstation Ribosome: 260,790 atoms 

before adding solvent/
ions!
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VMD/CUDA Integration Observations 
•  Single VMD binary must run on all hardware, 

whether CUDA accelerators are installed or not 
•  Must maintain both CPU and CUDA versions of 

kernels 
•  High performance requirements mean that the CPU 

kernel may use a different memory layout and 
algorithm strategy than CUDA, so they could be 
entirely different bodies of code to maintain 

•  Further complicated by the need to handle both single-
threaded and multithreaded compilations, support for 
many platforms, etc… 
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VMD/CUDA Integration Observations (2) 

•  Evolutionary approach to acceleration:                                     
As new CUDA kernels augment existing CPU kernels, the 
original class/function becomes a wrapper that dynamically 
executes the best CPU/GPU kernels at runtime 

•  VMD’s current CUDA kernels are always faster than the CPU, 
so its runtime strategy can be nearly as simple as: 

       int err = 1; // force CPU execution if CUDA is not compiled in 
       #if defined(VMDCUDA) 
       if (cudagpucount > 0) 
         err=CUDAKernel(); // try CUDA kernel if GPUs are available 
       #endif 
       if (err) 
         err=CPUKernel(); // if no CUDA GPUs or an error occurred, try on CPU 
       … 
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VMD/CUDA Integration Observations (3) 

•  Graceful behavior under errors or resource exhaustion 
conditions is trickier to deal with: 
–  CPU kernel becomes the fallback in most cases 
–  What to do when the CPU version is 100x slower than  

CUDA?!?  A CPU fallback isn’t very helpful in this case.  
Aborting or issuing a performance warning to the user may 
be more appropriate. 

•  All of these design problems already existed: 
–  Not specific to CUDA 
–  CUDA just adds another ply to the existing situation for 

codes that employ multiple computation strategies 
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VMD/CUDA Code Organization 

•  Main application holds data needed for execution 
strategy, CPU/GPU load balancing, etc.  

•  Single header file containing all the CUDA kernel 
function prototypes, easy inclusion in other src files 

•  Separate .cu files for each kernel: 
–  each in their compilation unit 
–  no need to worry about multiple kernels sharing space for 

constant buffers etc… 


