TEXAS ADVANCED COMPUTING CENTER
WWW.TACC.UTEXAS.EDU

Tutorial on MPI programming
Victor Eijkhout
SSIASC 2016

Eijkhout: MPI intro

Justification

The MPI library is the main tool for parallel programming on a large scale. This
course introduces the main concepts through lecturing and exercises.

Eijkhout: MPI intro 2

The SPMD model

Eijkhout: MPI intro

Computers when MPI was designed

-@

process

-@

process

processor

node

One process per node; all communication goes through the network.

Eijkhout: MPI intro 4 @

Pure MPI

:i@ l < o 5 process

| process

2 sockets

| ety

@ep |

node ey

process

2 sockets 12 cores

A node has multiple sockets, each with multiple cores.
Pure MPI puts a process on each core: pretend sharad mamari dnaen’t aviet

Eijkhout: MPI intro 5 @

Hybrid programming

=]

node
=

(lntel) I ——
e
node | Wbl
2 sockets 12 cores
process thread thread thread

Hybrid programming puts a process per node or pe~ ~~~l~*
further parallelism comes from threading.

Eijkhout: MPI intro 6 @

Compiling running

MPI compilers are usually called mpicc, mpif90, mpicxx. Use mpicc and
such. These are not separate compilers, but scripts around the regular
C/Fortran compiler.

Run your program with
mpiexec -n 4 hostfile ... yourprogram arguments

At TACC: ibrun yourprog without the number of procs.

Eijkhout: MPI intro 7

Lab setup

Open two windows on stampede.

@ In one window you will be editing and compiling;

@ in the other, type idev -N 2 -n 32 -t 4:0:0 which gives you an
interactive session of 2 nodes, 32 cores, for the next 4 hours.

The C compiler is mpicc, C++ is mpicxx, Fortran is mpi£f90. To run (on a
compute node!) type ibrun yourprog.

No hostfiles or processor count needed!

Eijkhout: MPI intro

MPI Init / Finalize

You need an include file:

#include "mpi.h" // for C
#include "mpif.h" ! for Fortran

Then put these calls around your code:

ierr = MPI_Init (&argc, &argv); // zeros allowed
// your code
ierr = MPI_Finalize();

and for Fortran:

call MPI_Init (ierr)
! your code
call MPI_Finalize (ierr)

Eijkhout: MPI intro

About error codes

MPI routines return an integer error code

@ In C: function result. Can be ignored.
@ In Fortran: as parameter.

@ In Python: throwing exception.

There’s actually not a lot you can do with an error code:
very hard to recover from errors in parallel.

Eijkhout: MPI intro 10

Python bindings

module python
from mpidpy import MPI
Run:

ibrun python-mpi yourprogram.py

No initialization needed.

Eijkhout: MPI intro

About routine prototypes: C

Prototype:
int MPI_Comm_size (MPI_Comm comm,int *nprocs)
Use:

MPI_Comm comm = MPI_COMM_WORLD;

int nprocs;

int errorcode;

errorcode = MPI_Comm_world(MPI_COMM_WORLD, &nprocs

Eijkhout: MPI intro 12

About routine prototypes: Fortran
Prototype

MPI_Comm_size (comm, size, ierror)

INTEGER, INTENT (IN) :: comm

INTEGER, INTENT (OUT) :: size

INTEGER, OPTIONAL, INTENT (OUT) :: ierror
Use:

integer :: comm = MPI_COMM_WORLD
integer :: size
CALL MPI_Comm_size(comm, size, ierr)

@ Final parameter always error parameter. Do not forget!
@ MostMPI_... types are INTEGER.

Eijkhout: MPI intro 13

About routine prototypes: Python

Prototype:

object method

MPI.Comm.Send(self, buf, int dest, int tag=0)

class method

MPI.Request.Waitall (type cls, requests, statuses=None)

Use:

from mpidpy import MPI
comm = MPI.COMM_WORLD
comm. Send (sendbuf, dest=other)
MPI.Request.Waitall (requests)

Eijkhout: MPI intro 14

Processor identification

Every processor has a number (with respect to a communicator)

int MPI_Comm_rank(MPI_Comm comm, int *rank)
int MPI_Comm_size(MPI_Comm comm, int *size)

For now, the communicator will be MPI_COMM_WORLD.

Note: mapping of ranks to actual processors and cores is not predictable!

Eijkhout: MPI intro

Exercise 1 (commrank)

Write a program where each process prints out message reporting its number,
and how many processes there are.

Write a second version of this program, where each process opens a unique
file and writes to it. On some clusters this may not be advisable if you have
large numbers of processors, since it can overload the file system.

Eijkhout: MPI intro

Exercise 2 (commrank)

Write a program where only the process with number zero reports on how
many processes there are in total.

Eijkhout: MPI intro 17

Functional Parallelism

Parallelism by letting each processor do a different thing.

Example: divide up a search space.

Each processor knows its rank, so it can find its part of the search space.

Eijkhout: MPI intro

Exercise 3 (prime)

Is the number N = 2,000,000, 111 prime? Let each process test a range of
integers, and print out any factor they find. You don’t have to test all
integers < N: any factor is at most v/N ~ 45, 200.

Eijkhout: MPI intro 19

Collectives

Eijkhout: MPI intro

Table of Contents

0 Introduction

Eijkhout: MPI intro

Collectives
Gathering and spreading information:

@ Every process has data, you want to bring it together;
@ One process has data, you want to spread it around.

Root process: the one doing the collecting or disseminating.

Basic cases:
@ Collect data: gather.
@ Collect data and compute some overall value (sum, max): reduction.

@ Send the same data to everyone: broadcast.
@ Send individual data to each process: scatter.

Eijkhout: MPI intro 22

Q.. LOOD

// \o/

hroadcat

Qo000 .0.
AW \\
| J

Exercise 4

How would you realize the following scenarios with MPI collectives?

@ Let each process compute a random number. You want to print the
maximum of these numbers to your screen.

@ Each process computes a random number again. Now you want to scale
these numbers by their maximum.

@ Let each process compute a random number. You want to print on what
processor the maximum value is computed.

Eijkhout: MPI intro 24

More collectives

@ Instead of a root, collect to all: MPT_A11. ..

@ Scatter individual data, but also individual size: MPI_Scatterv
@ Everyone broadcasts: all-to-all

@ Scan: like a reduction, but with partial results

...and more

Eijkhout: MPI intro 25

Table of Contents

@ simple collectives

Eijkhout: MPI intro

Broadcast

int MPI_Bcast (
void *buffer, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

@ All processes call with the same argument list
@ root is the rank of the process doing the broadcast

@ Each process allocates buffer space;
root explicitly fills in values,
all others receive values through broadcast call.

@ Datatype is MPI_FLOAT, MPI_INT et cetera, different between C/Fortran.
@ commis usually MPI_COMM_WORLD

Eijkhout: MPI intro 27

Buffers in C

General principle: buffer argument is address in memory of the data.

@ Buffer is void pointer:
@ write &x or (void*) &x for scalar

@ write x or (void*)x for array

Eijkhout: MPI intro 28

Buffers in Fortran

General principle: buffer argument is address in memory of the data.

@ Fortran always passes by reference:
@ write x for scalar

@ write x for array

Eijkhout: MPI intro 29

Buffers in Python

For many routines there are two variants:

@ lowercase: can send Python objects;
output is return result
this uses pickle: slow.

@ uppercase: communicates numpy objects;
input and output are function argument.

Eijkhout: MPI intro

30

Reduction

int MPI_Reduce
(void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

@ Compare buffers to @D
@ recvbuf is ignored on non-root processes
@ MPI_Opis MPI_SUM, MPI_MAX et cetera.

Eijkhout: MPI intro

Allreduce

Regular reduce: great for printing out summary information at the end of your
job.

Often: everyone needs the result of a reduction

y < x/|x]

int MPI_Allreduce (const void* sendbuf,

void* recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

Eijkhout: MPI intro 32

Why use allreduce?

Instead of reduce and broadcast.

@ One line less code.
@ Gives the implementation more possibilities for optimization.

@ Is actually twice as fast: allreduce same time as reduce.

Eijkhout: MPI intro 33

Exercise 5 (randommax)

Write a program where each process computes a random number, after which
the maximum value over all processors is found. Each process then scales its
value by this maximum. Use the MPI_Allreduce routine.

Eijkhout: MPI intro

34

Random numbers

C:

// Initialize the random number generator
srand (mytid* (double) RAND_MAX/ntids);

// compute a random number

randomfraction = (rand() / (double)RAND_ MAX);

Fortran:

integer :: randsize
integer,allocatable,dimension(:) :: randseed
real :: random_value

call random_seed(size=randsize)
allocate (randseed (randsize))
do i=1,randsize

randseed (i) = 1023*mytid

end do
Eijkhout: MPI intro

Gather/Scatter

int MPI_Gather(
void *sendbuf, int sendcnt, MPI_Datatype sendtype,
void *recvbuf, int recvcnt, MPI_Datatype recvtype,
int root, MPI_Comm comm

)i

int MPI_Scatter
(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

@ Compare buffers to

@ Scatter: the sendcount / Gather: the recvcount:
this is not, as you might expect, the total length of the buffer; instead, it is
the amount of data to/from each process.

Also: MPI_Allgather

Eijkhout: MPI intro 36

Table of Contents

e Advanced collectives

Eijkhout: MPI intro

Scan

Scan or ‘parallel prefix’: reduction with partial results

@ Useful for indexing operations:
@ Each processor has an array of n, elements;
@ My first element has global number), ng.

Eijkhout: MPI intro 38

V-type collectives

@ Gather/scatter but with individual sizes
@ Requires displacement in the gather/scatter buffer

Eijkhout: MPI intro

39

C:

int MPI_Gatherv (
const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, const int recvcounts[], const int displs[],
MPI_Datatype recvtype, int root, MPI_Comm comm)

Semantics:

IN sendbuf: starting address of send buffer (choice)

IN sendcount: number of elements in send buffer (non-negative integer)

IN sendtype: data type of send buffer elements (handle)

OUT recvbuf: address of receive buffer (choice, significant only at root)

IN recvcounts: non-negative integer array (of length group size) containing t
IN displs: integer array (of length group size). Entry i specifies the displa
IN recvtype: data type of recv buffer elements (significant only at root) (ha
IN root: rank of receiving process (integer)

IN comm: communicator (handle)

Fortran:

MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvty
TYPE (*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE (*), DIMENSION(..) :: recvbuf

INTEGER, INTENT (IN) :: sendcount, recvcounts(*),

TYPE (MPI_Datatype), INTENT(IN) :: sendtype, recv
it BEVARd,_Comm) , INTENT (IN) :: comm 40

All-to-all

@ Every process does a scatter;
@ each individual data
@ Very rarely needed.

Eijkhout: MPI intro 41

Barrier

@ Synchronize processors:

@ each process waits at the barrier until all processes have reached the
barrier

@ This routine is almost never needed
@ One conceivable use: timing

Eijkhout: MPI intro 42

Naive realization of collectives

Broadcast:
(A~~~)\
root

Message time is modeled as
o+Bn

Time for collective? Can you improve on that?

Eijkhout: MPI intro

43

Better implementation of collective

——~ N

root

D

What is the running time now?

Eijkhout: MPI intro

Point-to-point communication

Table of Contents

0 Distributed data

Eijkhout: MPI intro

Distributed data

Distributed array: each process stores disjoint local part
int n;
double data[n];

|data | data data
L...n-1 .
.,n-1

N s...n-1

Q,..,n-1,] .. n,...2n-1 .. 2n, pn-1
Local numbering O, ..., Mocal;

global numbering is ‘in your mind’.

Eijkhout: MPI intro

Local and global indexing

Every local array starts at 0 (Fortran: 1);
you have to translate that yourself to global numbering:

int myfirst =

for (int ilocal=0; ilocal<nlocal; ilocal++)
int iglobal = myfirst+ilocal;
array[ilocal] = f(iglobal);

Eijkhout: MPI intro

{

48

Exercise 6 (sumsquares)

We want to compute Zﬁﬂ n?, and we do that as follows by filling in an array
and summing the elements. (Yes, you can do it without an array, but for
purposes of the exercise do it with.)

Read in the global N parameter, and make sure that it is a multiple of the
number P of processors. Your code should produce an error message and exit
immediately if it doesn't.

@ Now allocate the local parts: each processor should allocate only N/P
elements.
(Allocate your array as real numbers. Why are integers not a good idea?)

@ On each processor, initialize the local array so that the i-th location of the
distributed array (for i = 0,...,N — 1) contains (i + 1)2.

@ Now use a collective operation to compute the sum of the array values.
The right value is (2N2 + 3N? + N) /6. Is that what you get?

To debug your program, first start with N = P.

Eijkhout: MPI intro 49

Load balancing

If the distributed array is not perfectly divisible:

int Nglobal, // is something large
Nlocal = Nglobal/ntids,
excess = Nglobal%ntids;
if (mytid==ntids-1)
Nlocal += excess;

This gives a load balancing problem. Better solution?

Eijkhout: MPI intro

50

(for future reference)

Let
f(i) = |iN/p)

and give processor i the points f(i) up to f(i+1).
Result:
IN/p] < f(i+1)—1()) < [N/p]

Eijkhout: MPI intro

51

Inner product calculation

Given vectors x, y:
N—1

xly = Z XiYi
i=0

Start out with a distributed vector.

@ Wrong way: collect the vector on one processor and evaluate.

@ Right way: compute local part, then collect local sums.

local_inprod = 0;
for (i=0; i<localsize; i++)
local_inprod += x[i]*y[i];

MPI_Allreduce(&local_inprod, &global_inprod, 1,MPI_DOUBLE ...

Eijkhout: MPI intro 52

Table of Contents

e Local information exchange

Eijkhout: MPI intro

Motivation

Partial differential equations:
—Au = —Uy(X) — Uy, (X) = £(X) for x € Q = [0, 1] with u(X) = up on 8.
Simple case:
—Uyx = f(X).
Finite difference approximation:

2u(x) —u(x+h)—u(x—h)

12 = f(x, u(x),u(x)) + O(H?),

Eijkhout: MPI intro 54

Motivation (continued)

Equations
—Ui_1+2ui— U = HPf(x;) 1<i<n
2uy — up = MPF(x1) + o
2Up — Up—1 = MPf(Xn) + Unt1.

2 —1 uq h2f1 “+ Ug

So we are interested in sparse/banded matrices.

Eijkhout: MPI intro 55

PDE, 2D case

A difference stencil applied to a two-dimensional square domain, distributed
over processors. A cross-processor connection is indicated.

[] [] [] [)
2
n
k+n
k-1 k|Bs k+1
k-n
n+1n+2 -
Ld [] ° [] [) () °
[] [) [] [] L] [] []
Eichodt: MPI o n-1 [56

Matrices in parallel

y + Ax
and A, x, y all distributed:

Eijkhout: MPI intro

x: local
J

Xj remote

57

Operating on distributed data

Array of numbers x;: i =0,.

..,N
compute

yi= (Xi—1 +Xi+Xi+1)/3: i=1,...,N—1
‘owner computes’

This leads to communication:
0 1 -1 il
o | 1 o 1 |1

so we need a point-to-point mechanism.

iy

ig

Eijkhout: MPI intro

MPI point-to-point mechanism

@ Two-sided communication

@ Matched send and receive calls

@ One process sends to a specific other process
@ Other process does a specific receive.

Eijkhout: MPI intro

59

Ping-pong

A sends to B, B sends back to A

What is the code for A? For B?

Eijkhout: MPI intro

Ping-pong

A sends to B, B sends back to A
Process A executes the code

MPI Send(/* to: */ B
MPI_Recv(/* from: */ B ...

Process B executes

MPI Recv(/* from: */ A ...
MPI_Send(/* to: */ A

Eijkhout: MPI intro

61

Ping-pong in MPI

Remember SPMD:

if (/* I am process A */) {

MPI_Send(/* to: */ B);
MPI_Recv(/* from: */ B ...);

} else if (/* I am process B */) {
MPI Recv(/* from: */ A ...);
MPI_Send(/* to: */ A) ;

Eijkhout: MPI intro

C:

int MPI_Send(
const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Semantics:

IN buf: initial address of send buffer (choice)

IN count: number of elements in send buffer (non-negative integer)
IN datatype: datatype of each send buffer element (handle)

IN dest: rank of destination (integer)

IN tag: message tag (integer)

IN comm: communicator (handle)

Fortran:

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE (*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT (IN) :: count, dest, tag

TYPE (MPI_Datatype), INTENT(IN) :: datatype

TYPE (MPI_Comm), INTENT (IN) :: comm

INTEGER, OPTIONAL, INTENT (OUT) :: ierror

Python native:
MPI.Comm.send(self, obj, int dest, int tag=0)

EikE AR inhmPY 63

C:
int MPI_Recv (
void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Semantics:

OUT buf: initial address of receive buffer (choice)

IN count: number of elements in receive buffer (non-negative integer)
IN datatype: datatype of each receive buffer element (handle)

IN source: rank of source or MPI_ANY_SOURCE (integer)

IN tag: message tag or MPI_ANY_TAG (integer)

IN comm: communicator (handle)

OUT status: status object (Status)

Fortran:

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
TYPE (*), DIMENSION(..) :: buf

INTEGER, INTENT (IN) :: count, source, tag

TYPE (MPI_Datatype), INTENT(IN) :: datatype

TYPE (MPI_Comm), INTENT (IN) :: comm

TYPE (MPI_Status) :: status

INTEGER, OPTIONAL, INTENT (OUT) :: ierror

Eijﬁ%ﬁminwtive : 64

Status object

@ Receive call can have various wildcards

@ MPI_ANY_SOURCE, MPI_ANY_TAG

@ use status object to retrieve actual description of the message
@ use MPI_STATUS_IGNORE if the above does not apply

Eijkhout: MPI intro 65

Exercise 7 (pingpong)

Implement the ping-pong program. Add a timer using MPI_Wt ime. For the
status argument of the receive call, use MPI_STATUS_IGNORE.

@ Run multiple ping-pongs (say a thousand) and put the timer around the
loop. The first run may take longer; try to discard it.

@ Run your code with the two communicating processes first on the same
node, then on different nodes. Do you see a difference?

@ Then modify the program to use longer messages. How does the timing
increase with message size?

For bonus points, can you do a regression to determine o, 3?

Eijkhout: MPI intro 66

Table of Contents

G Blocking communication

Eijkhout: MPI intro

Blocking send/recv

MPI_Send and MPI_Recv are blocking operations:

@ The process waits (‘blocks’) until the operation is concluded.
@ A send can not complete until the receive executes.

.‘ .“’ 7777777777777777 -
““‘ . o
Network
Teell work work
= L

Ideal vs actual send/recv behaviour.

Eijkhout: MPI intro 68

Deadlock

other = 1-mytid; /* 1if I am 0, other is 1; and vice versa */
receive (source=other);
send (target=other);

A subtlety.
This code may actually work:

other = 1-mytid; /* if I am 0, other is 1; and vice versa */
send (target=other);
receive (source=other);

Small messages get sent even if there is no corresponding receive.

Eijkhout: MPI intro 69

Protocol

Communication is a ‘rendez-vous’ or ‘hand-shake’ protocol:

@ Sender: ‘I have data for you’

@ Receiver: ‘| have a buffer ready, send it over’
@ Sender: ‘Ok, here it comes’

@ Receiver: ‘Got it’

Eijkhout: MPI intro 70

Exercise 8

(Classroom exercise) Each student holds a piece of paper in the right hand
— keep your left hand behind your back — and execute the following program:

@ If you are not the rightmost student, turn to the right and give the paper to
your right neighbour.

@ If you are not the leftmost student, turn to your left and accept the paper
from your left neighbour.

Eijkhout: MPI intro 71

TAU trace: serialization

TimeLines -

Eijkhout: MPI intro

The problem here. ..

Here you have a case of a program that computes the right output,
just way too slow.

Beware! Blocking sends/receives can be trouble.
(How would you solve this particular case?)

Eijkhout: MPI intro 73

Table of Contents

ﬂ Pairwise exchange

Eijkhout: MPI intro

Operating on distributed data

Take another look:

Yi= Xi—1 +-X/4-Xﬁ+12 i= 1,...,PV——1
0 1 CECEY l il
0 | 1 1 |1
@ One-dimensional data and linear processor numbering;

@ Operation between neighbouring indices: communication between
neighbouring processors.

- TACC
Eijkhout: MPI intro 75

ig- i1 e

il— iz—l

Not a good solution

p p+1

recv recv

send send

First do all the data movement to the right.

@ Each processor does a send and receive
@ So every do send, then receive?
@ We just saw the problem with that.

Eijkhout: MPI intro 76

Sendrecv
Instead of separate send and receive: use

Semantics:

MPI_SENDRECV (sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status)

IN sendbuf: initial address of send buffer (choice)

IN sendcount: number of elements in send buffer (non-negative integer)
IN sendtype: type of elements in send buffer (handle)

IN dest: rank of destination (integer)

IN sendtag: send tag (integer)

OUT recvbuf: initial address of receive buffer (choice)

IN recvcount: number of elements in receive buffer (non-negative integer)
IN recvtype: type of elements in receive buffer (handle)

IN source: rank of source or MPI_ANY_SOURCE (integer)

IN recvtag: receive tag or MPI_ANY_TAG (integer)

IN comm: communicator (handle)

OUT status: status object (Status)

C:

int MPI_Sendrecv (
Eijkhout: MPlintra. _ + 5 & 11~ R s

Pairwise exchange

p p+1

recv recv

send send

Each p sends to right, receives from left;
then same to the left. (Other possbilities possible.)

Eijkhout: MPI intro 78

Sendrecv with incomplete pairs

MPI_Comm_rank(.... &mytid);

if (/* I am not the first processor */)
predecessor = mytid-1;

else
predecessor = MPI_PROC_NULL;

if (/* I am not the last processor */)
successor = mytid+l;

else
successor = MPI_PROC_NULL;

sendrecv (from=predecessor, to=successor) ;

Eijkhout: MPI intro

Exercise 9 (sendrecv)

Implement the above right-shift scheme using MPI_Sendrecv; every
processor only has a single number to send to its neighbour.

If you have TAU installed, make a trace. Does it look different from the
serialized send/recv code? If you don’t have TAU, run your code with different
numbers of processes and show that the runtime is essentially constant.

Eijkhout: MPI intro 80

Exercise 10

A very simple sorting algorithm

is exchange sort. pairs of processors Even

compare data, and if necessary C_+—] C_+—]

exchange. The elementary step

is called a compare-and-swap': in a pair 0dd

of processors each sends their data to L] L —f 1 L —f 1
the other; one keeps the minimum values,

and the other the maximum. For simplicity, in this exercise we give each processor just a single
number.

The exchange sort algorithm is split in even and odd stages:

@ In the even stage, processors 2/ and 2/ 4+ 1 compare and swap data;
@ In the odd stage, processors 2i + 1 and 2i + 2 compare and swap.

You need to repeat this P/2 times, where P is the number of processors.

Implement this algorithm using MPI_Sendrecv. (You can use MPI_PROC_NULL for the edge
cases, but that is not strictly necessary.) Use a gathercallto} ~ "~ T

distributed array at the beginning and end of the sorting proce

"There is an MPI_Compare_and_swap call. Do not use that

Eijkhout: MPI intro 81

Table of Contents

e Irregular exchanges: non-blocking communication

Eijkhout: MPI intro

Sending with irregular connections

Graph operations:

/\/\/\
NN

Eijkhout: MPI intro

How do you approach this?

@ ltis very hard to figure out a send/receive sequence that does not
deadlock or serialize

@ Even if you manage that, you may have processor idle time.

Instead:

@ Declare ‘this data needs to be sent’ or ‘these messages are expected’,
and

@ then wait for them collectively.

Eijkhout: MPI intro 84

Non-blocking send/recv

// start non-blocking communication

MPI_Isend(...); MPI_Irecv(...);
// wait for the Isend/Irecv calls to finish in any order

MPI Wait(...);

Eijkhout: MPI intro

Syntax
Very much like blocking and

int MPI_Isend(void *buf,

int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm, MPI_Request *request)
int MPI_Irecv(void *buf,

int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Request *request)

The MPI_Request can be tested:

int MPI_Waitall (int count, MPI_Request array_of_requests]],
MPI_Status array_of_statuses][])

(also MPI_Wait, MPI_Waitany, MPI_Waitsome)

Eijkhout: MPI intro 86

Exercise 11 (isendirecv)

Now use nonblocking send/receive routines to implement the three-point
averaging operation

yi= (Xi—1+Xi+Xi+1)/3: i=1,...,N—1

on a distributed array.

iy

1 il
1 iq

iq

i1 e

iq

Eijkhout: MPI intro

Comparison

@ Obvious: blocking vs non-blocking behaviour.
@ Buffer reuse: when a blocking call returns, the buffer is safe for reuse;
@ A buffer in a non-blocking call can only be reused after the wait call.

Eijkhout: MPI intro 88

Buffer use in blocking/non-blocking case

Blocking:

double *buffer;

for (... p ...) {
buffer = // fill in the data
MPI_Send(buffer, ... /* to: */ p);
Non-blocking:

double **buffers;

for (... p ...) {
buffers[p] = // £ill in the data
MPI_Isend(buffers[p], ... /* to: */ p);

Eijkhout: MPI intro

Latency hiding

Other motivation for non-blocking calls:
overlap of computation and communication, provided hardware support.

Also known as ‘latency hiding’.

Example: three-point combination operation (see above):

@ Start communication for edge points,

@ Do local operations while communication goes on,
© Wait for edge points from neighbour processors
© Incorporate incoming data.

Eijkhout: MPI intro 90

Test: non-blocking wait

@ Post non-blocking receives
@ test for incoming messages
@ if nothing comes in, do local work

while (1) {
MPI_Test(/* from: */ ANY_SOURCE, &flag);
if (flag)
// do something with incoming message
else

// do local work

Eijkhout: MPI intro

91

More sends and receive

@ MPI_Bsend, MPI_Ibsend: buffered send
@ MPI_Ssend, MPI_TIssend: synchronous send
@ MPI_Rsend, MPI_Irsend: ready send

too obscure to go into.

Eijkhout: MPI intro 92

Complicated data

Eijkhout: MPI intro

93

Table of Contents

© Discussion

Eijkhout: MPI intro

Non-contiguous data
Matrix in column storage:

@ Columns are contiguous
@ Rows are not contiguous

Logical:

Eijkhout: MPI intro

Physical:
1,1 (1,2) (1,1) (2,1) (3,1) 1,2)
(2,1)
3,1

Submatrix storage

Logical: Physical:

‘ ‘(3,2) (4,2) ‘

‘(3,3) (4,3) ‘

(3,2)

42 (44

@ Location of first element
@ Stride, blocksize

Eijkhout: MPI intro

BLAS/Lapack storage

Three parameter description:
N=3

K——>d

M=3 o

LDA=7

Eijkhout: MPI intro

Datatypes in MPI

We need data structures with gaps, or heterogeneous types.

MPI allows for recursive construction of data types.

@ Elementary types
@ Derived types
@ Packed data

Eijkhout: MPI intro

98

Table of Contents

@ Datatypes

Eijkhout: MPI intro

Elementary datatypes

C/C++ Fortran

MPI_CHAR MPI_CHARACTER
MPI_UNSIGNED_CHAR
MPI_SIGNED_CHAR
MPI_LOGICAL
MPI_SHORT
MPI_UNSIGNED_SHORT
MPI_INT MPI_INTEGER
MPI_UNSIGNED
MPI_LONG
MPI_UNSIGNED_LONG
MPI_FLOAT MPI_REAL

MPI_DOUBLE MPI_DOUBLE_PRECISION
MPI_LONG_DOUBLE
MPI_COMPLEX
MPI_DOUBLE_COMPLEX

Eijkhout: MPI intro

How to use derived types

Create, commit, use, free:

MPI_datatype newtype;
MPI_Type_xxx(... oldtype ... &newtype);
MPI_Type_commit (&newtype);

// code using the new type

MPI_Type_free (&newtype);

The oldtype can be elementary or derived.
Recursively constructed types.

Eijkhout: MPI intro

Contiguous type

int MPI_Type_contiguous (
int count, MPI_Datatype old_type, MPI_Datatype *new_type_p)

< count >

This one is indistinguishable from just sending count instances of the
old_type.

TACC
Eijkhout: MPI intro 102

Vector type

int MPI_Type_vector (
int count, int blocklength, int stride,
MPI_Datatype old_type, MPI_Datatype *newtype_p
)i

—blklen—

k—stride——>

Kl > count 3

2

Used to pick a regular subset of elements from an array.

Eijkhout: MPI intro 103

// vector.c
source = (double*) malloc(stride*count*sizeof (double));
target = (double*) malloc(count*sizeof (double));
MPI_Datatype newvectortype;
if (mytid==sender) {
MPI_Type_vector (count,1,stride,MPI_DOUBLE, &newvectortype);
MPI_Type_commit (&newvectortype);
MPI_Send(source, l,newvectortype,the_other, 0, comm);
MPI_Type_free (&newvectortype);
} else if (mytid==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv (target, count,MPI_DOUBLE, the_other, 0, comm,
&recv_status);
MPI_Get_count (&recv_status,MPI_DOUBLE, &recv_count) ;
ASSERT (recv_count==count) ;

Eijkhout: MPI intro 104 @

Different send and receive types
Sender type: vector
receiver type: contiguous or elementary

F count {
1 2 3

blklen—t

c—— count * blklen———>i

Receiver has no knowledge of the stride of the sender.

Eijkhout: MPI intro 105

Exercise 12

Let processor 0 have an array x of length 10P, where P is the number of
processors. Elements 0, P,2P, ..., 9P should go to processor zero,
1,P+1,2P+1,... to processor 1, et cetera. Code this as a sequence of
send/recv calls, using a vector datatype for the send, and a contiguous buffer
for the receive.

For simplicity, skip the send to/from zero. What is the most elegant solution if
you want to include that case?

For testing, define the array as x[i] = i.

Eijkhout: MPI intro 106

Indexed type

blklenl blklen2 blklen3
= S K >f <>
Lo count = 3
|
(/] TS 11
L displacements e —

int MPI_Type_indexed(
int count, int blocklens[], int displacements][],
MPI_Datatype old_type, MPI_Datatype *newtype);

Also hindexed with byte offsets.

Eijkhout: MPI intro 107 @

Heterogeneous: Structure type

int MPI_Type_create_struct (

int count, int blocklengths[], MPI_Aint displacements[],
MPI_Datatype types[], MPI_Datatype *newtype);

kblklen 1> Kk

blklen2 blklen3

1

type 1 type 2 type 3 count = 3

I — I —_—————
1 dliplacements

3

This gets very tedious. ..

Eijkhout: MPI intro 108

Table of Contents

Q Packed data

Eijkhout: MPI intro

Packing into buffer

int MPI_Pack (
void *inbuf, int incount, MPI_Datatype datatype,
void *outbuf, int outcount, int *position,
MPI_Comm comm) ;

int MPI_Unpack(
void *inbuf, int insize, int *position,
void *outbuf, int outcount, MPI_Datatype datatype,
MPI_Comm comm) ;

Eijkhout: MPI intro 110

Example

// pack.c
if (mytid==sender) {
MPI_Pack (&nsends,1,MPI_INT,buffer,buflen, &position, comm);
for (int i1=0; i<nsends; i++) {
double value = rand()/(double)RAND_MAX;
MPI_Pack (&value,1,MPI_DOUBLE, buffer,buflen, &éposition, comm) ;
}
MPI_Pack (&nsends,1,MPI_INT,buffer,buflen, &position, comm);
MPI_Send (buffer,position,MPI_PACKED, other, 0, comm) ;
} else if (mytid==receiver) {
int irecv_value;
double xrecv_value;
MPI_Recv (buffer,buflen,MPI_PACKED, other, 0, comm,MPI_STATUS_IGNORE) ;
MPI_Unpack (buffer,buflen, &éposition, &nsends,1,MPI_INT, comm) ;
for (int i=0; i<nsends; i++) {
MPI_Unpack (buffer,buflen, &position, &xrecv_value,1,MPI_DOUBLE, comm
}
MPI_Unpack (buffer,buflen, &éposition, &irecv
ASSERT (irecv_value==nsends) ; TAcc
111

Eijkhout: MPI intro

Sub-computations

Eijkhout: MPI intro

Sub-computations

Simultaneous groups of processes, doing different tasks, but loosely
interacting:

@ Simulation pipeline: produce input data, run simulation, post-process.
@ Climate model: separate groups for air, ocean, land, ice.

@ Quicksort: split data in two, run quicksort independently on the halves.
@ Processor grid: do broadcast in each column.

New communicators are formed recursively from MPI_COMM_WORLD.

Eijkhout: MPI intro 113

Communicator duplication

Simplest new communicator: identical to a previous one.
int MPI_Comm_dup (MPI_Comm comm, MPI_Comm *newcomm)
This is useful for library writers:

MPI_Isend(...); MPI_Irecv(...);
// library call
MPI_Waitall(...);

Eijkhout: MPI intro 114

Use of a library

library my_library (comm) ;
MPI_Isend(&sdata,l,MPI_INT,other,1,comm, & (request[0]));
my_library.communication_start();
MPI_Irecv(&rdata,l,MPI_INT,other,MPI_ANY_ TAG,

comm, & (request [1]));
MPI_Waitall (2, request, status);
my_library.communication_end();

Eijkhout: MPI intro

Use of a library

int library::communication_start () {
int sdata=6,rdata;
MPI_Isend(&sdata,l,MPI_INT,other,2,comm, & (request[0]));
MPI_TIrecv(&rdata,l,MPI_INT,other,MPI_ANY TAG,

comm, & (request[1]));
return 0;

}

int library::communication_end() {
MPI_Status status[2];
MPI_Waitall (2, request, status);
return 0;

}

Eijkhout: MPI intro

Wrong way

// commdup_wrong.cxx
class library {
private:
MPI_Comm comm;
int mytid,ntids, other;
MPI_Request *request;
public:
library (MPI_Comm incomm) {
comm = incomm;
MPI_Comm_rank (comm, &mytid) ;
other = 1-mytid;
request = new MPI_Request[2];
i
int communication_start();
int communication_end();

i

Eijkhout: MPI intro

117

Right way

// commdup_right.cxx
class library {
private:
MPI_Comm comm;
int mytid,ntids, other;
MPI_Request *request;
public:
library (MPI_Comm incomm) {
MPI_Comm_dup (incomm, &comm) ;
MPI_Comm_rank (comm, &mytid) ;
other = 1-mytid;
request = new MPI_Request[2];
i
“library() {
MPI_Comm_free (&comm) ;
}

int communication_start();
Eijkhout: MPI intro

Disjoint splitting

Split a communicator in multiple disjoint others.

Give each process a ‘colour’, group processes by colour:

int MPI_Comm_split (MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

Eijkhout: MPI intro 119

Row/column example

MPI_Comm_rank (MPI_COMM_WORLD, &mytid);
proc_i = mytid % proc_column_length;
proc_j = mytid / proc_column_length;

MPI_Comm column_comm;
MPI_Comm_split (MPI_COMM_WORLD, proc_j, mytid, &column_comm);

MPI_Bcast (data, ... column_comm);

) _ TACC
Eijkhout: MPI intro 120

Exercise 13

Organize your processes in a grid, and make subcommunicators for the rows and columns.
First let each processor print out its global rank, column number and rank, and row number and
rank. Then, design a gather operation that lets the root print out the state of all processors as a
nicely formatted matrix. For instance, a 2 x 3 processor grid should print:

Global ranks:

0 1 2
3 4 4
Row ranks:
0 1 2
0 1 2

Initialize all processes in the first row with their column number and the ones in the first column
with their row number; all others should be set to zero. Use a gather operation to print out this
state of affairs.

Now do a broadcast from the first row and column through the columns and rows respectively;
processor (i,j) winds up with the numbers i and j. Again use a gather to print this out.

Run your code on different number of processes, for instance
that is a power of 2, or that is a prime number. This is one occ

Eiikdaia: M3 inf@rmally you would never put a processor count on : 121

More

@ Non-disjoint subcommunicators through process groups.
@ Intra-communicators and inter-communicators.

@ Process topologies: cartesian and graph.

Eijkhout: MPI intro

122

One-sided communication

Motivation

With two-sided messaging, you can not just put data on a different processor:
the other has to expect it and receive it.

@ Sparse matrix: it is easy to know what you are receiving, not what you
need to send. Usually solved with complicated preprocessing step.

@ Neuron simulation: spiking neuron propagates information to neighbours.
Uncertain when this happens.

@ Other irregular data structures: linked lists, hash tables.

Eijkhout: MPI intro 124

One-sided concepts

' Window > Get
y 4 Data -——) Put

Py Py i/ Py b

@ A process has a window that other processes can access.
@ Origin: process doing a one-sided call; target: process being accessed.
@ One-sided calls: MPI_Put, MPI_Get, MPI_Accumulate.

@ Various synchronization mechanisms.

Eijkhout: MPI intro 125 @

Active target synchronization

All processes call MPI_Win_fence. Epoch is between fences:

MPI_Win_fence (MPI_MODE_NOPRECEDE, win);
if (mytid==producer)

MPI_Put (/* operands */, win);
MPI_Win_fence (MPI_MODE_NOSUCCEED, win);

Second fence indicates that one-sided communication is concluded:
target knows that data has been put.

Eijkhout: MPI intro 126

Window creation

' Window
- y 4

T 1 communicator

MPI_Win_create (void *base, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

@ size: in bytes
@ disp_unit: sizeof (type)
@ Also: MPI_Win_allocate, can use dedicate

Eijboud: MBPLIOIO v 11 T 772 o o nbvmim A mim o T T e

C:
int MPI_Put (

const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype targe

MPI_Win win)

Semantics:

IN origin_addr: initial address of origin buffer (choice)

IN origin_count: number of entries in origin buffer (non-negative integer)

IN origin_datatype: datatype of each entry in origin buffer (handle)

IN target_rank: rank of target (non-negative integer)

IN target_disp: displacement from start of window to target buffer (non-negat
IN target_count: number of entries in target buffer (non-negative integer)

IN target_datatype: datatype of each entry in target buffer (handle)

IN win: window object used for communication (handle)

Fortran:

MPI_Put (origin_addr, origin_count, origin_datatype,

target_rank, target_disp, target_count, target_datatype, win, ierror)

TYPE (*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS
INTEGER, INTENT(IN) :: origin_count, target_rank
TYPE (MPI_Datatype), INTENT(IN) :: origin_datatyg

)
INTEGER (KIND=MPI_ADDRESS_KIND), INTENT (IN) :: ta
EiTYREMPT, Win), INTENT(IN) :: win

: origin_addr

128

Exercise 14
Write code where process 0 randomly writes in the window on 1 or 2.

// randomput_skl.c
MPI_Win_create (&window_data, sizeof (int), sizeof (int),
MPI_INFO_NULL, comm, &the_window) ;

for (int c=0; c<10; c++) {
float randomfraction = (rand() / (double)RAND_MAX) ;
if (randomfraction>.5)
other = 2;
else other = 1;
window_data = 0;
your_code_goes_here.........
my_sum += window_data;

if (mytid>0 && mytid<3)
EikhounMPlintto £ (" S11m on %3+ <4A\n" mutid mv <eiim 129

A second active synchronization

Use Post,Wait, Start, Complete calls

group

group

complete

wait

More fine-grained than fences.

Eijkhout: MPI intro

Passive target synchronization
Lock a window on the target:

MPI_Win_lock (int locktype, int rank, int assert, MPI_Win win)
MPI_Win_unlock (int rank, MPI_Win win)

Atomic operations:

int MPI_Fetch_and_op(const void *origin_addr, void *result_addr

MPI_Datatype datatype, int target_rank, MPI_Aint target,
MPI_Op op, MPI_Win win)

Eijkhout: MPI intro 131

// passive.cxx
if (mytid==repository) {
// Repository processor creates a table of inputs
// and associates that with the window
}
if (mytid!=repository) {
float contribution=(float)mytid,table_element;
int loc=0;
MPI_Win_lock (MPI_LOCK_EXCLUSIVE, repository, 0, the_window);
// read the table element by getting the result from adding z
err = MPI_Fetch_and_op
(&contribution, &étable_element,MPI_FLOAT,
repository,loc,MPI_SUM, the_window); CHK(err);
MPI_Win_unlock (repository,the_window);

Eijkhout: MPI intro 132 @

Index

@ compare-and-swap, 81
MPI_Accumulate, 125
MPI_Allgather, 36
MPI_ANY SOURCE, 65
MPI_ANY_ TAG, 65
MPI_CHAR, 100
MPI_COMM_WORLD, 15, 27, 113
MPI_DOUBLE, 100
MPI_DOUBLE_PRECISION, 100
MPI_FLOAT, 27, 100
MPI_Gatherv, 40
MPI_Get, 125
MPI_INT, 27,100
MPI_INTEGER, 100
MPI_MAX, 31
MPI_Op, 31
MPI_Put, 125,128
MPI_REAL, 100
MPI_Recv, 64, 68

Eijkhout: MPI intro

© 0 060006006 00606060GOGOGES

MPI_Request, 86
MPI_Scatterv, 25
MPI_Send, 63, 68
MPI_Sendrecv, 77
MPI_STATUS_IGNORE, 65, 66
MPI_SUM, 31
MPI_Wait, 86
MPI_Waitany, 86
MPI_Waitsome, 86
MPI_Win_allocate, 127
MPI_Win_fence, 126
MPI_Win_free, 127
mpicc, 7

mpicxx, 7

mpif90,7

sort

exchange, 81

window, 12

133

	The SPMD model
	Collectives
	Point-to-point communication
	Complicated data
	Sub-computations
	One-sided communication

