
© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

1

Summer School

e-Science with Many-core CPU/GPU
Processors

Lecture 0
Beginner’s tutorial on many-core processors,
multi-core processors, and C programming

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

2

Agenda
•  Instruction cycle

•  The history of parallelism

•  Some C concepts

•  Piecing a computer together

•  Memory hierarchy

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

3

Agenda
•  Instruction cycle

•  The history of parallelism

•  Some C concepts

•  Piecing a computer together

•  Memory hierarchy

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

4

From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm

High-Level Language (C/C++…)
Instruction Set Architecture

Microarchitecture
Circuits

Electrons
©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

5

The ISA

•  An Instruction Set Architecture (ISA) is a
contract between the hardware and the
software.

•  As the name suggests, it is a set of
instructions that the architecture (hardware)
can execute.

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

6

A program at the ISA level

•  A Program is a set of single instructions
stored in memory that can be read,
interpreted, and executed by the hardware.

•  Program instructions operate on data stored
in memory or provided by Input/Output (I/O)
device.

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

7

The Von-Neumann Model

Memory!

Control Unit!

I/O!

ALU!
Reg!
File!

PC! IR!

Processing Unit!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

8

Going back to the program

•  Every instruction needs to be fetched from
memory, decoded, then executed.

•  Instructions come in three flavors: Operate,
Data transfer, and Program Control Flow.

•  An example instruction cycle is the
following:

Fetch | Decode | Execute | Memory

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

9

Operate Instructions

•  Example of an operate instruction:
 ADD R1, R2, R3

•  Instruction cycle for an operate instruction:
Fetch | Decode | Execute | Memory

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

10

Data Transfer Instructions

•  Examples of data transfer instruction:
 LDR R1, R2, #2
 STR R1, R2, #2

•  Instruction cycle for an operate instruction:
Fetch | Decode | Execute | Memory

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

11

Control Flow Operations

•  Example of control flow instruction:
 BRp #-4
 if the condition is zero, skip the next four
instructions

•  Instruction cycle for an operate instruction:
Fetch | Decode | Execute | Memory

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

12

Registers vs Memory

•  Registers are “free” to use, however, there
are very few of them

•  Memory is expensive, but large

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

13

Agenda
•  Instruction cycle

•  The history of parallelism

•  Some C concepts

•  Piecing a computer together

•  Memory hierarchy

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

14

History of parallelism
•  1st gen - Instructions are executed sequentially in

program order, one at a time.

•  Example:

Cycle 1 2 3 4 5 6
Instruction1 Fetch Decode Execute Memory
Instruction2 Fetch Decode

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

15

History - Cont’d
•  2nd gen - Instructions are executed sequentially, in

program order, in an assembly line fashion.
(pipeline)

•  Example:

Cycle 1 2 3 4 5 6
Instruction1 Fetch Decode Execute Memory
Instruction2 Fetch Decode Execute Memory
Instruction3 Fetch Decode Execute Memory

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

16

•  3rd gen - Instructions are executed in parallel
•  Example code 1:

 c = b + a;
 d = c + e;

•  Example code 2:
 a = b + c;
 d = e + f;

History –
Instruction Level Parallelism

Non-parallelizable!

Parallelizable!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

17

ILP – Cont’d
•  Two forms of ILP:

–  Superscalar: fetch, decode, and execute multiple
instructions at a time. Execution may be out of order

–  VLIW: At compile time, pack multiple, independent
instructions in one large instruction and process the large
instructions as the atomic units.

Cycle 1 2 3 4 5
Instruction1 Fetch Decode Execute Memory
Instruction2 Fetch Decode Execute Memory
Instruction3 Fetch Decode Execute Memory
Instruction4 Fetch Decode Execute Memory

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

18

History – Cont’d

•  4th gen - SMT: Multiple threads are
executed simultaneously on the same
processor/core. (will revisit)

•  5th gen - Multi-Core: Multiple threads are
executed simultaneously on multiple
processors (usually includes SMT as well)

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

19

History – Cont’d

•  GPUs: Data parallelism - multiple threads
executing the same program on multiple
processors with different data (Single
Program Multiple Data)

•  Definition
– SIMD: Single Instruction Multiple Data

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

20

Agenda
•  Instruction cycle

•  The history of parallelism

•  Some C concepts

•  Piecing a computer together

•  Memory hierarchy

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

21

Floating Point
•  Floating point is a primitive C/C++ data type
•  Used to represent rational numbers
•  Floating point is 32 bits, 1 bit for the sign

(+/-), 8 bits for the exponent, and 23 bits for
the fraction/mantissa

•  Numbers are stored in scientific notation,
using base two

•  Example: - 1.0101110 * 25
exponent!sign! mantissa!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

22

Floating Point – Cont’d

•  Floating point can represent very small
number and very large number but with
limited precision

•  The limited precision can lead to inaccurate
results
 For example: 1024 + 1 = 1024

•  The solution is to increase precision, by
using the “double” datatype which is 64 bits

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

23

Floating Point – Cont’d

•  It is hard to compute with floating point
numbers, since they are normalized.

•  Floating point calculations require dedicated
hardware.

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

24

Data Structures

•  In software, data is stored in scalar variables
or arrays

•  Examples:
 int variable = 2;
 int array[5];

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

25

Arrays
•  int array[5];
•  The variable “array” is a

pointer to a block of
memory which holds 5
integers

•  In other words, “array” is
of type “int *”

•  “array” is in itself a
variable whose value is the
address of the first memory
location of the block of 5
integers

array!
elem0!
elem1!
elem2!
elem3!
elem4!

x0000!

xFFFF!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

26

Pointers

•  To access the value pointed to by a pointer,
you have to “dereference” the pointer.

•  Syntax:
 int variable2 = *array;

•  What if I want to access the second integer in
the block?
 int variable3 = *(array+1); //pointer

arithmetic

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

27

Pointer and Array Duality

•  Another way to dereference a array pointer is
to use array syntax

•  Syntax:
 int variable4 = array[0];

•  And to access the second element:
 int variable5 = array[1];

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

28

2D arrays

•  What about:
 int matrix[3][3]; // What’s that?

•  Answer: it’s a 2-dimensional array

•  Memory is 1-dimensional though, so how do
we store a 2D array in it?

•  Answer: Major ordering

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

29

Row Major Ordering
•  Row major: starting

from the “top-left”
corner of the array,
store elements in
consecutive columns
first, then in
consecutive rows

•  Note: Fortran is
column major

M2,0!

M1,1!

M1,0!M0,0!

M0,1! M2,1!

M2,0!

M1,0!

M0,0!

M1,1!

M0,1!

M2,1!

M1,2!

M0,2!

M2,2!
M1,2!M0,2! M2,2!

matrix!

matrix!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

30

Using pointer syntax on 2D arrays

•  “matrix” is also of type “int *”
•  In order to access an element in the

matrix, you have to calculate it’s
index is row-major order

•  Example: accessing matrix[2][2]
 int variable6 = *(matrix+2*3+2);

Column width!

M2,0!

M1,0!

M0,0!

M1,1!

M0,1!

M2,1!

M1,2!

M0,2!

M2,2!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

31

Dynamic Allocation

•  What if we don’t know the size of the array
before runtime?

•  Allocate space at runtime
•  Syntax:

 int *array2 = (int*) malloc (n*sizeof(int));

type-casting! built-in C/C++ operator!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

32

Dynamic Allocation - Cont’d
•  Dynamically allocated arrays have to be

explicitly allocated and de-allocated
•  Allocate function:

 void* malloc (int size);
•  De-Allocate function:

 void free (void * ptr);
•  Dynamic arrays can be accessed using array

syntax or pointer syntax the same way static
arrays can (example goes here)

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

33

Structs
•  Data in C has to have a type
•  Datatypes that are primitive to the language are: int,

float, double, char, etc.
•  Structs are user-defined datatypes made of

primitive datatypes and/or other structs
•  Example:

 struct complex{
 float real;
 float imag;
 }

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

34

Structs – Cont’d
•  Declaring a complex variable:

 complex variable7;
•  Accessing an element of variable7:

 variable7.real = 2.5;

•  A struct variable is stored in consecutive memory
locations, and its size is the sum of the size of its
components

•  You can define an array of type complex the same
way you would any primitive data type

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

35

Atomic Operations

 If x was initially 0, what would the value of x be
after threads 1 and 2 have completed?

 The answer may vary due to data races. To avoid
data races, you should use atomic operations

thread1:! thread2:!Reg Mem[x]!
Reg Reg + 1!
Mem[x] Reg!

Reg Mem[x]!
Reg Reg + 1!
Mem[x] Reg!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

36

Agenda
•  Instruction cycle

•  The history of parallelism

•  Some C concepts

•  Piecing a computer together

•  Memory hierarchy

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

37

Piecing a computer together

•  A GPU is an accelerator. It is there to aid the
main processor(s) compute faster

•  In this section, we will discover how the
GPU, CPU, memory, etc. all communicate
inside a computer.

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

38

Classic PC architecture
•  Northbridge connects 3

components that must
communicate at high speed
–  CPU, DRAM, video
–  Video also needs to have 1st-

class access to DRAM
–  Previous NVIDIA cards are

connected to AGP, up to 2
GB/s transfers

•  Southbridge serves as a
concentrator for slower I/O
devices

CPU!

Core Logic Chipset!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

39

PCI Express (PCIe)
•  Switched, point-to-point

connection
–  Each card has a dedicated

“link” to the central switch,
no bus arbitration.

–  Packet switches messages
form virtual channel

–  Prioritized packets for QoS
•  E.g., real-time video

streaming

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

40

PCIe Links and Lanes
•  Each link consists of one more

lanes
–  Each lane is 1-bit wide (4 wires,

each 2-wire pair can transmit
2.5Gb/s in one direction)

•  Upstream and downstream now
simultaneous and symmetric

–  Each Link can combine 1, 2, 4,
8, 12, 16 lanes- x1, x2, etc.

–  Each byte data is 8b/10b
encoded into 10 bits with equal
number of 1’s and 0’s; net data
rate 2 Gb/s per lane each way.

–  Thus, the net data rates are 250
MB/s (x1) 500 MB/s (x2), 1GB/
s (x4), 2 GB/s (x8), 4 GB/s
(x16), each way

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

41

PCIe PC Architecture
•  PCIe forms the

interconnect backbone
–  Northbridge/Southbridge are

both PCIe switches
–  Some Southbridge designs

have built-in PCI-PCIe
bridge to allow old PCI
cards

–  Some PCIe cards are PCI
cards with a PCI-PCIe
bridge

•  Source: Jon Stokes, PCI
Express: An Overview
–  http://arstechnica.com/

articles/paedia/hardware/
pcie.ars

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

42

Agenda
•  Instruction cycle

•  The history of parallelism

•  Some C concepts

•  Piecing a computer together

•  Memory hierarchy

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

43

Memory Hierarchies

•  If every time we needed a piece of data, we
had to go to main memory to get it,
computers would take a lot longer to do
anything

•  On today’s processors, main memory
accesses take hundreds of cycles

•  One solution: Caches

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

44

Cache - Cont’d

•  In order to keep cache fast, it needs to be
small, so we cannot fit the entire data set in it

Processor!

L1 Cache!

L2 Cache!

Main Memory!

regs!

The chip!

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

45

Cache - Cont’d
•  Cache is unit of volatile memory storage

•  A cache is an “array” of cache lines

•  Cache line can usually hold data from several
consecutive memory address

•  When data is requested from memory, an entire
cache line is loaded into the cache, in an attempt to
reduce main memory requests

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

46

Caches - Cont’d

Some definitions:
– Spacial locality: is when the data elements stored

in consecutive memory locations are access
consecutively

– Temporal locality: is when the same data
element is access multiple times in short period
of time

•  Both spacial locality and temporal locality
improve the performance of caches

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

47

Scratchpad vs. Cache

•  Scratchpad is another type of temporary
storage used to relieve main memory
contention.

•  In terms of distance from the processor,
scratchpad is similar to L1 cache.

•  Unlike cache, scratchpad does not necessarily
hold a copy of data that is in main memory

•  It requires explicit data transfer instructions,
whereas cache doesn’t

© Wen-mei W. Hwu and Nady Obeid 2009!
VSCSE, University of Illinois, Urbana-Champaign!

48

An alternative to caches
•  We use caches to reduce the latency of going to

memory for data. But what if we could hide that
latency instead?

•  Multithreading: Run multiple threads
simultaneously. Once a thread stalls for a
memory request, start executing from the next
one.

•  The challenge of multithreading is having enough
work to do while a memory request is being
serviced.

