
Serial Optimization and Vectorization Lab

Todd Evans
Texas Advanced Computing Center

Summer School in Advanced Scientific Computing

June 20, 2016



Setup

Open up a terminal

Run these commands in the terminal

• ssh username@stampede.tacc.utexas.edu

• idev -m 60 (this puts you on a compute node for 60 mn)

• source ∼train00/SSASC sourceme

• tar xvf ∼train00/SS ASC2016 opt lab.tar

• cd SS ASC2016 opt lab

R.T. Evans 2



Exercise 1: Optimization Levels and Performance

We are going to compare the run times of a program compiled with gcc
and icc at different levels of optimization.

Setup - Perform these steps from the command line

1 Inspect auto.c. It times the execution of loops of different floating
point operations

2 module swap intel gcc

3 gcc -O0 auto.c -o gauto O0 -lm

gcc -O1 auto.c -o gauto O1 -lm

gcc -O2 auto.c -o gauto O2 -lm

gcc -O3 auto.c -o gauto O3 -lm

4 module swap gcc intel

5 icc -O0 auto.c -o iauto O0 -lm

icc -O1 auto.c -o iauto O1 -lm

icc -O2 auto.c -o iauto O2 -lm

icc -O3 auto.c -o iauto O3 -lm

R.T. Evans 3



Exercise 1: Optimization Levels and Performance

We are going to compare the run times of a program compiled with gcc
and icc at different levels of optimization.

Run these 8 binaries and record execution times for each operation
(multiplication/division/sqrt)

1 module swap intel gcc

2 ./gauto O0

./gauto O1

./gauto O2

./gauto O3

3 module swap gcc intel

4 ./iauto O0

./iauto O1

./iauto O2

./iauto O3

5 Which combination is the fastest? Does gcc or icc perform best?

R.T. Evans 4



Exercise 2: To Block or Not to Block

-Compare the run times of two matrix transposition programs
-One version will have manual loop-blocking and one will not
-O1 optimization flag has NO compiler performed blocking

Setup - Perform these steps from the command line

1 Inspect cache blocking.c. It performs transposition w/ manual
blocking and w/o

2 icc -O1 cache blocking.c -o nonblocked (This produces an
unblocked executable)

3 icc -O1 cache blocking.c -DBLOCK -o blocked (This
produces a manually blocked executable)

4 Run the following and note the “Time for transposition” reported
./nonblocked

./blocked 32

./blocked 256

./blocked 512

R.T. Evans 5



Exercise 2: To Block or Not to Block

-Compare the run times of two matrix transposition programs
-One version will have manual loop-blocking and one will not
-O2 optimization flag HAS compiler performed blocking

Setup - Perform these steps from the command line

1 icc -O2 cache blocking.c -o nonblocked opt (This produces
a compiler blocked executable)

2 icc -O2 cache blocking.c -DBLOCK -o blocked opt (This
produces a manual and compiler blocked executable)

3 Run the following and note the “Time for transposition” reported
./nonblocked opt

./blocked opt 32

./blocked opt 256

./blocked opt 512

4 Who is better at loop-blocking: the compiler or us?

R.T. Evans 6



Exercise 3: Use -xhost: Why Vectorization Matters

Setup - Perform these steps

1 Inspect vector.c. It initializes a matrix B and vector c and
performs a matrix-vector multiply

2 icc vector.c -no-vec -o no-vectorization (generates
un-vectorized code)

3 icc vector.c -o sse2-vectorization (generates SSE2
vectorized code (128-bit width) )

4 icc vector.c -xhost -o avx-vectorization (generates AVX
vectorized code (256-bit width))

5 Compare the run times and flops/cycle for each executable

6 How many doubles fit in 256-bits? Is this even possible? (Hint:
SNB cores have 2 vector units)

7 feel free to repeat above steps w/ -opt-report flag and inspect
generated optimization report

R.T. Evans 7


