
Tutorial on MPI programming
Victor Eijkhout
SSiASC 2016

Eijkhout: MPI intro 1

Justification

The MPI library is the main tool for parallel programming on a large scale. This
course introduces the main concepts through lecturing and exercises.

Eijkhout: MPI intro 2

The SPMD model

Eijkhout: MPI intro 3

Computers when MPI was designed

One process per node; all communication goes through the network.

Eijkhout: MPI intro 4

Pure MPI

A node has multiple sockets, each with multiple cores.
Pure MPI puts a process on each core: pretend shared memory doesn’t exist.

Eijkhout: MPI intro 5

Hybrid programming

Hybrid programming puts a process per node or per socket;
further parallelism comes from threading.

Eijkhout: MPI intro 6

Compiling running

MPI compilers are usually called mpicc, mpif90, mpicxx. Use mpicc and
such. These are not separate compilers, but scripts around the regular
C/Fortran compiler.

Run your program with

mpiexec -n 4 hostfile ... yourprogram arguments

At TACC: ibrun yourprog without the number of procs.

Eijkhout: MPI intro 7

Lab setup

Open two windows on stampede.

In one window you will be editing and compiling;

in the other, type idev -N 2 -n 32 -t 4:0:0 which gives you an
interactive session of 2 nodes, 32 cores, for the next 4 hours.

The C compiler is mpicc, C++ is mpicxx, Fortran is mpif90. To run (on a
compute node!) type ibrun yourprog.

No hostfiles or processor count needed!

Eijkhout: MPI intro 8

MPI Init / Finalize

You need an include file:

#include "mpi.h" // for C
#include "mpif.h" ! for Fortran

Then put these calls around your code:

ierr = MPI_Init(&argc,&argv); // zeros allowed
// your code
ierr = MPI_Finalize();

and for Fortran:

call MPI_Init(ierr)
! your code
call MPI_Finalize(ierr)

Eijkhout: MPI intro 9

About error codes

MPI routines return an integer error code

In C: function result. Can be ignored.

In Fortran: as parameter.

In Python: throwing exception.

There’s actually not a lot you can do with an error code:
very hard to recover from errors in parallel.

Eijkhout: MPI intro 10

Python bindings

module python

from mpi4py import MPI

Run:

ibrun python-mpi yourprogram.py

No initialization needed.

Eijkhout: MPI intro 11

About routine prototypes: C

Prototype:

int MPI_Comm_size(MPI_Comm comm,int *nprocs)

Use:

MPI_Comm comm = MPI_COMM_WORLD;
int nprocs;
int errorcode;
errorcode = MPI_Comm_world(MPI_COMM_WORLD,&nprocs

Eijkhout: MPI intro 12

About routine prototypes: Fortran

Prototype

MPI_Comm_size(comm, size, ierror)
INTEGER, INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Use:

integer :: comm = MPI_COMM_WORLD
integer :: size
CALL MPI_Comm_size(comm, size, ierr)

Final parameter always error parameter. Do not forget!
Most MPI_... types are INTEGER.

Eijkhout: MPI intro 13

About routine prototypes: Python

Prototype:

object method
MPI.Comm.Send(self, buf, int dest, int tag=0)
class method
MPI.Request.Waitall(type cls, requests, statuses=None)

Use:

from mpi4py import MPI
comm = MPI.COMM_WORLD
comm.Send(sendbuf,dest=other)
MPI.Request.Waitall(requests)

Eijkhout: MPI intro 14

Processor identification

Every processor has a number (with respect to a communicator)

int MPI_Comm_rank(MPI_Comm comm, int *rank)
int MPI_Comm_size(MPI_Comm comm, int *size)

For now, the communicator will be MPI_COMM_WORLD.

Note: mapping of ranks to actual processors and cores is not predictable!

Eijkhout: MPI intro 15

Exercise 1 (commrank)

Write a program where each process prints out message reporting its number,
and how many processes there are.

Write a second version of this program, where each process opens a unique
file and writes to it. On some clusters this may not be advisable if you have
large numbers of processors, since it can overload the file system.

Eijkhout: MPI intro 16

Exercise 2 (commrank)

Write a program where only the process with number zero reports on how
many processes there are in total.

Eijkhout: MPI intro 17

Functional Parallelism

Parallelism by letting each processor do a different thing.

Example: divide up a search space.

Each processor knows its rank, so it can find its part of the search space.

Eijkhout: MPI intro 18

Exercise 3 (prime)

Is the number N = 2,000,000,111 prime? Let each process test a range of
integers, and print out any factor they find. You don’t have to test all
integers < N: any factor is at most

√
N ≈ 45,200.

Eijkhout: MPI intro 19

Collectives

Eijkhout: MPI intro 20

Table of Contents

1 Introduction

2 Simple collectives

3 Advanced collectives

Eijkhout: MPI intro 21

Collectives

Gathering and spreading information:

Every process has data, you want to bring it together;

One process has data, you want to spread it around.

Root process: the one doing the collecting or disseminating.

Basic cases:

Collect data: gather.

Collect data and compute some overall value (sum, max): reduction.

Send the same data to everyone: broadcast.

Send individual data to each process: scatter.

Eijkhout: MPI intro 22

Eijkhout: MPI intro 23

Exercise 4

How would you realize the following scenarios with MPI collectives?

Let each process compute a random number. You want to print the
maximum of these numbers to your screen.

Each process computes a random number again. Now you want to scale
these numbers by their maximum.

Let each process compute a random number. You want to print on what
processor the maximum value is computed.

Eijkhout: MPI intro 24

More collectives

Instead of a root, collect to all: MPI_All...

Scatter individual data, but also individual size: MPI_Scatterv

Everyone broadcasts: all-to-all

Scan: like a reduction, but with partial results

. . . and more

Eijkhout: MPI intro 25

Table of Contents

1 Introduction

2 Simple collectives

3 Advanced collectives

Eijkhout: MPI intro 26

Broadcast

int MPI_Bcast(
void *buffer, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

All processes call with the same argument list

root is the rank of the process doing the broadcast

Each process allocates buffer space;
root explicitly fills in values,
all others receive values through broadcast call.

Datatype is MPI_FLOAT, MPI_INT et cetera, different between C/Fortran.

comm is usually MPI_COMM_WORLD

Eijkhout: MPI intro 27

Buffers in C

General principle: buffer argument is address in memory of the data.

Buffer is void pointer:

write &x or (void*)&x for scalar

write x or (void*)x for array

Eijkhout: MPI intro 28

Buffers in Fortran

General principle: buffer argument is address in memory of the data.

Fortran always passes by reference:

write x for scalar

write x for array

Eijkhout: MPI intro 29

Buffers in Python

For many routines there are two variants:

lowercase: can send Python objects;
output is return result
this uses pickle: slow.

uppercase: communicates numpy objects;
input and output are function argument.

Eijkhout: MPI intro 30

Reduction

int MPI_Reduce
(void *sendbuf, void *recvbuf,
int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

Compare buffers to bcast

recvbuf is ignored on non-root processes

MPI_Op is MPI_SUM, MPI_MAX et cetera.

Eijkhout: MPI intro 31

Allreduce

Regular reduce: great for printing out summary information at the end of your
job.

Often: everyone needs the result of a reduction

y ← x/‖x‖

int MPI_Allreduce(const void* sendbuf,
void* recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

Eijkhout: MPI intro 32

Why use allreduce?

Instead of reduce and broadcast.

One line less code.

Gives the implementation more possibilities for optimization.

Is actually twice as fast: allreduce same time as reduce.

Eijkhout: MPI intro 33

Exercise 5 (randommax)

Write a program where each process computes a random number, after which
the maximum value over all processors is found. Each process then scales its
value by this maximum. Use the MPI_Allreduce routine.

Eijkhout: MPI intro 34

Random numbers

C:

// Initialize the random number generator
srand(mytid*(double)RAND_MAX/ntids);
// compute a random number
randomfraction = (rand() / (double)RAND_MAX);

Fortran:

integer :: randsize
integer,allocatable,dimension(:) :: randseed
real :: random_value

call random_seed(size=randsize)
allocate(randseed(randsize))
do i=1,randsize

randseed(i) = 1023*mytid
end do
call random_seed(put=randseed)

Eijkhout: MPI intro 35

Gather/Scatter

int MPI_Gather(
void *sendbuf, int sendcnt, MPI_Datatype sendtype,
void *recvbuf, int recvcnt, MPI_Datatype recvtype,
int root, MPI_Comm comm

);
int MPI_Scatter
(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

Compare buffers to reduce

Scatter: the sendcount / Gather: the recvcount:
this is not, as you might expect, the total length of the buffer; instead, it is
the amount of data to/from each process.

Also: MPI_Allgather

Eijkhout: MPI intro 36

Table of Contents

1 Introduction

2 Simple collectives

3 Advanced collectives

Eijkhout: MPI intro 37

Scan

Scan or ‘parallel prefix’: reduction with partial results

Useful for indexing operations:

Each processor has an array of np elements;

My first element has global number ∑q<p nq .

Eijkhout: MPI intro 38

V-type collectives

Gather/scatter but with individual sizes

Requires displacement in the gather/scatter buffer

Eijkhout: MPI intro 39

C:
int MPI_Gatherv(
const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, const int recvcounts[], const int displs[],
MPI_Datatype recvtype, int root, MPI_Comm comm)

Semantics:
IN sendbuf: starting address of send buffer (choice)
IN sendcount: number of elements in send buffer (non-negative integer)
IN sendtype: data type of send buffer elements (handle)
OUT recvbuf: address of receive buffer (choice, significant only at root)
IN recvcounts: non-negative integer array (of length group size) containing the number of elements that are received from each process (significant only at root)
IN displs: integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from process i (significant only at root)
IN recvtype: data type of recv buffer elements (significant only at root) (handle)
IN root: rank of receiving process (integer)
IN comm: communicator (handle)

Fortran:
MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
Gatherv(self, sendbuf, [recvbuf,counts], int root=0)

How to read routine prototypes: 12.

Eijkhout: MPI intro 40

All-to-all

Every process does a scatter;

each individual data

Very rarely needed.

Eijkhout: MPI intro 41

Barrier

Synchronize processors:

each process waits at the barrier until all processes have reached the
barrier

This routine is almost never needed

One conceivable use: timing

Eijkhout: MPI intro 42

Naive realization of collectives

Broadcast:

Message time is modeled as
α + βn

Time for collective? Can you improve on that?

Eijkhout: MPI intro 43

Better implementation of collective

What is the running time now?

Eijkhout: MPI intro 44

Point-to-point communication

Eijkhout: MPI intro 45

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 46

Distributed data

Distributed array: each process stores disjoint local part

Local numbering 0, . . . ,nlocal;
global numbering is ‘in your mind’.

Eijkhout: MPI intro 47

Local and global indexing

Every local array starts at 0 (Fortran: 1);
you have to translate that yourself to global numbering:

int myfirst =;
for (int ilocal=0; ilocal<nlocal; ilocal++) {

int iglobal = myfirst+ilocal;
array[ilocal] = f(iglobal);

}

Eijkhout: MPI intro 48

Exercise 6 (sumsquares)

We want to compute ∑
N
n=1 n2, and we do that as follows by filling in an array

and summing the elements. (Yes, you can do it without an array, but for
purposes of the exercise do it with.)

Read in the global N parameter, and make sure that it is a multiple of the
number P of processors. Your code should produce an error message and exit
immediately if it doesn’t.

Now allocate the local parts: each processor should allocate only N/P
elements.
(Allocate your array as real numbers. Why are integers not a good idea?)
On each processor, initialize the local array so that the i-th location of the
distributed array (for i = 0, . . . ,N−1) contains (i + 1)2.
Now use a collective operation to compute the sum of the array values.
The right value is (2N3 + 3N2 + N)/6. Is that what you get?

To debug your program, first start with N = P.

Eijkhout: MPI intro 49

Load balancing

If the distributed array is not perfectly divisible:

int Nglobal, // is something large
Nlocal = Nglobal/ntids,
excess = Nglobal%ntids;

if (mytid==ntids-1)
Nlocal += excess;

This gives a load balancing problem. Better solution?

Eijkhout: MPI intro 50

(for future reference)

Let
f (i) = biN/pc

and give processor i the points f (i) up to f (i + 1).
Result:

bN/pc ≤ f (i + 1)− f (i)≤ dN/pe

Eijkhout: MPI intro 51

Inner product calculation

Given vectors x ,y :

x ty =
N−1

∑
i=0

xiyi

Start out with a distributed vector.

Wrong way: collect the vector on one processor and evaluate.

Right way: compute local part, then collect local sums.

local_inprod = 0;
for (i=0; i<localsize; i++)
local_inprod += x[i]*y[i];

MPI_Allreduce(&local_inprod, &global_inprod, 1,MPI_DOUBLE ...)

Eijkhout: MPI intro 52

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 53

Motivation

Partial differential equations:

−∆u =−uxx (x̄)−uyy (x̄) = f (x̄) for x̄ ∈ Ω = [0,1]2 with u(x̄) = u0 on δΩ.

Simple case:
−uxx = f (x).

Finite difference approximation:

2u(x)−u(x + h)−u(x−h)

h2 = f (x ,u(x),u′(x)) + O(h2),

Eijkhout: MPI intro 54

Motivation (continued)

Equations
−ui−1 + 2ui −ui+1 = h2f (xi) 1 < i < n

2u1−u2 = h2f (x1) + u0

2un−un−1 = h2f (xn) + un+1. 2 −1
−1 2 −1

.

u1

u2
...

=

h2f1 + u0

h2f2
...

 (1)

So we are interested in sparse/banded matrices.

Eijkhout: MPI intro 55

PDE, 2D case

A difference stencil applied to a two-dimensional square domain, distributed
over processors. A cross-processor connection is indicated.

The ghost region of a processor, induced by a stencil

Eijkhout: MPI intro 56

Matrices in parallel

y ← Ax

and A,x ,y all distributed:

Eijkhout: MPI intro 57

Operating on distributed data

Array of numbers xi : i = 0, . . . ,N
compute

yi =
(
xi−1 + xi + xi+1

)
/3 : i = 1, . . . ,N−1

’owner computes’
This leads to communication:

so we need a point-to-point mechanism.

Eijkhout: MPI intro 58

MPI point-to-point mechanism

Two-sided communication

Matched send and receive calls

One process sends to a specific other process

Other process does a specific receive.

Eijkhout: MPI intro 59

Ping-pong

A sends to B, B sends back to A

What is the code for A? For B?

Eijkhout: MPI intro 60

Ping-pong

A sends to B, B sends back to A

Process A executes the code

MPI_Send(/* to: */ B);
MPI_Recv(/* from: */ B ...);

Process B executes

MPI_Recv(/* from: */ A ...);
MPI_Send(/* to: */ A);

Eijkhout: MPI intro 61

Ping-pong in MPI

Remember SPMD:

if (/* I am process A */) {
MPI_Send(/* to: */ B);
MPI_Recv(/* from: */ B ...);

} else if (/* I am process B */) {
MPI_Recv(/* from: */ A ...);
MPI_Send(/* to: */ A);

}

Eijkhout: MPI intro 62

C:
int MPI_Send(
const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Semantics:
IN buf: initial address of send buffer (choice)
IN count: number of elements in send buffer (non-negative integer)
IN datatype: datatype of each send buffer element (handle)
IN dest: rank of destination (integer)
IN tag: message tag (integer)
IN comm: communicator (handle)

Fortran:
MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python native:
MPI.Comm.send(self, obj, int dest, int tag=0)
Python numpy:
MPI.Comm.Send(self, buf, int dest, int tag=0)

How to read routine prototypes: 12.

Eijkhout: MPI intro 63

C:
int MPI_Recv(
void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Semantics:
OUT buf: initial address of receive buffer (choice)
IN count: number of elements in receive buffer (non-negative integer)
IN datatype: datatype of each receive buffer element (handle)
IN source: rank of source or MPI_ANY_SOURCE (integer)
IN tag: message tag or MPI_ANY_TAG (integer)
IN comm: communicator (handle)
OUT status: status object (Status)

Fortran:
MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python native:
recvbuf = Comm.recv(self, buf=None, int source=ANY_SOURCE, int tag=ANY_TAG,

Status status=None)
Python numpy:
Comm.Recv(self, buf, int source=ANY_SOURCE, int tag=ANY_TAG,

Status status=None)

How to read routine prototypes: 12.

Eijkhout: MPI intro 64

Status object

Receive call can have various wildcards

MPI_ANY_SOURCE, MPI_ANY_TAG

use status object to retrieve actual description of the message

use MPI_STATUS_IGNORE if the above does not apply

Eijkhout: MPI intro 65

Exercise 7 (pingpong)

Implement the ping-pong program. Add a timer using MPI_Wtime. For the
status argument of the receive call, use MPI_STATUS_IGNORE.

Run multiple ping-pongs (say a thousand) and put the timer around the
loop. The first run may take longer; try to discard it.

Run your code with the two communicating processes first on the same
node, then on different nodes. Do you see a difference?

Then modify the program to use longer messages. How does the timing
increase with message size?

For bonus points, can you do a regression to determine α,β?

Eijkhout: MPI intro 66

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 67

Blocking send/recv

MPI_Send and MPI_Recv are blocking operations:

The process waits (‘blocks’) until the operation is concluded.

A send can not complete until the receive executes.

Ideal vs actual send/recv behaviour.

Eijkhout: MPI intro 68

Deadlock

other = 1-mytid; /* if I am 0, other is 1; and vice versa */
receive(source=other);
send(target=other);

A subtlety.
This code may actually work:

other = 1-mytid; /* if I am 0, other is 1; and vice versa */
send(target=other);
receive(source=other);

Small messages get sent even if there is no corresponding receive.

Eijkhout: MPI intro 69

Protocol

Communication is a ‘rendez-vous’ or ‘hand-shake’ protocol:

Sender: ‘I have data for you’

Receiver: ‘I have a buffer ready, send it over’

Sender: ‘Ok, here it comes’

Receiver: ‘Got it.’

Eijkhout: MPI intro 70

Exercise 8

(Classroom exercise) Each student holds a piece of paper in the right hand
– keep your left hand behind your back – and execute the following program:

1 If you are not the rightmost student, turn to the right and give the paper to
your right neighbour.

2 If you are not the leftmost student, turn to your left and accept the paper
from your left neighbour.

Eijkhout: MPI intro 71

TAU trace: serialization

Eijkhout: MPI intro 72

The problem here. . .

Here you have a case of a program that computes the right output,
just way too slow.

Beware! Blocking sends/receives can be trouble.
(How would you solve this particular case?)

Eijkhout: MPI intro 73

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 74

Operating on distributed data

Take another look:

yi = xi−1 + xi + xi+1 : i = 1, . . . ,N−1

One-dimensional data and linear processor numbering;
Operation between neighbouring indices: communication between
neighbouring processors.

Eijkhout: MPI intro 75

Not a good solution

First do all the data movement to the right.

Each processor does a send and receive

So every do send, then receive?

We just saw the problem with that.

Eijkhout: MPI intro 76

Sendrecv

Instead of separate send and receive: use

Semantics:

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status)
IN sendbuf: initial address of send buffer (choice)
IN sendcount: number of elements in send buffer (non-negative integer)
IN sendtype: type of elements in send buffer (handle)
IN dest: rank of destination (integer)
IN sendtag: send tag (integer)
OUT recvbuf: initial address of receive buffer (choice)
IN recvcount: number of elements in receive buffer (non-negative integer)
IN recvtype: type of elements in receive buffer (handle)
IN source: rank of source or MPI_ANY_SOURCE (integer)
IN recvtag: receive tag or MPI_ANY_TAG (integer)
IN comm: communicator (handle)
OUT status: status object (Status)

C:
int MPI_Sendrecv(

const void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

Fortran:
MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source,
recvtag
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
Sendrecv(self, sendbuf, int dest, int sendtag=0,

recvbuf=None, int source=ANY_SOURCE, int recvtag=ANY_TAG,
Status status=None)

How to read routine prototypes: 12.

Eijkhout: MPI intro 77

Pairwise exchange

Each p sends to right, receives from left;
then same to the left. (Other possbilities possible.)

Eijkhout: MPI intro 78

Sendrecv with incomplete pairs

MPI_Comm_rank(.... &mytid);
if (/* I am not the first processor */)
predecessor = mytid-1;

else
predecessor = MPI_PROC_NULL;

if (/* I am not the last processor */)
successor = mytid+1;

else
successor = MPI_PROC_NULL;

sendrecv(from=predecessor,to=successor);

Eijkhout: MPI intro 79

Exercise 9 (sendrecv)

Implement the above right-shift scheme using MPI_Sendrecv; every
processor only has a single number to send to its neighbour.

If you have TAU installed, make a trace. Does it look different from the
serialized send/recv code? If you don’t have TAU, run your code with different
numbers of processes and show that the runtime is essentially constant.

Eijkhout: MPI intro 80

Exercise 10

A very simple sorting algorithm
is exchange sort: pairs of processors
compare data, and if necessary
exchange. The elementary step
is called a compare-and-swap1: in a pair
of processors each sends their data to
the other; one keeps the minimum values,
and the other the maximum. For simplicity, in this exercise we give each processor just a single
number.

The exchange sort algorithm is split in even and odd stages:

In the even stage, processors 2i and 2i +1 compare and swap data;

In the odd stage, processors 2i +1 and 2i +2 compare and swap.

You need to repeat this P/2 times, where P is the number of processors.

Implement this algorithm using MPI_Sendrecv. (You can use MPI_PROC_NULL for the edge

cases, but that is not strictly necessary.) Use a gather call to print the global state of the

distributed array at the beginning and end of the sorting process.
1There is an MPI Compare and swap call. Do not use that.

Eijkhout: MPI intro 81

Table of Contents

4 Distributed data

5 Local information exchange

6 Blocking communication

7 Pairwise exchange

8 Irregular exchanges: non-blocking communication

Eijkhout: MPI intro 82

Sending with irregular connections

Graph operations:

Eijkhout: MPI intro 83

How do you approach this?

It is very hard to figure out a send/receive sequence that does not
deadlock or serialize

Even if you manage that, you may have processor idle time.

Instead:

Declare ‘this data needs to be sent’ or ‘these messages are expected’,
and

then wait for them collectively.

Eijkhout: MPI intro 84

Non-blocking send/recv

// start non-blocking communication
MPI_Isend(...); MPI_Irecv(...);
// wait for the Isend/Irecv calls to finish in any order
MPI_Wait(...);

Eijkhout: MPI intro 85

Syntax

Very much like blocking send and recv :

int MPI_Isend(void *buf,
int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm, MPI_Request *request)

int MPI_Irecv(void *buf,
int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Request *request)

The MPI_Request can be tested:

int MPI_Waitall(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

(also MPI_Wait, MPI_Waitany, MPI_Waitsome)

Eijkhout: MPI intro 86

Exercise 11 (isendirecv)

Now use nonblocking send/receive routines to implement the three-point
averaging operation

yi =
(
xi−1 + xi + xi+1

)
/3 : i = 1, . . . ,N−1

on a distributed array.

Eijkhout: MPI intro 87

Comparison

Obvious: blocking vs non-blocking behaviour.

Buffer reuse: when a blocking call returns, the buffer is safe for reuse;

A buffer in a non-blocking call can only be reused after the wait call.

Eijkhout: MPI intro 88

Buffer use in blocking/non-blocking case

Blocking:

double *buffer;
for (... p ...) {

buffer = // fill in the data
MPI_Send(buffer, ... /* to: */ p);

Non-blocking:

double **buffers;
for (... p ...) {

buffers[p] = // fill in the data
MPI_Isend(buffers[p], ... /* to: */ p);

Eijkhout: MPI intro 89

Latency hiding

Other motivation for non-blocking calls:
overlap of computation and communication, provided hardware support.

Also known as ‘latency hiding’.

Example: three-point combination operation (see above):

1 Start communication for edge points,
2 Do local operations while communication goes on,
3 Wait for edge points from neighbour processors
4 Incorporate incoming data.

Eijkhout: MPI intro 90

Test: non-blocking wait

Post non-blocking receives

test for incoming messages

if nothing comes in, do local work

while (1) {
MPI_Test(/* from: */ ANY_SOURCE, &flag);
if (flag)

// do something with incoming message
else

// do local work
}

Eijkhout: MPI intro 91

More sends and receive

MPI_Bsend, MPI_Ibsend: buffered send

MPI_Ssend, MPI_Issend: synchronous send

MPI_Rsend, MPI_Irsend: ready send

too obscure to go into.

Eijkhout: MPI intro 92

Complicated data

Eijkhout: MPI intro 93

Table of Contents

9 Discussion

10 Datatypes

11 Packed data

Eijkhout: MPI intro 94

Non-contiguous data

Matrix in column storage:

Columns are contiguous
Rows are not contiguous

Eijkhout: MPI intro 95

Submatrix storage

Location of first element
Stride, blocksize

Eijkhout: MPI intro 96

BLAS/Lapack storage

Three parameter description:

Eijkhout: MPI intro 97

Datatypes in MPI

We need data structures with gaps, or heterogeneous types.
MPI allows for recursive construction of data types.

Elementary types

Derived types

Packed data

Eijkhout: MPI intro 98

Table of Contents

9 Discussion

10 Datatypes

11 Packed data

Eijkhout: MPI intro 99

Elementary datatypes

C/C++ Fortran
MPI_CHAR MPI_CHARACTER
MPI_UNSIGNED_CHAR
MPI_SIGNED_CHAR

MPI_LOGICAL
MPI_SHORT
MPI_UNSIGNED_SHORT
MPI_INT MPI_INTEGER
MPI_UNSIGNED
MPI_LONG
MPI_UNSIGNED_LONG
MPI_FLOAT MPI_REAL
MPI_DOUBLE MPI_DOUBLE_PRECISION
MPI_LONG_DOUBLE

MPI_COMPLEX
MPI_DOUBLE_COMPLEX

Eijkhout: MPI intro 100

How to use derived types

Create, commit, use, free:

MPI_datatype newtype;
MPI_Type_xxx(... oldtype ... &newtype);
MPI_Type_commit (&newtype);

// code using the new type

MPI_Type_free (&newtype);

The oldtype can be elementary or derived.
Recursively constructed types.

Eijkhout: MPI intro 101

Contiguous type

int MPI_Type_contiguous(
int count, MPI_Datatype old_type, MPI_Datatype *new_type_p)

This one is indistinguishable from just sending count instances of the
old_type.

Eijkhout: MPI intro 102

Vector type

int MPI_Type_vector(
int count, int blocklength, int stride,
MPI_Datatype old_type, MPI_Datatype *newtype_p

);

Used to pick a regular subset of elements from an array.

Eijkhout: MPI intro 103

// vector.c
source = (double*) malloc(stride*count*sizeof(double));
target = (double*) malloc(count*sizeof(double));
MPI_Datatype newvectortype;
if (mytid==sender) {
MPI_Type_vector(count,1,stride,MPI_DOUBLE,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,the_other,0,comm);
MPI_Type_free(&newvectortype);

} else if (mytid==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_DOUBLE,the_other,0,comm,

&recv_status);
MPI_Get_count(&recv_status,MPI_DOUBLE,&recv_count);
ASSERT(recv_count==count);

}

Eijkhout: MPI intro 104

Different send and receive types

Sender type: vector
receiver type: contiguous or elementary

Receiver has no knowledge of the stride of the sender.

Eijkhout: MPI intro 105

Exercise 12

Let processor 0 have an array x of length 10P, where P is the number of
processors. Elements 0,P,2P, . . . ,9P should go to processor zero,
1,P + 1,2P + 1, . . . to processor 1, et cetera. Code this as a sequence of
send/recv calls, using a vector datatype for the send, and a contiguous buffer
for the receive.

For simplicity, skip the send to/from zero. What is the most elegant solution if
you want to include that case?

For testing, define the array as x[i] = i .

Eijkhout: MPI intro 106

Indexed type

int MPI_Type_indexed(
int count, int blocklens[], int displacements[],
MPI_Datatype old_type, MPI_Datatype *newtype);

Also hindexed with byte offsets.

Eijkhout: MPI intro 107

Heterogeneous: Structure type

int MPI_Type_create_struct(
int count, int blocklengths[], MPI_Aint displacements[],
MPI_Datatype types[], MPI_Datatype *newtype);

This gets very tedious. . .

Eijkhout: MPI intro 108

Table of Contents

9 Discussion

10 Datatypes

11 Packed data

Eijkhout: MPI intro 109

Packing into buffer

int MPI_Pack(
void *inbuf, int incount, MPI_Datatype datatype,
void *outbuf, int outcount, int *position,
MPI_Comm comm);

int MPI_Unpack(
void *inbuf, int insize, int *position,
void *outbuf, int outcount, MPI_Datatype datatype,
MPI_Comm comm);

Eijkhout: MPI intro 110

Example

// pack.c
if (mytid==sender) {
MPI_Pack(&nsends,1,MPI_INT,buffer,buflen,&position,comm);
for (int i=0; i<nsends; i++) {
double value = rand()/(double)RAND_MAX;
MPI_Pack(&value,1,MPI_DOUBLE,buffer,buflen,&position,comm);

}
MPI_Pack(&nsends,1,MPI_INT,buffer,buflen,&position,comm);
MPI_Send(buffer,position,MPI_PACKED,other,0,comm);

} else if (mytid==receiver) {
int irecv_value;
double xrecv_value;
MPI_Recv(buffer,buflen,MPI_PACKED,other,0,comm,MPI_STATUS_IGNORE);
MPI_Unpack(buffer,buflen,&position,&nsends,1,MPI_INT,comm);
for (int i=0; i<nsends; i++) {
MPI_Unpack(buffer,buflen,&position,&xrecv_value,1,MPI_DOUBLE,comm);

}
MPI_Unpack(buffer,buflen,&position,&irecv_value,1,MPI_INT,comm);
ASSERT(irecv_value==nsends);

}Eijkhout: MPI intro 111

Sub-computations

Eijkhout: MPI intro 112

Sub-computations

Simultaneous groups of processes, doing different tasks, but loosely
interacting:

Simulation pipeline: produce input data, run simulation, post-process.

Climate model: separate groups for air, ocean, land, ice.

Quicksort: split data in two, run quicksort independently on the halves.

Processor grid: do broadcast in each column.

New communicators are formed recursively from MPI_COMM_WORLD.

Eijkhout: MPI intro 113

Communicator duplication

Simplest new communicator: identical to a previous one.

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

This is useful for library writers:

MPI_Isend(...); MPI_Irecv(...);
// library call
MPI_Waitall(...);

Eijkhout: MPI intro 114

Use of a library

library my_library(comm);
MPI_Isend(&sdata,1,MPI_INT,other,1,comm,&(request[0]));
my_library.communication_start();
MPI_Irecv(&rdata,1,MPI_INT,other,MPI_ANY_TAG,

comm,&(request[1]));
MPI_Waitall(2,request,status);
my_library.communication_end();

Eijkhout: MPI intro 115

Use of a library

int library::communication_start() {
int sdata=6,rdata;
MPI_Isend(&sdata,1,MPI_INT,other,2,comm,&(request[0]));
MPI_Irecv(&rdata,1,MPI_INT,other,MPI_ANY_TAG,

comm,&(request[1]));
return 0;
}

int library::communication_end() {
MPI_Status status[2];
MPI_Waitall(2,request,status);
return 0;
}

Eijkhout: MPI intro 116

Wrong way

// commdup_wrong.cxx
class library {
private:
MPI_Comm comm;
int mytid,ntids,other;
MPI_Request *request;

public:
library(MPI_Comm incomm) {

comm = incomm;
MPI_Comm_rank(comm,&mytid);
other = 1-mytid;
request = new MPI_Request[2];

};
int communication_start();
int communication_end();

};

Eijkhout: MPI intro 117

Right way

// commdup_right.cxx
class library {
private:
MPI_Comm comm;
int mytid,ntids,other;
MPI_Request *request;

public:
library(MPI_Comm incomm) {

MPI_Comm_dup(incomm,&comm);
MPI_Comm_rank(comm,&mytid);
other = 1-mytid;
request = new MPI_Request[2];

};
˜library() {

MPI_Comm_free(&comm);
}
int communication_start();
int communication_end();

};

Eijkhout: MPI intro 118

Disjoint splitting

Split a communicator in multiple disjoint others.

Give each process a ‘colour’, group processes by colour:

int MPI_Comm_split(MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

Eijkhout: MPI intro 119

Row/column example

MPI_Comm_rank(MPI_COMM_WORLD, &mytid);
proc_i = mytid % proc_column_length;
proc_j = mytid / proc_column_length;

MPI_Comm column_comm;
MPI_Comm_split(MPI_COMM_WORLD, proc_j, mytid, &column_comm);

MPI_Bcast(data, ... column_comm);

Eijkhout: MPI intro 120

Exercise 13

Organize your processes in a grid, and make subcommunicators for the rows and columns.
First let each processor print out its global rank, column number and rank, and row number and
rank. Then, design a gather operation that lets the root print out the state of all processors as a
nicely formatted matrix. For instance, a 2×3 processor grid should print:

Global ranks:
0 1 2
3 4 4

Row ranks:
0 1 2
0 1 2

Initialize all processes in the first row with their column number and the ones in the first column
with their row number; all others should be set to zero. Use a gather operation to print out this
state of affairs.

Now do a broadcast from the first row and column through the columns and rows respectively;
processor (i, j) winds up with the numbers i and j . Again use a gather to print this out.

Run your code on different number of processes, for instance a number of rows and columns

that is a power of 2, or that is a prime number. This is one occasion where you could use ibrun

-np 13; normally you would never put a processor count on ibrun.Eijkhout: MPI intro 121

More

Non-disjoint subcommunicators through process groups.

Intra-communicators and inter-communicators.

Process topologies: cartesian and graph.

Eijkhout: MPI intro 122

One-sided communication

Eijkhout: MPI intro 123

Motivation

With two-sided messaging, you can not just put data on a different processor:
the other has to expect it and receive it.

Sparse matrix: it is easy to know what you are receiving, not what you
need to send. Usually solved with complicated preprocessing step.

Neuron simulation: spiking neuron propagates information to neighbours.
Uncertain when this happens.

Other irregular data structures: linked lists, hash tables.

Eijkhout: MPI intro 124

One-sided concepts

A process has a window that other processes can access.

Origin: process doing a one-sided call; target: process being accessed.

One-sided calls: MPI_Put, MPI_Get, MPI_Accumulate.

Various synchronization mechanisms.

Eijkhout: MPI intro 125

Active target synchronization

All processes call MPI_Win_fence. Epoch is between fences:

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);
if (mytid==producer)
MPI_Put(/* operands */, win);

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

Second fence indicates that one-sided communication is concluded:
target knows that data has been put.

Eijkhout: MPI intro 126

Window creation

MPI_Win_create (void *base, MPI_Aint size,
int disp_unit, MPI_Info info,
MPI_Comm comm, MPI_Win *win)

size: in bytes
disp_unit: sizeof(type)
Also: MPI_Win_allocate, can use dedicated fast memory.

Also call MPI_Win_free when done. This is important!Eijkhout: MPI intro 127

C:
int MPI_Put(
const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,
MPI_Win win)

Semantics:
IN origin_addr: initial address of origin buffer (choice)
IN origin_count: number of entries in origin buffer (non-negative integer)
IN origin_datatype: datatype of each entry in origin buffer (handle)
IN target_rank: rank of target (non-negative integer)
IN target_disp: displacement from start of window to target buffer (non-negative integer)
IN target_count: number of entries in target buffer (non-negative integer)
IN target_datatype: datatype of each entry in target buffer (handle)
IN win: window object used for communication (handle)

Fortran:
MPI_Put(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count, target_datatype, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
INTEGER, INTENT(IN) :: origin_count, target_rank, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:

win.Put(self, origin, int target_rank, target=None)

How to read routine prototypes: 12.

Eijkhout: MPI intro 128

Exercise 14

Write code where process 0 randomly writes in the window on 1 or 2.

// randomput_skl.c
MPI_Win_create(&window_data,sizeof(int),sizeof(int),

MPI_INFO_NULL,comm,&the_window);

for (int c=0; c<10; c++) {
float randomfraction = (rand() / (double)RAND_MAX);
if (randomfraction>.5)

other = 2;
else other = 1;
window_data = 0;
your_code_goes_here.........
my_sum += window_data;

}

if (mytid>0 && mytid<3)
printf("Sum on %d: %d\n",mytid,my_sum);

if (mytid==0) printf("(sum should be 10)\n");

Eijkhout: MPI intro 129

A second active synchronization

Use Post,Wait,Start,Complete calls

More fine-grained than fences.

Eijkhout: MPI intro 130

Passive target synchronization

Lock a window on the target:

MPI_Win_lock (int locktype, int rank, int assert, MPI_Win win)
MPI_Win_unlock (int rank, MPI_Win win)

Atomic operations:

int MPI_Fetch_and_op(const void *origin_addr, void *result_addr,
MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,
MPI_Op op, MPI_Win win)

Eijkhout: MPI intro 131

// passive.cxx
if (mytid==repository) {
// Repository processor creates a table of inputs
// and associates that with the window

}
if (mytid!=repository) {
float contribution=(float)mytid,table_element;
int loc=0;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE,repository,0,the_window);
// read the table element by getting the result from adding zero
err = MPI_Fetch_and_op

(&contribution,&table_element,MPI_FLOAT,
repository,loc,MPI_SUM,the_window); CHK(err);

MPI_Win_unlock(repository,the_window);
}

Eijkhout: MPI intro 132

Index

compare-and-swap, 81
MPI_Accumulate, 125
MPI_Allgather, 36
MPI_ANY_SOURCE, 65
MPI_ANY_TAG, 65
MPI_CHAR, 100
MPI_COMM_WORLD, 15, 27, 113
MPI_DOUBLE, 100
MPI_DOUBLE_PRECISION, 100
MPI_FLOAT, 27, 100
MPI_Gatherv, 40
MPI_Get, 125
MPI_INT, 27, 100
MPI_INTEGER, 100
MPI_MAX, 31
MPI_Op, 31
MPI_Put, 125, 128
MPI_REAL, 100
MPI_Recv, 64, 68

MPI_Request, 86
MPI_Scatterv, 25
MPI_Send, 63, 68
MPI_Sendrecv, 77
MPI_STATUS_IGNORE, 65, 66
MPI_SUM, 31
MPI_Wait, 86
MPI_Waitany, 86
MPI_Waitsome, 86
MPI_Win_allocate, 127
MPI_Win_fence, 126
MPI_Win_free, 127
mpicc, 7
mpicxx, 7
mpif90, 7
sort
exchange, 81
window, 125

Eijkhout: MPI intro 133

	The SPMD model
	Collectives
	Point-to-point communication
	Complicated data
	Sub-computations
	One-sided communication

