
© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

1

Summer School

e-Science with Many-core CPU/GPU
Processors

Lecture 10: Case Study 3
Electrostatic Potential Calculation using

Direct Coulomb Summation

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

2

Acknowledgement

•  Additional Information and References:
–  http://www.ks.uiuc.edu/Research/gpu/
–  http://www.ks.uiuc.edu/Research/vmd/

•  Acknowledgement, questions, source code requests:
–  John Stone johns@ks.uiuc.edu
–  Klaus Schulten
–  Theoretical and Computational Biophysics Group, NIH

Resource for Macromolecular Modeling and Bioinformatics
Beckman Institute for Advanced Science and Technology

•  NIH support: P41-RR05969

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

3

Outline

•  Explore CUDA versions of the direct Coulomb
summation (DCS) algorithm
–  Used for ion placement and time-averaged electrostatic

potential calculations

•  Detailed look at a few CUDA implementations of
DCS

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

4

Molecular Modeling: Ion Placement

•  Biomolecular simulations
attempt to replicate in vivo
conditions in silico

•  Model structures are initially
constructed in vacuum

•  Solvent (water) and ions are
added as necessary to
reproduce the required
biological conditions

•  Computational requirements
scale with the size of the
simulated structure

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

5

Overview of Ion Placement Process

•  Calculate initial electrostatic potential map around the
simulated structure considering the contributions of all
atoms

•  Ions are then placed one at a time:
–  Find the voxel containing the minimum potential value
–  Add a new ion atom at location of minimum potential
–  Add the potential contribution of the newly placed ion to the

entire map
–  Repeat until the required number of ions have been added

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

6

Overview of Direct Coulomb
Summation (DCS) Algorithm

•  One of several ways to compute the electrostatic potentials on a
grid, ideally suited for the GPU

•  Approximation-based methods such as multilevel summation
can achieve much higher performance at the cost of some
numerical accuracy and flexibility

•  For today’s talk, we’ll only discuss DCS, as it is a conceptually
simple algorithm that is easy to fully explore, and it requires
very little background knowledge

•  DCS: for each lattice point, sum potential contributions for all
atoms in the simulated structure:
 potential += charge[i] / (distance to atom[i])

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

7

Direct Coulomb Summation (DCS)
Algorithm Detail

•  At each lattice point, sum potential contributions for
all atoms in the simulated structure:
 potential += charge[i] / (distance to atom[i])

Atom[i]!

Distance to
Atom[i]!Lattice point

being
evaluated!

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

8

DCS Computational Considerations

•  Suitability of direct Coulomb summation (DCS) for ion
placement:
–  Highly data parallel
–  Single-precision FP arithmetic is adequate
–  Numerical accuracy can be further improved by compensated

summation, spatially ordered summation groupings, etc…
•  In a CPU-only ion placement implementation, 99% of the run

time is consumed in the initial potential map calculation
•  Interesting test case since potential maps are also useful for

both visualizations and analysis
•  Forms a template for similar spatially evaluated function

summation algorithms in CUDA

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

9

Single Slice DCS: Simple C Version
(Slow, even for the CPU!)

void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, int
numatoms) {

 int i,j,n;
 int atomarrdim = numatoms * 4;
 for (j=0; j<grid.y; j++) {
 float y = gridspacing * (float) j;
 for (i=0; i<grid.x; i++) {
 float x = gridspacing * (float) i;
 float energy = 0.0f;
 for (n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom
 float dx = x - atoms[n];
 float dy = y - atoms[n+1];
 float dz = z - atoms[n+2];
 energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);
 }
 energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;
 }
 }
}

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

10

DCS Algorithm Design Observations

•  Ion placement maps require evaluation of ~20 potential lattice
points per atom for a typical biological structure

•  Atom list has the smallest memory footprint, best choice for
the inner loop (both CPU and GPU)

•  Lattice point coordinates are computed on-the-fly
•  Atom coordinates are made relative to the origin of the

potential map, eliminating redundant arithmetic
•  Arithmetic can be significantly reduced by precalculating and

reusing distance components, e.g. create a new array containing
X, Q, and dy^2 + dz^2, updated on-the-fly for each row (CPU)

•  Vectorized CPU versions benefit greatly from SSE instructions

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

11

DCS Observations for GPU
Implementation

•  Straightforward implementation has a low ratio of floating
point arithmetic operations to memory transactions (at least for
a GPU…)

•  The innermost loop will consume operands VERY quickly
•  Since atoms are read-only, they are ideal candidates for texture

memory or constant memory
•  GPU implementations must access constant memory

efficiently, avoid shared memory bank conflicts, and overlap
computations with global memory latency

•  Map is padded out to a multiple of the thread block size:
–  Eliminates conditional handling at the edges, thus also eliminating the

possibility of branch divergence
–  Assists with memory coalescing

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

12

CUDA DCS Implementation Overview

•  Allocate and initialize potential map memory on host CPU
•  Allocate potential map slice buffer on GPU
•  Preprocess atom coordinates and charges
•  Loop over slices:

–  Copy slice from host to GPU
–  Loop over groups of atoms: (if necessary)

•  Copy atom data to GPU
•  Run CUDA Kernel on atoms and slice resident on GPU

–  Copy slice from GPU to host

•  Free resources

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

13

DCS CUDA Block/Grid Decomposition
(non-unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks:
64-256 threads

Threads compute
1 potential each

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

14

DCS CUDA Block/Grid
Decomposition (non-unrolled)

•  16x16 CUDA thread blocks are a nice starting size
with a satisfactory number of threads

•  Small enough that there’s not much waste due to
padding at the edges

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

15

DCS Version 1: Const+Precalc
187 GFLOPS, 18.6 Billion Atom Evals/

Sec
•  Pros:

–  Pre-compute dz^2 for entire slice
–  Inner loop over read-only atoms, const memory ideal
–  If all threads read the same const data at the same time, performance is

similar to reading a register

•  Cons:
–  Const memory only holds ~4000 atom coordinates and charges
–  Potential summation must be done in multiple kernel invocations per

slice, with const atom data updated for each invocation
–  Host must shuffle data in/out for each pass

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

16

DCS Version 1: Kernel Structure
…
 float curenergy = energygrid[outaddr]; // start global mem read very early
 float coorx = gridspacing * xindex;
 float coory = gridspacing * yindex;
 int atomid;
 float energyval=0.0f;

 for (atomid=0; atomid<numatoms; atomid++) {
 float dx = coorx - atominfo[atomid].x;
 float dy = coory - atominfo[atomid].y;
 energyval += atominfo[atomid].w *
 (1.0f / sqrtf(dx*dx + dy*dy + atominfo[atomid].z));
 }
 energygrid[outaddr] = curenergy + energyval;

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

17

DCS CUDA Block/Grid
Decomposition (unrolled)

•  Kernel variations that unroll the inner loop calculate
more than one lattice point per thread, resulting in
larger computational tiles:
–  Thread count per block must be decreased to reduce

computational tile size as unrolling is increased
–  Otherwise, tile size gets bigger as threads do more than one

lattice point evaluation, resulting on a significant increase in
padding and wasted computations at edges

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

18

•  Add each atom’s contribution to several lattice points
at a time, where distances only differ in one
component:
potentialA += charge[i] / (distanceA to atom[i])
potentialB += charge[i] / (distanceB to atom[i])
…

DCS CUDA Algorithm: Unrolling Loops

Atom[i]!

Distances to
Atom[i]!

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

19

DCS CUDA Block/Grid Decomposition
(unrolled)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:
64-256 threads

Threads compute
up to 8 potentials

…

Unrolling increases
computational tile size

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

20

DCS Version 2: Const+Precalc+Loop
Unrolling

259 GFLOPS, 33.4 Billion Atom Evals/Sec
•  Pros:

–  Although const memory is very fast, loading values into registers costs
instruction slots

–  We can reduce the number of loads by reusing atom coordinate values
for multiple voxels, by storing in regs

–  By unrolling the X loop by 4, we can compute dy^2+dz^2 once and use
it multiple times, much like the CPU version of the code does

•  Cons:
–  Compiler won’t do this type of unrolling for us (yet)
–  Uses more registers, one of several finite resources
–  Increases effective tile size, or decreases thread count in a block, though

not a problem at this level

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

21

DCS Version 2: Inner Loop
…
 for (atomid=0; atomid<numatoms; atomid++) {
 float dy = coory - atominfo[atomid].y;
 float dysqpdzsq = (dy * dy) + atominfo[atomid].z;
 float dx1 = coorx1 - atominfo[atomid].x;
 float dx2 = coorx2 - atominfo[atomid].x;
 float dx3 = coorx3 - atominfo[atomid].x;
 float dx4 = coorx4 - atominfo[atomid].x;
 energyvalx1 += atominfo[atomid].w * (1.0f / sqrtf(dx1*dx1 + dysqpdzsq));
 energyvalx2 += atominfo[atomid].w * (1.0f / sqrtf(dx2*dx2 + dysqpdzsq));
 energyvalx3 += atominfo[atomid].w * (1.0f / sqrtf(dx3*dx3 + dysqpdzsq));
 energyvalx4 += atominfo[atomid].w * (1.0f / sqrtf(dx4*dx4 + dysqpdzsq));
 }
…

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

22

DCS Version 3:
Const+Shared+Loop Unrolling+Precalc

268 GFLOPS, 36.4 Billion Atom Evals/Sec

•  Pros:
–  Loading prior potential values from global memory into

shared memory frees up several registers, so we can afford
to unroll by 8 instead of 4

–  Using fewer registers allows more blocks, increasing GPU
“occupancy”

•  Cons:
–  Bumping against hardware limits (uses all const memory,

most shared memory, and a largish number of registers)

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

23

DCS Version 3: Kernel Structure

•  Loads 8 potential map lattice points from global memory at
startup, and immediately stores them into shared memory
before going into inner loop. We would otherwise consume too
many registers and lose performance.

•  Processes 8 lattice points at a time in the inner loop
•  Additional performance gains are achievable by coalescing

global memory reads at start/end
•  Code is too long to show as a snippet due to the large amount

of manual unrolling of loads into registers
•  Source code is available by request

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

24

DCS Version 4:
Const+Loop Unrolling+Coalescing

291.5 GFLOPS, 39.5 Billion Atom Evals/Sec

•  Christopher Rodrigues found an even better formulation!
•  Pros:

–  Simplified structure compared to version 3, no use of shared memory,
register pressure kept at bay by doing global memory operations only at
the end of the kernel

–  Using fewer registers allows more blocks, increasing GPU “occupancy”
–  Doesn’t have as strict of a thread block dimension requirement as

version 3, computational tile size can be smaller

•  Cons:
–  The computation tile size is still large, so small potential maps don’t

perform nearly as well as large ones

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

25

DCS Version 4: Kernel Structure

•  Processes 8 lattice points at a time in the inner loop
•  Subsequent lattice points computed by each thread

are offset by a half-warp to guarantee coalesced
memory accesses

•  Loads and increments 8 potential map lattice points
from global memory at completion of of the
summation, avoiding register consumption

•  Code is too long to show as a snippet
•  Source code is available by request

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

26

DCS CUDA Block/Grid Decomposition
 (unrolled, coalesced)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

… …

…

Thread blocks:
64-256 threads

…

Unrolling increases
computational tile size

Threads compute
up to 8 potentials,

skipping by half-warps

© David Kirk/NVIDIA and Wen-mei W. Hwu Braga,
Portugal, 2010!

27

Summary

•  GPUs are not a magic bullet, but they can perform amazingly
well when used effectively

•  There are many good strategies for extracting high
performance from individual subsystems on the GPU

•  It is wise to begin with a well designed application and a
thorough understanding of its performance characteristics on
the CPU before beginning work on the GPU

