
Tutorial on OpenMP programming
Victor Eijkhout
SSiASC 2016

Eijkhout: OMP intro 1

Justification

OpenMP is a flexible tool for incrementally parallelizing a shared
memory-based code. This course introduces the main concepts through
lecturing and exercises.

Eijkhout: OMP intro 2

The Fork-Join model

Eijkhout: OMP intro 3

Computer architecture terminology

One cluster node:

A node will have 1 or 2 or (sometimes) 4 ‘sockets’: processor chips.
There may be a co-processor attached.

Eijkhout: OMP intro 4

Structure of a socket

Eight cores per socket, making 16 per node.
They all access the same data.

Eijkhout: OMP intro 5

Threads

Process: stream of instructions
Thread: process can duplicate itself, same code, access to same data

The OS will place threads on different cores: parallel performance.
Note: threads are software. More threads than cores or fewer is allowed.

Eijkhout: OMP intro 6

To write an OpenMP program

#include "omp.h"

in C, and

use omp_lib

or

#include "omp_lib.h"

for Fortran.

Eijkhout: OMP intro 7

To compile an OpenMP program

gcc
gcc -o foo foo.c -fopenmp
Intel compiler
icc -o foo foo.c -openmp

Eijkhout: OMP intro 8

To run an OpenMP program

export OMP_NUM_THREADS=8
./my_omp_program

Eijkhout: OMP intro 9

Exercise 1

Write a program that contains the following lines:

printf("There are %d processors\n",omp_get_num_procs());
#pragma omp parallel
printf("There are %d threads\n",

/* !!!! something missing here !!!! */);

The first print statement tells you the number of available cores in the
hardware. Your assignment is to supply the missing function that reports the
number of threads used. Compile and run the program. Experiment with the
OMP_NUM_THREADS environment variable. What do you notice about the
number of lines printed?

Eijkhout: OMP intro 10

What happens if I press that button?

Who of you has tried setting the number of threads (much) larger than the
number of cores? What happened?

Eijkhout: OMP intro 11

Threads and threads

Threads are software, cores are hardware.

The OS can move threads between cores: not a good idea for
performance.

Set: export OMP_PROC_BIND=true and you’ll be good in most of the
cases.

Look up ‘affinity’ in the OMP standard for all the details.

Eijkhout: OMP intro 12

Exercise 2

Extend the program from exercise 1. Make a complete program based on
these lines:

int tsum=0;
#pragma omp parallel
tsum += /* the thread number */

printf("Sum is %d\n",tsum);

Compile and run again. (In fact, run your program a number of times.) Do you
see something unexpected? Can you think of an explanation?

Eijkhout: OMP intro 13

Shared memory problems

Race condition: simultaneous update of shared data:

process 1: I=I+2
process 2: I=I+3

Results can be indeterminate:

scenario 1. scenario 2. scenario 3.
I= 0

read I= 0 read I= 0 read I= 0 read I= 0 read I= 0
compute I= 2 compute I= 3 compute I= 2 compute I= 3 compute I= 2

write I= 2 write I= 3 write I= 2
write I= 3 write I= 2 read I= 2

compute I= 5
write I= 5

I= 3 I= 2 I= 5

Eijkhout: OMP intro 14

Loop parallelism

Eijkhout: OMP intro 15

Loop parallelism

Much of parallelism in scientific computing is in loops:

Vector updates and inner products

Matrix-vector and matrix-matrix operations

Finite Element meshes

Multigrid

Eijkhout: OMP intro 16

Work distribution

Suppose loop iterations are independent:

Distribute them over the threads:

Use omp_get_thread_num to determine disjoint subsets.

How would you do this specifically?

Eijkhout: OMP intro 17

Workshare constructs

Here’s the two-step parallelization in OpenMP:

You use the parallel directive to create a team of threads;

then you use a ‘workshare’ construct to distribute the work over the team.

For loops that is the for (or do) construct.

Eijkhout: OMP intro 18

Workshare construct for loops

#pragma omp parallel
#pragma omp for
for (i=0; i<N; i++)

... something with i ...

!$omp parallel
!$omp do

do i=1,n
... something with i ...

end do
!$omp end do
!$omp end parallel

Eijkhout: OMP intro 19

Stuff inside a parallel region

#pragma omp parallel
{

code1();
#pragma omp for
for (i=1; i<=4*N; i++) {
code2();

}
code3();

}

Eijkhout: OMP intro 20

Exercise 3

pi Compute π by numerical integration. We use the fact that π is the area of the unit circle, and
we approximate this by computing the area of a quarter circle using Riemann sums.

Let f (x) =
√

1− x2 be the function that describes the quarter circle for x = 0 . . .1;

Then we compute

π/4≈
N−1

∑
i=0

∆xf (xi) where xi = i∆x and ∆x = 1/N

Write a program for this, and parallelize it using OpenMP parallel for directives.

1 Put a parallel directive around your loop. Does it still compute the right result? Does
the time go down with the number of threads? (The answers should be no and no.)

2 Change the parallel to parallel for (or parallel do). Now is the result correct?
Does execution speed up? (The answers should now be no and yes.)

3 Put a critical directive in front of the update. (Yes and very much no.)
4 Remove the critical and add a clause reduction(+:quarterpi) to the for

directive. Now it should be correct and efficient.

Use different numbers of cores and compute the speedup you attain over the sequential

computation. Is there a performance difference between the OpenMP code with 1 thread and

the sequential code?Eijkhout: OMP intro 21

Loop schedules

Default: static scheduling of iterations.
Very efficient. Good if all iterations take the same amount of time.
schedule(static)

Other possibility: dynamic.
Runtime overhead; better if iterations do not take the same amount of
time.
schedule(dynamic)

Eijkhout: OMP intro 22

Chunk size

With N iterations and t threads:

Static: each thread gets N/t iterations.
explicit chunk size: schedule(static,123)

Dynamic: each thread gets 1 iteration at a time
explicit chunk size: schedule(dynamic,45)

Help from OpenMP:
guided schedule uses decreasing chunk size (with optional minimum chunk):
schedule(guided,6)

Eijkhout: OMP intro 23

Reductions

Inner product loop:

s = 0.;
for (i=0; i<N; i++)

s += x[i]*y[i];

Use the reduction(+:s) clause.

All the usual operations are available; you can also make your own.

Eijkhout: OMP intro 24

Exercise 4

We continue with exercise 3. We add ‘adaptive integration’: where needed, the program refines
the step size1. This means that the iterations no longer take a predictable amount of time.

for (i=0; i<nsteps; i++) {
double

x = i*h,x2 = (i+1)*h,
y = sqrt(1-x*x),y2 = sqrt(1-x2*x2),
slope = (y-y2)/h;

if (slope>15) slope = 15;
int
samples = 1+(int)slope, is;

for (is=0; is<samples; is++) {
double
hs = h/samples,
xs = x+ is*hs,
ys = sqrt(1-xs*xs);

quarterpi += hs*ys;
nsamples++;

}
}
pi = 4*quarterpi;

1 Use the omp parallel for construct to parallelize the loop. As in the previous lab, you
may at first see an incorrect result. Use the reduction clause to fix this.

2 Your code should now see a decent speedup, using up to 8 cores. However, it is possible
to get completely linear speedup. For this you need to adjust the schedule.
Start by using schedule(static,n). Experiment with values for n. When can you get
a better speedup? Explain this.

3 Since this code is somewhat dynamic, try schedule(dynamic). This will actually give a
fairly bad result. Why? Use schedule(dynamic,n) instead, and experiment with
values for n.

4 Finally, use schedule(guided), where OpenMP uses a heuristic. What results does that
give?

1It doesn’t actually do this in a mathematically sophisticated way, so this code is more for the
sake of the example.

Eijkhout: OMP intro 25

same exercise

1 Use the omp parallel for construct to parallelize the loop. As in the
previous lab, you may at first see an incorrect result. Use the reduction
clause to fix this.

2 Your code should now see a decent speedup, using up to 8 cores.
However, it is possible to get completely linear speedup. For this you
need to adjust the schedule.
Start by using schedule(static,n). Experiment with values for n.
When can you get a better speedup? Explain this.

3 Since this code is somewhat dynamic, try schedule(dynamic). This
will actually give a fairly bad result. Why? Use schedule(dynamic,n)
instead, and experiment with values for n.

4 Finally, use schedule(guided), where OpenMP uses a heuristic. What
results does that give?

5 schedule(auto) : leave it up to the system.
6 schedule(runtime) : leave it up to environment variables; good for

experimenting.

Eijkhout: OMP intro 26

More loop topics

Multiple loops can be collapsed: collapse(2). Improves performance.

Ordered iterations: normally OpenMP can execute iterations in any
sequence. You can force ordering if you absolutely have to. Bad for
performance!

There is a barrier at the end of a for: use nowait to let threads
continue.

Eijkhout: OMP intro 27

Workshare constructs

Eijkhout: OMP intro 28

What is worksharing again?

The omp parallel creates a team of threads.

Now you need to distributed work among them.

Already seen: for, do

Similar: sections

Not obvious: single

Fortran only: workshare (works with array notation, but compiler
support seems mediocre)

Story in itself: task

Eijkhout: OMP intro 29

Sections

Independent separate calculations:

double fx = f(x), gx = g(x), hx = h(x);
..... fx ... gx ... hx

#pragma omp sections
{
#pragma omp section
fx = f(x)
#pragma omp section
gx = g(x)
#pragma omp section
hx = h(x)

}

Adding them together:

s = f(x)+g(x)+h(x);

Use reduction.Eijkhout: OMP intro 30

Single

int a;
#pragma omp parallel
{
#pragma omp single

a = f(); // some computation
#pragma omp sections

// various different computations using ‘a’
}

Is executed by a single thread.

Has implicit barrier, so the result is available to everyone after.

master is similar, does not have barrier.

Eijkhout: OMP intro 31

Exercise 5

What is the difference between this approach and how the same computation
would be parallelized in MPI?

Eijkhout: OMP intro 32

Thread data

Eijkhout: OMP intro 33

Shared and private data

You have already seen some of the basics:

Data declared outside a parallel region is shared.

Data declared in the parallel region is private.
(Fortran does not have this block scope mechanism)

int i;
#pragma omp parallel
{ double i; }

You can change all this with clauses:

int i;
#pragma omp parallel private(i)

Eijkhout: OMP intro 34

Variables in loops

int i; double t;
#pragma omp parallel for
for (i=0; i<N; i++) {

t = sin(i*pi*h);
x[i] = t*t;

}

The loop variable is automatically private.

The temporary t is shared, but conceptually private to each iteration:
needs to be declared private.
(What happens if you don’t?)

Eijkhout: OMP intro 35

Copying to/from private data

Private data is uninitialized

int i = 3;
#pragma omp parallel private(i)

printf("%d\n",i); // undefined!

To import a value:

int i = 3;
#pragma omp parallel firstprivate(i)

printf("%d\n",i); // undefined!

lastprivate to preserve value of last iteration.

Eijkhout: OMP intro 36

Default behaviour

default(shared) or default(private)

useful for debugging: default(none)
because you have to specify everything as shared/private

Eijkhout: OMP intro 37

Persistent thread data

Private data disappears after the parallel region.
What if you want data to persist?

Directive threadprivate

double seed;
#pragma omp threadprivate(seed)

Standard application: random number generation.

Tricky: has to be global or static.

Eijkhout: OMP intro 38

Arrays

Statically allocated arrays can be made private.

Dynamically allocated ones can not: the pointer becomes private.

Eijkhout: OMP intro 39

Synchronization

Eijkhout: OMP intro 40

Need for synchronization

The loop and sections directives do not specify an ordering,
sometimes you want to force an ordering.

Barriers: global synchronization.

Critical sections: only one process can execute a statement
this prevents race conditions.

Locks: protect data items from being accessed.

Eijkhout: OMP intro 41

Barriers

Every workshare construct has an implicit barrier:

#pragma omp parallel
{
#pragma omp for
for (.. i ..)
x[i] = ...

#pragma omp for
for (.. i ..)
y[i] = .. x[i] .. x[i+1] .. x[i-1] ...

}

First loop is completely finished before second.

Explicit barrier:

#pragma omp parallel
{
x = f();

#pragma omp barrier
.... x ...

}Eijkhout: OMP intro 42

Critical sections

Critical section: One update at a time.

#pragma omp parallel
{

double x = f();
#pragma omp critical

global_update(x);
}

atomic : special case for simple operations, possible hardware support

#pragma omp atomic
t += x;

Eijkhout: OMP intro 43

Warning

Critical sections are not cheap! The operating system takes thousands of
cycles to coordinate the threads.

Use only if minor amount of work.

Do not use if a reduction suffices.

Name your critical sections.

Explore locks if there may not be a data conflict.

Eijkhout: OMP intro 44

Locks

Critical sections are coarse:
they dictate exclusive acces to a statement

Suppose you update a big table
updates to non-conflicting locations should be allowed

Locks protect a single data item.

Eijkhout: OMP intro 45

Tasks

Eijkhout: OMP intro 46

More flexibility

You have seen loops and sections.

How about linked lists or trees?

Tasks are very flexible:
you create work, it goes on a queue, gets executed later

p = head_of_list();
while (!end_of_list(p)) {
#pragma omp task
process(p);
p = next_element(p);

}

Eijkhout: OMP intro 47

Threads, tasks, queues

There is one queue (per team), not visible to the programmer.

One thread starts generating tasks.

Tasks can recursively generate tasks.

You never know who executes what.

Eijkhout: OMP intro 48

Exercise 6

Use tasks to find the smallest factor of a large number (using 2999 ·3001 as
test case): generate a task for each trial factor. Start with this code:

int factor=0;
#pragma omp parallel
#pragma omp single
for (int f=2; f<4000; f++) {

{ // see if ‘f’ is a factor
if (N%f==0) { // found factor!
factor = f;

}
}
if (factor>0)
break;

}
if (factor>0)

printf("Found a factor: %d\n",factor);

Turn the factor finding block into a task.
Run your program a number of times:
for i in ‘seq 1 1000‘ ; do ./taskfactor ; done | grep -v 2999
Does it find the wrong factor? Why? Try to fix this.
Once a factor has been found, you should stop generating tasks. Let
tasks that should not have been generated, meaning that they test a
candidate larger than the factor found, print out a message.

Eijkhout: OMP intro 49

Task synchronization

Mechanisms for task synchronization:

taskwait: wait for all previous tasks (not nested)

taskgroup: wait for all tasks, including nested

depend: synchronize on data items.

Eijkhout: OMP intro 50

Example: tree traversal

int process(node n) {
if (n.is_leaf)

return n.value;
for (c : n.children) {

#pragma omp task
process(c);

#pragma omp taskwait
return sum_of_children();

}

Eijkhout: OMP intro 51

Example: Fibonacci

long fib(int n) {
if (n<2) return n;
else { long f1,f2;

#pragma omp task
f1 = fib(n-1);

#pragma omp task
f2 = fib(n-2);

#pragma omp taskwait
return f1+f2;

}

#pragma omp parallel
#pragma omp single
printf("Fib(50)=%ld",fib(50));

(what is conceptually wrong with this example?)

Eijkhout: OMP intro 52

Fibonacci once more

long fibs[100];
void fib(n) {
if (n>=2) {

#pragma omp task \
depend(in:fibs[n-2],in:fibs[n-1]) \
depend(out:fibs[n])

fibs[n] = fibs[n-2]+fibs[n-1];
};

#pragma omp parallel
#pragma omp single

for (i<50)
fib(i);

Eijkhout: OMP intro 53

Remaining topics

Eijkhout: OMP intro 54

Affinity

How do you place threads on cores?

Two socket design NUMA

Intel KNL has quadrants and hardware multi-threading

OMP_PROC_BIND and OMP_PLACES

Eijkhout: OMP intro 55

Accelerators

OpenMP 4 has mechanisms for offloading.

Eijkhout: OMP intro 56

SIMD

Processors have 4 or 8-wide SIMD.
convert OpenMP loop to SIMD vector instructions.

Eijkhout: OMP intro 57

Index

atomic, 43
collapse(2), 27
default(none), 37
default(private), 37
default(shared), 37
depend, 50
do, 18, 29
for, 18, 27, 29
lastprivate, 36
master, 31
nowait, 27
numerical integration, 21
omp parallel, 29
omp parallel for, 26
omp_get_thread_num, 17
OMP_PLACES, 55
OMP_PROC_BIND, 55

parallel, 18
reduction, 26
reduction(+:s), 24
Riemann sums, 21
schedule(auto), 26
schedule(dynamic), 26
schedule(dynamic,n), 26
schedule(guided), 26
schedule(runtime), 26
schedule(static,n), 26
sections, 29
single, 29
task, 29
taskgroup, 50
taskwait, 50
threadprivate, 38
workshare, 29

Eijkhout: OMP intro 58

	The Fork-Join model
	Loop parallelism
	Workshare constructs
	Thread data
	Synchronization
	Tasks
	Remaining topics

