&b

The University of Texas at Austin

Introduction to
parallelism

Victor Eijkhout
eijkhout@tacc.utexas.edu

The ideas of parallel
programming

As illustrated by Conway’s Game of Life
http://youtu.be/C2vglCfQawE

This has the same structure as certain important
applications (e.g., PDEs)
but requires no math to explain.

Note: this is about parallel programming,
not so much about parallel hardware

How do you code this?

First the
function for

updating a
single cell

def life evaluation(cells):
cells is a 3x3 array
count = 0
for 1 in [O0,1,2]:
for j in [0,1,2]:
if i!=1 and j!=1:
count += cells[i,j]
cells[1l,1] = life count evaluation(count)

def life count evaluation(count):
big if statement
return newval

How do you code this?

Now to update
the whole board

One time-
stepping loop life_board.create(final_time,N,N)

Two loops for the for t in [O:final time-1]:
board for i in [O:N-1]:
for j in [O:N-1]:
life board[t+1l,i,]j] :=
life evaluation(life board
[t,i-1:i+1,3-1:j+1])

Where does parallelism
come from?

The program text specifies a sequence of operations
However, some operations can be done in any order
=> s0 they can also be done simultaneously

There are no compilers that recognize this,
so you have to code it by hand
and that's what you will learn here....

Data parallelism

Independent data items,
each undergoing the same

operation
Then: “array processors”
Now: vector instructions

Scalar mode SIMD processing
g‘;]r;erigssjf)dion I (one instruction can produce multiple results)
4
SO 77 B B -1 5631 o0+ oc+1) (el
+ + +

SN 7 BiiEe) B ou-1 B3 bii+2) bri+1) (6]
a[i]+bli] a+b ol Bl civ4 [dif3] 2] i)

TACC.

ali|

2016/06/20 ‘

SIMD parallelism

Single Instruction Multiple Data

Simplified instruction handling: only one instruction
fetch/decode/whatever for multiple data items

Need to have many independent operations
(examples?)

Data storage may need to be regular

Example: GPUs

Graphical Processing Units are SIMD-like (not

completely lockstep)

Programmed in CUDA:
kernel contains sequential code,
kernel is executed in parallel

i = my i number ()
j = my j number ()

kerneldef 1life step(board):

board[i,j] = life evaluation
(board[i-1:i+1,3j-1:3j+1]

for t in [O:final time]:
<<N,N>>life step(board)

)

Parallel programming may
mess up your code!

Parallelism on the instruction level:

Innermost loop

Sometimes loop exchange needed

for i=1,N:
for j=1,N:
count = 0
for h in [-1,0,1]:
for v in [-1,0,1]:
count += cell[i+v,j+h]

for i=1,N:
for j=1,N:
count[i,j] =0
for h in [-1,0,1]:
for v in [-1,0,1]:
for i=1,N:
for j=1,N:
count += cell[i+v,j+h]

Minimal intervention: loop

parallelism

Loops are an important source
of parallelism

Parallelize by indicating what
loops parallel

| def life generation(board,tmp):

OMP parallel for
for i in [O:N-1]:
for j in [O:N-1]:
tmp[i,j] = board[i,]]
OMP parallel for
for i in [O:N-1]:
for j in [O:N-1]:
board[i,j] = life evaluation
(tmp[i-1:i+1,j-1:5+1])

Granularity of parallelism

So far: independence of single operations / single data
points:
fine-grained parallelism

Locality: points close together should be handled by the
same processor

Process the board by lines or subparts:
coarse-grained parallelism

Why coarse-grained
parallelism?

Shared memory:

every processor
can find every v

data item

Distributed
memory: some
data is local, other
not

Locality

What does distributed memory look
like?

Stampede

160 cabinets, 6400
nodes,
500k cores....

2016/06/20 13

How do you program

distributed memory?

Explicit
message
passing

p-1
p g
p+1

o my processor_ number ()

high line = MPI_Receive (from=p-1,cells=N)
low line = MPI_Receive(from=p+1l,cells=N)

tmp line = my line.copy ()
my line = life line update(high line,tmp line,low_line,N)

——

No, really.....

You can’t receive without someone else sending

But the someone else is running the same
program...

Single Program Multiple Data:

each processor runs the same program,
just on different data:

Execution differs in:
loop bounds,
branches of conditionals

Two-sided message passing

Everyone does both send and receive calls
Attempt at coding this:

p = my processor number ()

send my data
And even this my line.MPI_ Send(to=p-1,cells=N)
IS not correct my line.MPI_Send(to=p+l,cells=N)

get data from neighbours

high line = MPI Receive (from=p-1,cells=N)
low line = MPI Receive(from=p+1l,cells=N)
tmp line = my line.copy ()

do the local computation
my line = life line_ update
(high line,tmp line,low line, N)

Blocking communication

Data has to be
somewhere

You can only send if
someone else receives

Deadlock possible if
everyone is receiving,
no one is sending

~<
~
~

Network

2016/06/20 ‘

[a]
o
3
=

17

idle

buffer

Task parallelism

Think about instructions rather than data
In the Game of Life there are N?T updates
How independent are they?

Life updates dependencies

Cell needs a

box around it

Each cell in the

box needs....

=> Cone of
iInfluence

2016/06/20 ‘ 19

Task scheduling

User indicates dependencies

Algorithm under the hood matches available tasks to

available processors/cores

while there are tasks left():
for r in running tasks:
if r.finished():
for t in scheduled tasks:
t.mark input available(r)
t = find available task()
p = find available processor()
schedule(t, p)

for t in [0:T]:
for i in [O:N]:
for j in [O:N]:
task(id=[t+1,i,]j],
prereqs=|
[t,1,31,
[tli_llj]I
[t,i+1,]]
et cetera

1)

Some theory

....before we get into the hardware
Optimally, P processes give Tp=T,/P
Speedup Sp = T4/T,, is P at best

Superlinear speedup not possible in theory, sometimes
happens In practice.

Perfect speedup in “embarrassingly parallel
applications”

Less than optimal: overhead, sequential parts,
dependencies

Some more theory

....before we get into the hardware
Optimally, P processes give Tp=T,/P
Speedup Sp = T4/T,, is P at best
Efficiency Ep = S,/P

Scalability: efficiency bounded below

Amdahl’ s Law

Some parts of a code are not parallelizable
=> they ultimately become a bottleneck

For instance, if 5% is sequential, you can not get a
speedup over 20, no matter P.

Formally: F,+F=1, T,=T,(Fs+Fy/p),
so T, approaches T,F;as p increases

Definition of parallelism

T, : time on a single processor

T, time on p processors

T.. . time with unlimited processors
P.. . value of p for which T., is attained
Definition: Parallelism == T,/T...

* T,:Sequential time?

e T_ :Whatis the best
you can do, and with
how many

‘ ’ processors?

2016/06/20 25

* T,:Sequential time?

[} e Maximal
A /\’ parallelism?
* T..: What s the best
you can do, and with
\ A ‘/. how many
.\' processors?

2016/06/20 26

N]
PR

 Maximal parallelism is 4.

* Can you find a solution with p=3 that
has T,=4 and therefore E=1?

2016/06/20 27

Brent's theorem

If there are W operations, and the critical path has length
S, p processors can achieve time
S + floor(W/p)

Scaling

Increasing the number of processors for a given problem
makes sense up to a point: p>n/2 in the addition example
has no use

Strong scaling: problem constant, number of processors
Increasing

More realistic: scaling up problem and processors
simultaneously, for instance to keep data per processor
constant: Weak scaling

Weak scaling not always possible: problem size depends on
measurements or other external factors.

Theoretical characterization of
architectures

Classification #1: instruction
streams

Parallel Computer Architectures

Parallel computing means using multiple processors, possibly
comprising multiple computers

Flynn's (1966) taxonomy is a first way to classify parallel computers
into one of four types:

(SISD) Single instruction, single data
Your desktop (unless you have a newer multiprocessorone)
(SIMD) Single instruction, multiple data:
Thinking machines CM-2
Cray 1, and other vector machines (there’ s some controversy here)
Parts of modern GPUs
(MISD) Multiple instruction, single data
basically doesn't exist
(MIMD) Multiple instruction, multiple data
Nearly all of today’ s parallel machines

(SPMD) Single program, multiple data: MIMD, but identical
executables.

SIMD

Based on regularity of computation: all processors often
doing the same operation: data parallel

Big advantage: processor do not need separate ALU
==> |ots of small processors packed together

Ex: Goodyear MPP: 64k processors in 1983

Use masks to let processors differentiate

SIMD then and now

There used to be computers that were entirely SIMD
(usually attached processor to a front end)

SIMD these days:

SSE instructions in regular CPUs
GPUs are SIMD units (sort of)

2016/06/20 34

Classification #2: memory model

Parallel Computer
Architectures

Top500 List now dominated by MPPs and Clusters
The MIMD model “won”.

SIMD exists only on smaller scale

A much more useful way to classification is by memory
model

Shared memory
distributed memory

Two memory models

Shared memory: all processors share the same address
space

OpenMP: directives-based programming

PGAS languages (UPC, Titanium, X10)

Distributed memory: every processor has its own
address space
MPI. Message Passing Interface

Shared and distributed memory

All processors have accessto Memory is local to each
a pool of shared memory processor

Access times vary from CPU Data exchange by message
to CPU in NUMA systems passing over a network

Example: SGI Altix (SMP), Example: Clusters with
multicore processors single-socket blades

2016/06/20 38

Hybrid systems
T EETE EETE BT KT

Network

A limited number, N, of processors have access to a common
pool of shared memory

To use more than N processors requires data exchange over a
network

Example: Cluster with multi-socket blades

Stampede node

' y % ¥ » W
-~

e N

g 2] !

LUEL!

. 1(.3.” ' ‘!

WELLELLL
L)
]

2016/06/20 ‘ 40

Multi-core systems
EEZE ECTE EETE XD T

Network

Extension of hybrid model

Communication details increasingly complex
Cache access
Main memory access
Quick Path / Hyper Transport socket connections
Node to node connection via network

2016/06/20 41

Co-processor Systems

Calculations made in both CPUs and co-processors (GPU, MIC)
Programmability is tricky: two different processortypes

Requires specific libraries and compilers (GPU: CUDA, OpenCL, MIC:
OpenMP)

Classification #3: process
dynamism

“Process-based” parallelism

MIMD & SPMD: one process per processor/core, lives for
the life of the run

Great for distributed memory: task creation and migration is
hard.

2016/06/20 ‘ 44

“Task-based” parallelism

Threading models: tasks can be created at will, placed on
whatever processor/core is free

Great on shared memory

1

)

Processor

g9 T T

F P

2016/06/20 45

Dynamic thread creation

Old: pthreads
Newer: Cilk+ (Intel), OpenMP (open standard)

int sum=0; cilk int fib(int n) {
void adder () {sum = sum+l;} if (n<2) return 1;
else {
int main() { int rst=0;
int 1i; rst += spawn fib(n-1) ;
pthread t threads[NTHREADS]; rst += spawn fib(n-2) ;
for (i=0; i<NTHREADS; i++) sync;
pthread create return rst;
(threads+i,NULL, &adder,NULL) ; }
for (i=0; i<NTHREADS; i++)
pthread join(threads[i],NULL) ;

Classification #4: interconnects

Topology of interconnects

What is the actual ‘shape’ of the interconnect? Are the

nodes connect by a 2D mesh? Aring? Something more
elaborate?

=> some graph theory

Completely Connected and Star
Networks

Completely Connected : Each processor has
direct communication link to every other
processor (compare ranger node¥

Pan

Star Connected Network : The middle processor
Is the central processor; every other processor is
connected to it.

Arrays and Rings

Linear Array ® ® ® ®
® ®
Ring : \/
¢ ®
Mesh Network (e.g. 2D-array) | °
¢ ®

Torus

2-d Torus (2-d version of the ring)

Hypercubes

Hypercube Network : A multidimensional mesh of processors
with exactly two processors in each dimension. A d dimensional
processor consists of

D=2 processors
Shown below are 0, 1, 2, and 3D hypercubes

RS

0-D 1-D 2-D 3-D hypercubes

Inductive definition

4D

l
I
J I
| I ._ I
| 1 T |
AN PN\
11\ 1!
11 e
T I —
Ty ___. I
V I _ I
| I b)
] 0 I]
I] I]
Iy ')
PRI
| n | t
[| [
| \ _ \
_. | " |
_ |
\
i \ |
U Joo
' |
\ \
\ \
\

Pros and cons of
hypercubes

Pro: processors are close together: never more than
og(P)

_ots of bandwidth

_ittle chance of contention

Con: the number of wires out of a processor depends on
P: complicated design

Values of P other than 2*p not possible.

Busses/Hubs and Crossbars

Hub/Bus: Every processor shares the communication
links

Crossbar Switches: Every processér cénn&ts *) the
switch which routes communications to their destinations

nnhHhwWwNn-—=0
v v Tw v ¥

Butterfly exchange network

Built out of simple switching
elements

Multi-stage; #stages grows with
#procs

Multiple non-colliding paths
possible

Uniform memory access

% 7\

Fat Trees

Multiple switches

Each level has the same
number of links in as out

Increasing number of links at
each level

Gives full bandwidth between
the links

Added latency the higher you
go

Fat Trees

In practice emulated by switching network

Router) _ B Root

—— —— Pa—

_j Intermediate

.._ —'—_ ‘ levels
] LT

P OO OO0 OO] Leaves

2016/06/20 58

Stampede network

| s

2016/06/20

Interconnect graph theory

Degree
How many links to other processors does each node have?
More is better, but also expensive and hard to engineer

Diameter
maximum distance between any two processors in the network.

The distance between two processors is defined as the shortest path,
in terms of links, between them.

completely connected network is 1, for star network is 2, for ring is p/2
(for p even processors)

Connectivity

measure of the multiplicity of paths between any two processors (#
arcs that must be removed to break the connection).

high connectivity is desired since it lowers contention for
communication resources.

1 for linear array, 1 for star, 2 for ring, 2 for mesh, 4 for torus

technically 1 for traditional fat trees, but there is redundancy in the
switch infrastructure

Practical issues In
Interconnects

Latency : How long does it take to start sending a
"message"? Units are generally microseconds or

milliseconds.

Bandwidth : What data rate can be sustained once
the message is started? Units are Mbytes/sec or
Gbytes/sec.

Both point-to-point and aggregate bandwidth are of
interest

Multiple wires: multiple latencies, same bandwidth
Sometimes shortcuts possible: "'wormhole routing’

Measures of bandwidth

Aggregate bandwidth: total data rate if every processor

sending: total capacity of the wires. This can be very
high and quite unrealistic.

Imagine linear array with processor i sending to P/2+i:
“Contention’

Bisection bandwidth: bandwidth across the minimum
number of wires that would split the machine in two.

NN
N NN
/Efﬁ] | N\
P3 T1Pn/2 u Pn-1
|
|
2016/06/20 63

Interconnects

Bisection width

Minimum # of communication links that have to be removed to
partition the network into two equal halves. Bisection width is

2 for ring, sq. rootépf) for mesh with p (even) processors, p/2 for
hypercube, ip*p)/ or completely connected (p even).

Channel width

of physical wires in each communication link

Channelrate
peak rate at which a single physical wire link can deliver bits

Channel BW

peak rate at which data can be communicated between the ends
of a communication link

= (channel width) * (channel rate)

Bisection BW

minimum volume of communication found between any 2 halves
of the network with equal # of procs

= (bisection width) * (channel BW)

Summary

Why so much parallel talk?
Every computeris a parallel computer now
Good serial computing skills a central to good
parallel computing

Cluster and MPP nodes are appear largely like

desktops and laptops
Processing units: CPUs, FPUs, GPUs
Memory hierarchies: Registers, Caches, Main memory

Internal Interconnect; Buses and Switch-based
networks

Clusters and MPPs built via fancy connections.

Title

Test text, filler to see how font and color work with the
background image.

Code should be written in a Couriler font,
in black

Test text, filler to see how font and color work with the
background image.

Test text, filler to see how font and color work with the
background image.

