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Direct Coulomb Summation 
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Outline 

•  Explore CUDA versions of the direct Coulomb 
summation (DCS) algorithm 
–  Used for ion placement and time-averaged electrostatic 

potential calculations 

•  Detailed look at a few CUDA implementations of 
DCS 
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Molecular Modeling: Ion Placement 

•  Biomolecular simulations 
attempt to replicate in vivo 
conditions in silico 

•  Model structures are initially 
constructed in vacuum 

•  Solvent (water) and ions are 
added as necessary to 
reproduce the required 
biological conditions 

•  Computational requirements 
scale with the size of the 
simulated structure 
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Overview of Ion Placement Process 

•  Calculate initial electrostatic potential map around the 
simulated structure considering the contributions of all 
atoms 

•  Ions are then placed one at a time: 
–  Find the voxel containing the minimum potential value 
–  Add a new ion atom at location of minimum potential 
–  Add the potential contribution of the newly placed ion to the 

entire map 
–  Repeat until the required number of ions have been added  
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Overview of Direct Coulomb 
Summation (DCS) Algorithm 

•  One of several ways to compute the electrostatic potentials on a 
grid, ideally suited for the GPU 

•  Approximation-based methods such as multilevel summation 
can achieve much higher performance at the cost of some 
numerical accuracy and flexibility 

•  For today’s talk, we’ll only discuss DCS, as it is a conceptually 
simple algorithm that is easy to fully explore, and it requires 
very little background knowledge 

•  DCS: for each lattice point, sum potential contributions for all 
atoms in the simulated structure:  
   potential +=  charge[i] / (distance to atom[i]) 
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Direct Coulomb Summation (DCS) 
Algorithm Detail 

•  At each lattice point, sum potential contributions for 
all atoms in the simulated structure:  
   potential +=  charge[i] / (distance to atom[i]) 

Atom[i]!

Distance to 
Atom[i]!Lattice point 

being 
evaluated!
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DCS Computational Considerations 

•  Suitability of direct Coulomb summation (DCS) for ion 
placement:  
–  Highly data parallel 
–  Single-precision FP arithmetic is adequate 
–  Numerical accuracy can be further improved  by compensated 

summation, spatially ordered summation groupings, etc… 
•  In a CPU-only ion placement implementation, 99% of the run 

time is consumed in the initial potential map calculation 
•  Interesting test case since potential maps are also useful for 

both visualizations and analysis 
•  Forms a template for similar spatially evaluated function 

summation algorithms in CUDA 
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Single Slice DCS: Simple C Version  
(Slow, even for the CPU!) 

void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, int 
numatoms) { 

  int i,j,n; 
  int atomarrdim = numatoms * 4; 
  for (j=0; j<grid.y; j++) { 
    float y = gridspacing * (float) j; 
    for (i=0; i<grid.x; i++) { 
      float x = gridspacing * (float) i; 
      float energy = 0.0f; 
      for (n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom 
        float dx = x - atoms[n    ]; 
        float dy = y - atoms[n+1]; 
        float dz = z - atoms[n+2]; 
        energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz); 
      } 
      energygrid[grid.x*grid.y*k + grid.x*j + i] = energy; 
    } 
  } 
} 
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DCS Algorithm Design Observations 

•  Ion placement maps require evaluation of ~20 potential lattice 
points per atom for a typical biological structure 

•  Atom list has the smallest memory footprint,  best choice for 
the inner loop (both CPU and GPU) 

•  Lattice point coordinates are computed on-the-fly 
•  Atom coordinates are made relative to the origin of the 

potential map, eliminating redundant arithmetic 
•  Arithmetic can be significantly reduced by precalculating and 

reusing distance components, e.g. create a new array containing 
X, Q, and dy^2 + dz^2, updated on-the-fly for each row (CPU) 

•  Vectorized CPU versions benefit greatly from SSE instructions 
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DCS Observations for GPU 
Implementation 

•  Straightforward implementation has a low ratio of floating 
point arithmetic operations to memory transactions (at least for 
a GPU…) 

•  The innermost loop will consume operands VERY quickly 
•  Since atoms are read-only, they are ideal candidates for texture 

memory or constant memory 
•  GPU implementations must access constant memory 

efficiently, avoid shared memory bank conflicts, and overlap 
computations with global memory latency 

•  Map is padded out to a multiple of the thread block size: 
–  Eliminates conditional handling at the edges, thus also eliminating the 

possibility of branch divergence 
–  Assists with memory coalescing 
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CUDA DCS Implementation Overview 

•  Allocate and initialize potential map memory on host CPU 
•  Allocate potential map slice buffer on GPU 
•  Preprocess atom coordinates and charges 
•  Loop over slices: 

–  Copy slice from host to GPU 
–  Loop over groups of atoms: (if necessary) 

•  Copy atom data to GPU 
•  Run CUDA Kernel on atoms and slice resident on GPU 

–  Copy slice from GPU to host 

•  Free resources 
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DCS CUDA Block/Grid Decomposition  
(non-unrolled) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… 

… … … 

Thread blocks:  
64-256 threads 

Threads compute 
1 potential each 
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DCS CUDA Block/Grid 
Decomposition (non-unrolled) 

•  16x16 CUDA thread blocks are a nice starting size 
with a satisfactory number of threads 

•  Small enough that there’s not much waste due to 
padding at the edges 
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DCS Version 1: Const+Precalc 
187 GFLOPS, 18.6 Billion Atom Evals/

Sec 
•  Pros: 

–  Pre-compute dz^2 for entire slice 
–  Inner loop over read-only atoms, const memory ideal 
–  If all threads read the same const data at the same time, performance is 

similar to reading a register 

•  Cons: 
–  Const memory only holds ~4000 atom coordinates and charges 
–  Potential summation must be done in multiple kernel invocations per 

slice, with const atom data updated for each invocation 
–  Host must shuffle data in/out for each pass 
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DCS Version 1: Kernel Structure 
… 
  float curenergy = energygrid[outaddr];  // start global mem read very early 
  float coorx = gridspacing * xindex; 
  float coory = gridspacing * yindex; 
  int atomid; 
  float energyval=0.0f; 

  for (atomid=0; atomid<numatoms; atomid++) { 
    float dx = coorx - atominfo[atomid].x; 
    float dy = coory - atominfo[atomid].y; 
    energyval += atominfo[atomid].w * 
                                   (1.0f / sqrtf(dx*dx + dy*dy + atominfo[atomid].z)); 
  } 
  energygrid[outaddr] = curenergy + energyval; 



© David Kirk/NVIDIA and Wen-mei W. Hwu   Braga, 
Portugal, 2010!

17 

DCS CUDA Block/Grid 
Decomposition (unrolled) 

•  Kernel variations that unroll the inner loop calculate 
more than one lattice point per thread, resulting in 
larger computational tiles: 
–  Thread count per block must be decreased to reduce 

computational tile size as unrolling is increased 
–  Otherwise, tile size gets bigger as threads do more than one 

lattice point evaluation, resulting on a significant increase in 
padding and wasted computations at edges 
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•  Add each atom’s contribution to several lattice points 
at a time, where distances only differ in one 
component: 
potentialA +=  charge[i] / (distanceA to atom[i])  
potentialB +=  charge[i] / (distanceB to atom[i]) 
… 

DCS CUDA Algorithm: Unrolling Loops 

Atom[i]!

Distances to 
Atom[i]!
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DCS CUDA Block/Grid Decomposition  
(unrolled) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

Thread blocks:  
64-256 threads 

Threads compute 
up to 8 potentials 

… 

Unrolling increases 
computational tile size 
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DCS Version 2: Const+Precalc+Loop 
Unrolling 

259 GFLOPS, 33.4 Billion Atom Evals/Sec 
•  Pros: 

–  Although const memory is very fast, loading values into registers costs 
instruction slots 

–  We can reduce the number of loads by reusing atom coordinate values 
for multiple voxels, by storing in regs 

–  By unrolling the X loop by 4, we can compute dy^2+dz^2 once and use 
it multiple times, much like the CPU version of the code does 

•  Cons: 
–  Compiler won’t do this type of unrolling for us (yet) 
–  Uses more registers, one of several finite resources 
–  Increases effective tile size, or decreases thread count in a block, though 

not a problem at this level 
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DCS Version 2: Inner Loop 
… 
  for (atomid=0; atomid<numatoms; atomid++) { 
    float dy = coory - atominfo[atomid].y; 
    float dysqpdzsq = (dy * dy) + atominfo[atomid].z; 
    float dx1 = coorx1 - atominfo[atomid].x; 
    float dx2 = coorx2 - atominfo[atomid].x; 
    float dx3 = coorx3 - atominfo[atomid].x; 
    float dx4 = coorx4 - atominfo[atomid].x; 
    energyvalx1 += atominfo[atomid].w * (1.0f / sqrtf(dx1*dx1 + dysqpdzsq)); 
    energyvalx2 += atominfo[atomid].w * (1.0f / sqrtf(dx2*dx2 + dysqpdzsq)); 
    energyvalx3 += atominfo[atomid].w * (1.0f / sqrtf(dx3*dx3 + dysqpdzsq)); 
    energyvalx4 += atominfo[atomid].w * (1.0f / sqrtf(dx4*dx4 + dysqpdzsq)); 
  } 
… 
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DCS Version 3:  
Const+Shared+Loop Unrolling+Precalc 

268 GFLOPS, 36.4 Billion Atom Evals/Sec 

•  Pros: 
–  Loading prior potential values from global memory into 

shared memory frees up several registers, so we can afford 
to unroll by 8 instead of 4 

–  Using fewer registers allows more blocks, increasing GPU 
“occupancy” 

•  Cons: 
–  Bumping against hardware limits (uses all const memory, 

most shared memory, and a largish number of registers) 
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DCS Version 3: Kernel Structure 

•  Loads 8 potential map lattice points from global memory at 
startup, and immediately stores them into shared memory 
before going into inner loop. We would otherwise consume too 
many registers and lose performance. 

•  Processes 8 lattice points at a time in the inner loop 
•  Additional performance gains are achievable by coalescing 

global memory reads at start/end 
•  Code is too long to show as a snippet due to the large amount 

of manual unrolling of loads into registers 
•  Source code is available by request 
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DCS Version 4:  
Const+Loop Unrolling+Coalescing 

291.5 GFLOPS, 39.5 Billion Atom Evals/Sec 

•  Christopher Rodrigues found an even better formulation! 
•  Pros: 

–  Simplified structure compared to version 3, no use of shared memory, 
register pressure kept at bay by doing global memory operations only at 
the end of the kernel 

–  Using fewer registers allows more blocks, increasing GPU “occupancy” 
–  Doesn’t have as strict of a thread block dimension requirement as 

version 3, computational tile size can be smaller 

•  Cons: 
–  The computation tile size is still large, so small potential maps don’t 

perform nearly as well as large ones 
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DCS Version 4: Kernel Structure 

•  Processes 8 lattice points at a time in the inner loop 
•  Subsequent lattice points computed by each thread 

are offset by a half-warp to guarantee coalesced 
memory accesses 

•  Loads and increments 8 potential map lattice points 
from global memory at completion of of the 
summation, avoiding register consumption 

•  Code is too long to show as a snippet  
•  Source code is available by request 



© David Kirk/NVIDIA and Wen-mei W. Hwu   Braga, 
Portugal, 2010!

26 

DCS CUDA Block/Grid Decomposition  
             (unrolled, coalesced) 

Padding waste 

Grid of thread blocks: 

0,0 0,1 

1,0 1,1 

… 

… … 

… 

Thread blocks:  
64-256 threads 

… 

Unrolling increases 
computational tile size 

Threads compute 
up to 8 potentials,  

skipping by half-warps 
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Summary 

•  GPUs are not a magic bullet, but they can perform amazingly 
well when used effectively 

•  There are many good strategies for extracting high 
performance from individual subsystems on the GPU 

•  It is wise to begin with a well designed application and a 
thorough understanding of its performance characteristics on 
the CPU before beginning work on the GPU 


