TEXAS ADVANCED COMPUTING CENTER
WWW.TACC.UTEXAS.EDU

Tutorial on Hybrid MPI/OpenMP programming
Victor Eijkhout
SSIASC 2016

Eijkhout: Hybrid intro

Justification

Clusters have a hybrid structure with distributed and shared memory
component. This course teaches the concepts of hybrid computing and
process/thread affinity.

Eiikhout: Hybrid intro 2

Hybrid computing

Eijkhout: : Hybrid intro

Cluster structure

@ Cluster nodes connected through network
(network topology?)

@ Node has sockets: processor chips
shared memory but slightly unequal access

@ Socket has cores
fairly symmetric, but watch out for KNL

@ Core can have hardware/hyper threads
(sometimes called virtual core vs physical core)

Eijkhout: Hybrid intro

Parallelization strategies

@ Pure MPI

@ One MPI per node, full OpenMP on the node

@ One MPI per socket, fewer OpenMP threads than total cores
@ = MPI process is a ‘container’ for OpenMP threads

Node Node

.....

thread [[thread | [thread | [thread |[thread | [thread
socket socke

thread [thread [thread thread [thread [thread

Eijkhout: Hybrid intro

How do you run this?

@ Full MPI

#$ SBATCH -N 100

#$ SBATCH -n 1600

export OMP_NUM_THREADS=1

ibrun tacc_affinity yourprogram
@ Maximal OpenMP

#$ SBATCH -N 100

#$ SBATCH -n 100

export OMP_NUM_THREADS=16

ibrun tacc_affinity yourprogram
@ Process per socket:

#$ SBATCH -N 100

#$ SBATCH -n 200

export OMP_NUM_THREADS=8

ibrun tacc_affinity yourprogram

Eijkhout: Hybrid intro

Benefits of hybrid computing

@ No obvious speedup: all cores are active in all cases.

@ Secondary Amdahl effect: watch our for code that is MPI parallel but not
OpenMP parallel.

@ MPI codes can run somewhat unsychronized; OpenMP has more
barriers.

@ On the other hand, OpenMP is easier to load balance.

@ Only one big messsage between nodes, rather than many small in full
MPI case.

@ Fewer MPI processes means less buffer space.

Eiikhout: Hybrid intro 7

tacc_affinity

tacc_affinity does two things:

@ Unset affinity setting for mvapich?2
@ Set process placement to something reasonable.

Eijkhout: Hybrid intro

Exercise 1 (decomp)

@ Compile the decomp. c program.
mpicc -fopenmp decomp.c -o decomp
@ Submit the hybridscript.
@ Study the output. What conclusion do you draw?

Eijkhout: Hybrid intro

Setting up MPI for hybrid computing

int MPI_Init_thread(int *argc, char ***argv,
int required, int *provided)

MPI_THREAD_SINGLE Only a single thread will execute.

MPI_THREAD_FUNNELLED The program may use multiple threads, but only the
main thread will make MPI calls.

MPI_THREAD_SERIAL The program may use multiple threads, all of which may
make MPI calls, but there will never be simultaneous MPI calls
in more than one thread.

MPI_THREAD MULTIPLE Multiple threads may MPI calls, without restrictions.

Eiikhout: Hybrid intro 10

Single

MPI_Init_thread (0,0, MPI_THREAD_SINGLE, &ipr);
MPI_Recv(...);
// no OpenMP

Eijkhout: Hybrid intro

Funnelled

MPI_Init_thread (0,0, MPI_THREAD_FUNNELLED, &ipr);
#pragma omp parallel
{
#pragma omp master
MPI_Recv(...);

#pragma omp barrier // probably

Eijkhout: Hybrid intro

Serial

MPI_Init_thread(0,0,MPI_THREAD_SERIAL, &ipr);
#pragma omp parallel
{
#pragma omp critical
MPI_Recv(...);

Eijkhout: Hybrid intro

Multiple

MPI_Init_thread(0,0,MPI_THREAD_MULTIPLE, &ipr);
#pragma omp parallel
{

MPI_Recv(...);

Eijkhout: Hybrid intro

Finding shared memory in MPI

C:

int MPI_Comm_split_type(
MPI_Comm comm, int split_type, int key,
MPI_Info info, MPI_Comm *newcomm)

Fortran:

MPI_Comm_split_type (comm, split_type, key, info, newcomm, ierror)
TYPE (MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: split_type, key

TYPE(MPI_Info), INTENT(IN) :: info

TYPE (MPI_Comm), INTENT (OUT) :: newcomm

INTEGER, OPTIONAL, INTENT (OUT) :: ierror

Python:

MPI.Comm.Split_type (
self, int split_type, int key=0, Info info=INFO_NULL)

How to read routine prototypes: ??.

Eijkhout: Hybrid intro 15 @

Process and thread affinity

Eijkhout - Hybrid intro 16

Definition

Affinity is the mapping between

@ software concepts such as processes and threads, and
@ hardware concepts such as nodes, sockets, cores;

in particular as it concern the efficiency of

@ memory transfers,

@ communication and synchronization.

Eijkhout: Hybrid intro

Examples

@ In pure MPI mode, processes on the same node communicate faster than ones
on diferent nodes.

If the network has a topology, speed between nodes is not uniform.
Communication between sockets on one node need not be uniform (see figure)
Each socket has local memory: shared memory is not uniform.

In try hybrid mode, it matters where you place processes and threads.

The operating system is allowed to move processes and threads on a node. ..

Two PCle x8 — 32Gbps
One PCle x4 - 16Gbps

B3
GBI
83
GBIs

PR

o bids)

e
9)
HEYH

&P & NEM (>
o Opteran — v

oF T :
B B Note the asymmetric .
) . omrR., paths to some memory!l!

Eijkhout: Hybrid intro

NUMA

Non-Uniform Memory Access:
shared memory, but not every location same speed of access

@ Sockets
@ Caches in a socket
@ ‘Distributed shared memory’; see SGI UV

Eiikhout: Hybrid intro 19

Exploring the hardware

hwloc package: lstopo

Start with my laptop, an Intel i5:

Machine (8192MB total)

NUMANode P#0 (8192MB)

L3 P#0 (4096KB)

‘ L2 P#0 (256KB) ‘ ‘ L2 P#1 (256KB) ‘

L1d P#0 (32KB) ‘ ‘ L1d P#1 (32KB)
L1i P#0 (32KB) ‘ ‘ L1i P#1 (32KB)
Core P#0 Core P#1

PU P#0 PU P#2

PU P#1 PU P#3

Host: VictorsUnibody2.attlocal.net
Indexes: physical
Date: Tue Jun 7 12:53:16 2016

Eijkhout: Hybrid intro

Stampede compute node

Two sockets; each eight cores

Machine (32GB)

[NmANade P 16G)

ore. ore. e P#2. Core PA3 Core P4 Core PiS Core Pt6 Core P#7
o HC g HCW H H H H =]

Socket PH)
[e |
[2asokn | [2asown | [2aswm | [aso | [r2ason | [asoks | [e | [2o |
[viacas | [| [acam] [taceo | oo | [oo][ok][ook |
[wicaw | [| [icas | [vice | [Licae | [uiew][icks | i |

NUMANode P#1 (16GB)

SocketPe1 O] Petisaion
[aom |
[2assk | [2asown | [2aswm | [aso | [2ason | [asoso | [e | [zosws |
[viacasn | [][acam] [tacao | oo][oo][ok][ook |
[wicw | [| [icas | [vice | [Licae | [uiew][icks | i |

CorePH0 ‘ ‘ Core a1 ‘ ‘ Corepr2 ‘ ‘ Core a3 ‘ ‘ cocpas | [corepss ‘ ‘ CorePat ‘ ‘

Host: ¢401-402.stampede face.uiexas edu
Indees: physical

Date: Tue 07 Jun 2016 01:06:43 PM CDT

Eijkhout: Hybrid intro

Stampede largemem node

Four sockets; each eight cores

=

= &)
-

[e e e e e M

[e e [e [e [

(| e | e e |
EEEHEEEEE

EEEEEEEE

Eijkhout: Hybrid intro

Lonestar5 compute node

Two sockets; each twelve cores, two hyperthreads

Machine (64G8)

== |

=
[Gome |
[coe | [co | [coe | [cme | [cow | [come | (o | [com | [cwe | [amee | [ame | [aoeo |
[coro | [wome | [womn |[wome | [wome |[wom |[som | [som | [com | [comn | [aome][]
| |)) [) e e |

Lo [[
|| == | =

e | e | =
| e | s | e

[|

==
[ome |
[co | [co | [commo | [como | [cmm | (oo | (oo | (oo | (oo |[come |[come][oo]
[core J[worm | [womm | [wome | [wom |[wom |[wom |[wom |[wom |[wom |[wom |[vom]

Core a1 Coepr2 CorePr3

e | || e
e | | e

Coreprs CorePrs CorePe9 CoreP#10 Core PaT Corepr12 Core P13

Lo s JH e J e e e e]

3

| || || =) =) e =

Host: 00015
Indexes: physical

Date: Tue 07 Jun 2016 0418:47 PM COT

Eiikhout: Hybrid intro 23

Knight’s Landing

One socket, four numa domains, 16 cores each, four hyperthread

= T
— r—
| E— —

=]l
=====

=]l |) | |) |) I [E
_‘
—1~~]

=

=
| — =
=

| TN | N E—

==

—
= E= =
== = = 1= |

{ | E—

===
=

S—]
=

[
| E—

[—

Eijkhout: Hybrid intro

Affinity control

@ You can spell it out yourself: numactl, OMP_PLACES but that is quite
tedious.

@ Process affinity with tacc_affinity
(wrapper around numactl)

@ Set OMP_PROC_BIND=true to prevent thread migration. That is usually
enough.

Eiikhout: Hybrid intro 25

First touch

@ Allocated memory only created when you write to it.
@ = If one core initializes all the memory, it becomes bound to that socket

Eiikhout: Hybrid intro 26

Wrong:

double *x = (double*) malloc (N*sizeof (double));

for (i=0; i<N; i++)

#pragma omp parallel for
for (i=0; 1i<N; i++)
something with x[i]

Repair: initialize in parallel, with same schedule.

Eijkhout: Hybrid intro

Exercise 2 (central)

Finish the following fragment and run it with first all the cores of one socket, then all

cores of both sockets. (If you know how to do explicit placement, you can also try
fewer cores.)

for (int i=0; i<nlocal+2; i++)
in[i] = 1.;

for (int i=0; i<nlocal; i++)
out [1] = 0.;

for (int step=0; step<nsteps; step++) {
#pragma omp parallel for schedule(static)
for (int i=0; i<nlocal; i++) {
out[i] = (in[i]+in[i+1]+in[i+2])/3.;
}
#pragma omp parallel for schedule(static)
for (int i=0; i<nlocal; i++)
n[i+l] = out[i];
in[O} = 0; in[nlocal+l] = 1;
}

Eiikhout: Hybrid intro 28

Index

@ hwloc, 20
1stopo, 20
MPI_Comm_split_type, 15
MPI_THREAD_FUNNELLED, 10
MPI_THREAD_MULTIPLE, 10
MPI_THREAD_SERIAL, 10

Eijkhout: Hybrid intro

MPI_THREAD_SINGLE, 10
mvapich?2, 8
numactl, 25
OMP_PLACES, 25
tacc_affinity, 8,25

	Hybrid computing
	Process and thread affinity

