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Two of the most common software systems for parallel programming in scientific computing are MPI and
OpenMP. They target different types of parallelism, and use very different constructs. Thus, by covering
both of them in one book we can offer a treatment of parallelism that spans a large range of possible
applications.
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Chapter 1

Getting started with MPI

In this chapter you will learn the use of the main tool for distributed memory programming: the Message
Passing Interface (MPI) library. The MPI library has about 250 routines, many of which you may never
need. Since this is a textbook, not a reference manual, we will focus on the important concepts and give the
important routines for each concept. What you learn here should be enough for most common purposes.
You are advised to keep a reference document handy, in case there is a specialized routine, or to look up
subtleties about the routines you use.

1.1 Distributed memory and message passing

In its simplest form, a distributed memory machine is a collection of single computers hooked up with
network cables. In fact, this has a name: a Beowulf cluster . As you recognize from that setup, each pro-
cessor can run an independent program, and has its own memory without direct access to other processors’
memory. MPI is the magic that makes multiple instantiations of the same executable run so that they know
about each other and can exchange data through the network.

One of the reasons that MPI is so successful as a tool for high performance on clusters is that it is very
explicit: the programmer controls many details of the data motion between the processors. Consequently, a
capable programmer can write very efficient code with MPI. Unfortunately, that programmer will have to
spell things out in considerable detail. For this reason, people sometimes call MPI ‘the assembly language of
parallel programming’. If that sounds scary, be assured that things are not that bad. You can get started fairly
quickly with MPI, using just the basics, and coming to the more sophisticated tools only when necessary.

Another reason that MPI was a big hit with programmers is that it does not ask you to learn a new language:
it is a library that can be interface to C/C++ or Fortran; there are even bindings to Python. A related point is
that it is easy to install: there are free implementations that you can download and install on any computer
that has a Unix-like operating system, even if that is not a parallel machine.

1.2 History

Before the MPI standard was developed in 1993-4, there were many libraries for distributed memory com-
puting, often proprietary to a vendor platform. MPI standardized the inter-process communication mecha-
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1.3. Basic model

nisms. Other features, such as process management in PVM , or parallel I/O were omitted. Later versions
of the standard have included many of these features.

Since MPI was designed by a large number of academic and commercial participants, it quickly became a
standard. A few packages from the pre-MPI era, such as Charmpp [6], are still in use since they support
mechanisms that do not exist in MPI.

1.3 Basic model

Here we sketch the two most common scenarios for using MPI. In the first, the user is working on an
interactive machine, which has network access to a number of hosts, typically a network of workstations;
see figure 1.1. The user types the command mpiexec1 and supplies

Figure 1.1: Interactive MPI setup

• The number of hosts involved,
• their names, possibly in a hostfile,
• and other parameters, such as whether to include the interactive host; followed by
• the name of the program and its parameters.

The mpirun program then makes an ssh connection to each of the hosts, giving them sufficient informa-
tion that they can find each other. All the output of the processors is piped through the mpirun program,
and appears on the interactive console.

In the second scenario (figure 1.2) the user prepares a batch job script with commands, and these will be
run when the batch scheduler gives a number of hosts to the job. Now the batch script contains the mpirun
command, or some variant such as ibrun, and the hostfile is dynamically generated when the job starts.
Since the job now runs at a time when the user may not be logged in, any screen output goes into an output
file.

You see that in both scenarios the parallel program is started by the mpirun command using an Single
Program Multiple Data (SPMD) mode of execution: all hosts execute the same program. It is possible for
different hosts to execute different programs, but we will not consider that in this book.

1. A command variant is mpirun; your local cluster may have a different mechanism.
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1. Getting started with MPI

Figure 1.2: Batch MPI setup

1.4 Making and running an MPI program

MPI is a library, called from programs in ordinary programming languages such as C/C++ or Fortran. To
compile such a program you use your regular compiler:

gcc -c my_mpi_prog.c -I/path/to/mpi.h
gcc -o my_mpi_prog my_mpi_prog.o -L/path/to/mpi -lmpich

However, MPI libraries may have different names between different architectures, making it hard to have a
portable makefile. Therefore, MPI typically has shell scripts around your compiler call:

mpicc -c my_mpi_prog.c
mpicc -o my_mpi_prog my_mpi_prog.o

MPI programs can be run on many different architectures. Obviously it is your ambition (or at least your
dream) to run your code on a cluster with a hundred thousand processors and a fast network. But maybe
you only have a small cluster with plain ethernet . Or maybe you’re sitting in a plane, with just your laptop.
An MPI program can be run in all these circumstances – within the limits of your available memory of
course.

The way this works is that you do not start your executable directly, but you use a program, typically called
mpirun or something similar, which makes a connection to all available processors and starts a run of
your executable there. So if you have a thousand nodes in your cluster, mpirun can start your program
once on each, and if you only have your laptop it can start a few instances there. In the latter case you will
of course not get great performance, but at least you can test your code for correctness.

1.5 Language bindings

1.5.1 C/C++

The MPI library is written in C. Thus, its bindings are the most natural for that language.
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1.5. Language bindings

C++ bindings existed at one point, but they were declared deprecated. The boost library has its own version
of MPI. A recent effort at idiomatic C++ support is MPL http://numbercrunch.de/blog/2015/
08/mpl-a-message-passing-library/.

1.5.2 Fortran

The Fortran bindings for MPI look very much like the C ones, except that each routine has a final error
return parameter.

Fortran note Other Fortran-specific differences will be indicated with a note like this.

1.5.3 Python

The mpi4py package of python bindings is not defined by the MPI standards committee. Instead, it is the
work of an individual, Lisandro Dalcin .

Notable about the Python bindings is that many communication routines exist in two variants:

• a version that can send native Python objects. These routines have lowercase names such as
bcast; and

• a version that sends numpy objects; these routines have names such as Bcast. Their syntax
can be slightly different.

The first version looks more ‘pythonic’, is easier to write, and can do things like sending python objects,
but it is also decidedly less efficient since data is packed and unpacked with pickle. As a common sense
guideline, use the numpy interface in the performance-critical parts of your code, and the native interface
only for complicated actions in a setup phase.

Codes with mpi4py can be interfaced to other languages through Swig or conversion routines.

Data in numpy can be specified as a simple object, or [data, (count,displ), datatype].

1.5.4 How to read routine prototypes

Throughout the MPI part of this book we will give the reference syntax of the routines. This typically
comprises:

• The semantics: routine name and list of parameters and what they mean.
• C synxtax: the routine definition as it appears in the mpi.h file.
• Fortran syntax: routine definition with parameters, giving in/out specification.
• Python syntax: routine name, indicating to what class it applies, and parameter, indicating which

ones are optional.

These ‘routine prototypes’ look like code but they are not! Here is how you translate them.

1.5.4.1 C

The typically C routine specification in MPI looks like:
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1. Getting started with MPI

int MPI_Comm_size(MPI_Comm comm,int *nprocs)

This means that

• The routine returns an int parameter. Strictly speaking you would use the routine as
MPI_Comm comm = MPI_COMM_WORLD;
int nprocs;
int errorcode;
errorcode = MPI_Comm_world( MPI_COMM_WORLD,&nprocs
if (errorcode!=0) {

printf("Routine MPI_Comm_world failed! code=%d\n",errorcode);
return 1;

}

However, the error codes are hardly ever useful, and there is not much your program can do to
recover from an error. Most people call the routine as

MPI_Comm_world( /* parameter ... */ );

• The first argument is of type MPI_Comm. This is not a C built-in datatype, but it behaves like
one. There are many of these MPI_something datatypes in MPI. So you can write:

MPI_Comm my_comm = MPI_COMM_WORLD; // using a predefined value
MPI_Comm_size( comm, /* remaining parameters */ );

• Finally, there is a ‘star’ parameter. This means that the routine wants an address, rather than a
value. You would typically write:

MPI_Comm my_comm = MPI_COMM_WORLD; // using a predefined value
int nprocs;
MPI_Comm_size( comm, &nprocs );

Seeing a ‘star’ parameter usually means either: the routine has an array argument, or: the routine
internally sets the value of a variable. The latter is the case here.

1.5.4.2 Fortran

The Fortran specification looks like:

MPI_Comm_size(comm, size, ierror)
INTEGER, INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

The syntax of using this routine is close to this specification: you write

integer :: comm = MPI_COMM_WORLD
integer :: size
CALL MPI_Comm_size( comm, size, ierr )
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• Most Fortran routines have the same parameters as the corresponding C routine, except that
they all have the error code as final parameter, instead of as a function result. As with C, you
can ignore the value of that parameter. Just don’t forget it.

• The types of the parameters are given in the specification.
• Where C routines have MPI_Comm and MPI_Request and such parameters, Fortran has
INTEGER parameters, or sometimes arrays of integers.

1.5.4.2.1 Python The Python interface to MPI uses classes and objects. Thus, a specification like:

MPI.Comm.Send(self, buf, int dest, int tag=0)

should be parsed as follows.

• First of all, you need the MPI class:
from mpi4py import MPI

• Next, you need a Comm object. Often you will use the predefined communicator
comm = MPI.COMM_WORLD

• The keyword self indicates that the actual routine Send is a method of the Comm object, so
you call:

comm.Send( .... )

• Parameters that are listed by themselves, such as buf, as positional. Parameters that are listed
with a type, such as int dest are keyword parameters. Keyword parameters that have a value
specified, such as int tag=0 are optional, with the default value indicated. Thus, the typicall
call for this routine is:

comm.Send(sendbuf,dest=other)

specifying the send buffer as positional parameter, the destination as keyword parameter, and
using the default value for the optional tag.

Some python routines are ‘class methods’, and their specification lacks the self keyword. For instance:

MPI.Request.Waitall(type cls, requests, statuses=None)

would be used as

MPI.Request.Waitall(requests)
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Chapter 2

MPI topic 1: Functional parallelism

2.1 The SPMD model

MPI programs conform1 to the Single Program Multiple Data (SPMD) model, where each processor runs
the same executable. This running executable we call a process .

When MPI was first written, 20 years ago, it was clear what a processor was: it was what was in a computer
on someone’s desk, or in a rack. If this computer was part of a networked cluster, you called it a node . So
if you ran an MPI program, each node would have one MPI process; figure 2.1.

Figure 2.1: Cluster structure as of the mid 1990s

These days the situation is more complicated. You can still talk about a node in a cluster, but now a node
can contain more than one processor chip (sometimes called a socket), and each processor chip probably
has multiple cores . Figure 2.2 shows how you could explore this using a mix of MPI between the nodes,
and a shared memory programming system on the nodes.

1. Usually, but not necessarily.
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2.1. The SPMD model

Figure 2.2: Hybrid cluster structure

However, since each core can act like an independent processor, you can also have multiple MPI processes
per node. To MPI the cores look like the old completely separate processors. This is the ‘pure MPI’ model
of figure 2.3 which we will use in most of this part of the book.

Figure 2.3: MPI-only cluster structure

This is somewhat confusing: the old processors needed MPI programming, because they were physically
separated. The cores on a modern processor, on the other hand, share the same memory, and even some
caches. In its basic mode MPI ignores all of this: each core receives an MPI process and they communicate
as if they are all connected through the same network. In fact, you can’t immediately see whether two cores
are on the same node or different nodes.
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2. MPI topic 1: Functional parallelism

2.2 Starting and running MPI processes

The SPMD model may be initially confusing. Even though there is only a single source, compiled into a sin-
gle executable, the parallel run comprises a number of independently started MPI processes (see section 1.3
for the mechanism).

The following exercises are designed to give you an intuition for this one-source-many-processes setup. In
the first exercise you will see that the mechanism for starting MPI programs starts up independent copies.
There is nothing in the source that says ‘and now you become parallel’.

The following exercise shows you that

Exercise 2.1. Write a ‘hello world’ program, without any MPI in it, and run it in parallel
with mpiexec or your local equivalent. Explain the output.

To get a useful MPI program you need at least the calls MPI_Init and MPI_Finalize surrounding
your code. See section ?? for their syntax.

Python note There are no initialize and finalize calls: the import statement per-
forms the initialization.

This may look a bit like declaring ‘this is the parallel part of a program’, but that’s not true: again, the whole
code is executed multiple times in parallel.

Exercise 2.2. Add the commands MPI_Init and MPI_Finalize to your code. Put
three different print statements in your code: one before the init, one between init
and finalize, and one after the finalize. Again explain the output.

In the following exercise you will print out the hostname of each MPI process; see section ?? for the syntax.

Exercise 2.3. Now use the command MPI_Get_processor_name in between the init
and finalize statement, and print out on what processor your process runs. Confirm
that you are able to run a program that uses two different nodes.

2.2.1 Reference

If you use MPI commands in a program file, be sure to include the proper header file, mpi.h or mpif.h .

#include "mpi.h" // for C
#include "mpif.h" ! for Fortran

For Fortran90 , many MPI installations also have an MPI module, so you can write

use mpi

The internals of these files can be different between MPI installations, so you can not compile one file
against one mpi.h file and another file, even with the same compiler on the same machine, against a
different MPI.
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2.2. Starting and running MPI processes

2.2.2 Initialization / finalization

Every MPI program has to start with MPI initialization:
C:
int MPI_Init(int *argc, char ***argv)

Fortran:
MPI_Init(ierror)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

where argc and argv are the arguments of a C language main program:

int main(int argc,char **argv) {
....
return 0;

}

(It is allowed to pass NULL for these arguments.)

The commandline arguments argc and argv are only guaranteed to be passed to process zero, so the best
way to pass commandline information is by a broadcast (section 3.2).

Note that the MPI_Init call is one of the few that differs between C and Fortran: the C routine takes the
commandline arguments, which Fortran lacks.

If MPI is used in a library, MPI can have already been initialized in a main program. For this reason, one
can test where MPI_Init has been called with

C:
int MPI_Initialized(int *flag)

Fortran:
MPI_Initialized(flag, ierror)
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

The regular way to conclude an MPI program is:
C:
int MPI_Finalize(void)

Fortran:
MPI_Finalize(ierror)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

but an abnormal end to a run can be forced by
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2. MPI topic 1: Functional parallelism

MPI_Abort(comm,value);

This aborts execution on all processes associated with the communicator, but many implementations simply
abort all processes. The value parameter is returned to the environment.

The corresponding Fortran calls are

call MPI_Init(ierr)
// your code
call MPI_Finalize(ierr)

You can test whether MPI_Finalize has been called with
C:
int MPI_Finalized( int *flag )

Fortran:
MPI_Finalized(flag, ierror)
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

2.2.2.1 Information about the run

Once MPI has been initialized, the MPI_INFO_ENV object contains:

• command Name of program executed.
• argv Space separated arguments to command.
• maxprocs Maximum number of MPI processes to start.
• soft Allowed values for number of processors.
• host Hostname.
• arch Architecture name.
• wdir Working directory of the MPI process.
• file Value is the name of a file in which additional information is specified.
• thread_level Requested level of thread support, if requested before the program started

execution.

Note that these are the requested values; the running program can for instance have lower thread support.

2.2.2.2 Commandline arguments

The MPI_Init routines takes a reference to argc and argv for the following reason: the MPI_Init
calls filters out the arguments to mpirun or mpiexec , thereby lowering the value of argc and elimitating
some of the argv arguments.

On the other hand, the commandline arguments that are meant for mpiexec wind up in the MPI_INFO_
ENV object as a set of key/value pairs.
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2.3 Processor identification

Since all processes in an MPI job are instantiations of the same executable, you’d think that they all execute
the exact same instructions, which would not be terribly useful. To distinguish between processors, MPI
provides two calls

1. MPI_Comm_size reports how many processes there are in all; and
2. MPI_Comm_rank states what the number of the process is.

In other words, each process can find out ‘I am process 5 out of a total of 20’.

Exercise 2.4. Write a program where each process prints out message reporting its number,
and how many processes there are.
Write a second version of this program, where each process opens a unique file and
writes to it. On some clusters this may not be advisable if you have large numbers
of processors, since it can overload the file system.

Exercise 2.5. Write a program where only the process with number zero reports on how
many processes there are in total.

2.3.1 Examples

This is probably about the simplest MPI program:

// helloworld.c
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&ntids);
MPI_Comm_rank(MPI_COMM_WORLD,&mytid);
printf("Hello, this is processor %d out of %d\n",mytid,ntids);
MPI_Finalize();

// hello.py
from mpi4py import MPI

comm = MPI.COMM_WORLD
nprocs = comm.Get_size()
procno = comm.Get_rank()

print "Starting processes %d out of %d" % (procno,nprocs)

2.3.2 Reference

There are many calls relating to communicators. The simplest are
Semantics:
MPI_COMM_SIZE(comm, size)
IN comm: communicator (handle)
OUT size: number of processes in the group of comm (integer)
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C:
int MPI_Comm_size(MPI_Comm comm, int *size)

Fortran:
MPI_Comm_size(comm, size, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Comm.Get_size(self)

How to read routine prototypes: 1.5.4.

and
Semantics:
MPI_COMM_RANK(comm, rank)
IN comm: communicator (handle)
OUT rank: rank of the calling process in group of comm (integer)

C:
int MPI_Comm_rank(MPI_Comm comm, int *rank)

Fortran:
MPI_Comm_rank(comm, rank, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: rank
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Comm.Get_rank(self)

How to read routine prototypes: 1.5.4.

2.4 Functional parallelism

Being able to tell processes apart is already enough for some applications. Based on its rank, a processor
can find its section of a search space. For instance, in Monte Carlo codes a large number of random samples
is generated and some computation performed on each. (This particular example requires each MPI process
to run an independent random number generator, which is not entirely trivial.)

Exercise 2.6. Is the number N = 2, 000, 000, 111 prime? Let each process test a range of
integers, and print out any factor they find. You don’t have to test all integers < N :
any factor is at most

√
N ≈ 45, 200.

As another example, in Boolean satisfiability problems a number of points in a search space needs to be
evaluated. Knowing a process’s rank is enough to let it generate its own portion of the search space. The
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computation of the Mandelbrot set can also be considered as a case of functional parallelism. However, the
image that is constructed is data that needs to be kept on one processor, which breaks the symmetry of the
decomposition.

Of course, at the end of a functionally parallel run you need to summarize the results, for instance printing
out some total. The mechanisms for that you will learn next.
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Chapter 3

MPI topic 2: Global information

3.1 Working with global information

If all processes have individual data, for instance the result of a local computation, you may want to bring
that information together, for instance to find the maximal computed value or the sum of all values. Con-
versely, sometimes one processor has information that needs to be shared with all. For this sort of operation,
MPI has collectives .

There are various cases, the most common ones are illustrated in figure 3.1.

Figure 3.1: The four most common collectives

Above, you saw how each process can perform its own computation with its own result. You may want to
summarize these results on one process, known as the root process , for instance to print them out. If you
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perform an operation on the data from the processors, for instance to compute the maximum value, this is
known as a reduction (section 3.2). On the other hand, if you need to collect and preserve all computation
results, the operation is known as a gather (section 3.4).

Conversely, one process can have data that needs to be spread to all others, for instance because it reads it
from file. If the same item needs to be sent to all processes, this is known as broadcast . If the root process
sends individual data to each process, it is called a scatter .

Exercise 3.1. How would you realize the following scenarios with MPI collectives?
• Let each process compute a random number. You want to print the maximum

of these numbers to your screen.
• Each process computes a random number again. Now you want to scale these

numbers by their maximum.
• Let each process compute a random number. You want to print on what

processor the maximum value is computed.

Collectives are operations that involve all processes in a communicator. (See section ?? for an informal
listing.) A collective is a single call, and it blocks on all processors. That does not mean that all processors
exit the call at the same time: because of implementational details and network latency they need not be
synchronized in their execution. However, semantically we can say that a process can not finish a collective
until every other process has at least started the collective.

In addition to these collective operations, there are operations that are said to be ‘collective on their com-
municator’, but which do not involve data movement. Collective then means that all processors must call
this routine; not to do so is an error that will manifest itself in ‘hanging’ code. One such example is
MPI_Win_fence.

There are more collectives or variants on the above.

• If you want to gather or scatter information, but the contribution of each processor is of a differ-
ent size, there are ‘variable’ collectives; they have a v in the name (section 3.5).
• Sometimes you want a reduction with partial results, where each processor computes the sum (or

other operation) on the values of lower-numbered processors. For this, you use a scan collective
(section 3.6).
• If every processor needs to broadcast to every other, you use an all-to-all operation (section ??).
• A barrier is an operation that makes all processes wait until every process has reached the barrier

(section 3.7.1).

In many applications the result of a collective is needed on all processes. For instance, if x, y are distributed
vector objects, and you want to compute

y − (xty)x

you need the inner product value on all processors. You could do this by writing a reduction followed by
a broadcast, but more efficient algorithms exist. Surprisingly, an ‘all-gather’ operation takes as long as a
rooted gather (see HPSC-6.1 for details).

Thus, MPI has the following operations:

• MPI_Allreduce is equivalent to a MPI_Reduce followed by a broadcast.
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• MPI_Allgather is equivalent to a MPI_Gather followed by a broadcast.
• MPI_Allgatherv is equivalent to an MPI_Gatherv followed by a broadcast.
• MPI_Alltoall, MPI_Alltoallv.

Finally, there are some advanced topics in collectives.

• Non-blocking collectives; section ??.
• User-defined reduction operators; section 3.3.2.

3.2 Rooted collectives: broadcast, reduce

One simple collective is the broadcast, where one process has some data that needs to be shared with all
others. One scenario is that processor zero can parse the commandline arguments of the executable and
send the values to all other processors. Another scenario is that you want one processor to read data from
file and send it to the other processors: this is likely to be more efficient than having every process open the
file.

The broadcast call has the following structure:

MPI_Bcast( data..., root , comm);

The root is the process that is sending its data. Typically, it will be the root of a broadcast tree. The comm
argument is a communicator: for now you can use MPI_COMM_WORLD. Unlike with send/receive there is
no message tag, because collectives are blocking, so you can have only one collective active at a time.

The data in a broadcast (or any other MPI operation for that matter) is specified as

• A buffer. In C this is the address in memory of the data. This means that you broadcast a single
scalar as MPI_Bcast( &value, ... ), but an array as MPI_Bcast( array, ...
).
• The number of items and their datatype. The allowable datatypes are such things as MPI_INT

and MPI_FLOAT for C, and MPI_INTEGER and MPI_REAL for Fortran, or more complicated
types. See section ?? for details.

Python note In python it is both possible to send objects, and to send more C-
like buffers. The two possibilities correspond (see section 1.5.3) to different routine
names; the buffers have to be created as numpy objects.

There is an example in section ??.
C:
int MPI_Bcast(

void* buffer, int count, MPI_Datatype datatype,
int root, MPI_Comm comm)

Fortran:
MPI_Bcast(buffer, count, datatype, root, comm, ierror)
TYPE(*), DIMENSION(..) :: buffer
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
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TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python native:
rbuf = MPI.Comm.bcast(self, obj=None, int root=0)
Python numpy:
MPI.Comm.Bcast(self, buf, int root=0)

How to read routine prototypes: 1.5.4.

Exercise 3.2. If you give a commandline argument to a program, that argument is available
as a character string as part of the argv,argc pair that you typically use as the
arguments to your main program. You can use the function atoi to convert such a
string to integer.
Write a program where process 0 looks for an integer on the commandline, and
broadcasts it to the other processes. Initialize the buffer on all processes, and let all
processes print out the broadcast number, just to check that you solved the problem
correctly.

In python we illustrate the native and numpy variants. In the native variant the result is given as a function
return; in the numpy variant the send buffer is reused.

// bcast.py
# first native
if procid==root:

buffer = [ 5.0 ] * dsize
buffer = comm.bcast(obj=buffer,root=root)
if not reduce( lambda x,y:x and y,

[ buffer[i]==5.0 for i in range(len(buffer)) ] ):
print "Something wrong on proc %d: native buffer <<%s>>" \

% (procid,str(buffer))

# then with NumPy
buffer = np.arange(dsize, dtype=np.float64)
if procid==root:

for i in range(dsize):
buffer[i] = 5.0

comm.Bcast( buffer,root=root )
if not all( buffer==5.0 ):

print "Something wrong on proc %d: numpy buffer <<%s>>" \
% (procid,str(buffer))
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3.3 Reduction

In the broadcast operation a single data item was communicated to all processes. Reduction operations go
the other way: each process has a data item, and these are all brought together into a single item.

Here are the essential elements of a reduction operation:

MPI_Reduce( senddata, recvdata..., operator,
root, comm );

• There is the original data, and the data resulting from the reduction. It is a design decision of
MPI that it will not by default overwrite the original data. The send data and receive data are of
the same size and type: if every processor has one real number, the reduced result is again one
real number.
• There is a reduction operator. Popular choices are MPI_SUM, MPI_PROD and MPI_MAX, but

complicated operators such as finding the location of the maximum value exist. You can also
define your own operators; section ??.
• There is a root process that receives the result of the reduction. Since the non-root processes do

not receive the reduced data, they can actually leave the receive buffer undefined.

// reduce.c
float myrandom = (float) rand()/(float)RAND_MAX,

result;
int target_proc = ntids-1;
// add all the random variables together
MPI_Reduce(&myrandom,&result,1,MPI_FLOAT,MPI_SUM,

target_proc,comm);
// the result should be approx ntids/2:
if (mytid==target_proc)

printf("Result %6.3f compared to ntids/2=%5.2f\n",
result,ntids/2.);

C:
int MPI_Reduce(

const void* sendbuf, void* recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

Fortran:
MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: count, root
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
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comm.Reduce(self, sendbuf, recvbuf, Op op=SUM, int root=0)
comm.reduce(self, sendobj=None, recvobj=None, op=SUM, int root=0)

How to read routine prototypes: 1.5.4.

Exercise 3.3. Write a program where each process computes a random number, and
process 0 finds and prints the maximum generated value. Let each process print its
value, just to check the correctness of your program.

Exercise 3.4. Write a program where each process computes a random number, after which
the maximum value over all processors is found. Each process then scales its value
by this maximum. Use the MPI_Allreduce routine.

Collective operations can also take an array argument, instead of just a scalar. In that case, the operation is
applied pointwise to each location in the array.

Exercise 3.5. Create on each process an array of length 2 integers, and put the values 1, 2 in
it on each process. Do a sum reduction on that array. Can you predict what the
result should be? Code it. Was your prediction right?

3.3.1 Reduce in place

On the root, you need two buffers, which could be a significant memory demand in the case of a large array
to be reduced. Therefore, you can specify MPI_IN_PLACE as the send buffer on the root. The reduction
call then uses the value in the receive buffer as the root’s contribution to the operation.

// reduceinplace.c
float mynumber,result,*sendbuf,*recvbuf;
mynumber = (float) mytid;
int target_proc = ntids-1;
// add all the random variables together
if (mytid==target_proc) {
sendbuf = (float*)MPI_IN_PLACE; recvbuf = &result;
result = mynumber;

} else {
sendbuf = &mynumber; recvbuf = NULL;

}
MPI_Reduce(sendbuf,recvbuf,1,MPI_FLOAT,MPI_SUM,

target_proc,comm);
// the result should be ntids*(ntids-1)/2:
if (mytid==target_proc)
printf("Result %6.3f compared to n(n-1)/2=%5.2f\n",

result,ntids*(ntids-1)/2.);

In Fortran the code is less elegant because you can not do these address calculations:

// reduceinplace.F90
call random_number(mynumber)
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target_proc = ntids-1;
! add all the random variables together
if (mytid.eq.target_proc) then

result = mytid
call MPI_Reduce(MPI_IN_PLACE,result,1,MPI_REAL,MPI_SUM,&

target_proc,comm,err)
else

mynumber = mytid
call MPI_Reduce(mynumber,result,1,MPI_REAL,MPI_SUM,&

target_proc,comm,err)
end if
! the result should be ntids*(ntids-1)/2:
if (mytid.eq.target_proc) then

write(*,’("Result ",f5.2," compared to n(n-1)/2=",f5.2)’) &
result,ntids*(ntids-1)/2.

end if

3.3.2 Reduction operations

MPI type meaning applies to
MPI_MAX maximum integer, floating point
MPI_MIN minimum
MPI_SUM sum integer, floating point, complex, multilanguage types
MPI_PROD product
MPI_LAND logical and C integer, logical
MPI_LOR logical or
MPI_LXOR logical xor
MPI_BAND bitwise and integer, byte, multilanguage types
MPI_BOR bitwise or
MPI_BXOR bitwise xor
MPI_MAXLOC max value and location MPI_DOUBLE_INT and such
MPI_MINLOC min value and location

The MPI_MAXLOC operation yields both the maximum and the rank on which it occurs. However, to use
it the input should be an array of real/int structs, where the int is the rank of the number.

For use in reductions and scans it is possible to define your own operator.
MPI_Op_create( MPI_User_function *func, int commute, MPI_Op *op);

3.3.3 Reduce to all

We started the explanation of reductions by giving the routine that had a root process. This makes sense if,
at the end of a program run, one process needs to output some summary information. However, in many
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cases all processes need the result of the reduction. For example, if you want to scale a vector by its norm:

• the vector norm is the result of a reduction,
• but each process needs this value to scale its own part of the vector,
• which you could do with a broadcast operation.

This combination of reduction followed by broadcast happens often enough that there is a combined routine:
MPI_Allreduce computes a reduction, but leaves the result on each process.

C:
int MPI_Allreduce(const void* sendbuf,
void* recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

Semantics:
IN sendbuf: starting address of send buffer (choice)
OUT recvbuf: starting address of receive buffer (choice)
IN count: number of elements in send buffer (non-negative integer)
IN datatype: data type of elements of send buffer (handle)
IN op: operation (handle)
IN comm: communicator (handle)

Fortran:
MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python native:
recvobj = MPI.Comm.allreduce(self, sendobj, op=SUM)
Python numpy:
MPI.Comm.Allreduce(self, sendbuf, recvbuf, Op op=SUM)

How to read routine prototypes: 1.5.4.

Example: we give each process a random number, and sum these numbers together. The result should be
approximate 1/2 times the number of processes.

// allreduce.c
float myrandom,sumrandom;
myrandom = (float) rand()/(float)RAND_MAX;
// add the random variables together
MPI_Allreduce(&myrandom,&sumrandom,
1,MPI_FLOAT,MPI_SUM,comm);
// the result should be approx ntids/2:
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if (mytid==ntids-1)
printf("Result %6.9f compared to .5\n",sumrandom/ntids);

For Python we illustrate both the native and the numpy variant. In the numpy variant we create an array for
the receive buffer, even though only one element is used.

// allreduce.py
random_number = random.randint(1,nprocs*nprocs)
print "[%d] random=%d" % (procid,random_number)

max_random = comm.allreduce(random_number,op=MPI.MAX)
if procid==0:

print "Python native:\n max=%d" % max_random

myrandom = np.empty(1,dtype=np.int)
myrandom[0] = random_number
allrandom = np.empty(nprocs,dtype=np.int)

comm.Allreduce(myrandom,allrandom[:1],op=MPI.MAX)

Exercise 3.6. Extend exercise 3.3 by letting each process scale its value by this maximum.
Use the MPI_Allreduce routine.

By default MPI will not overwrite the original data with the reduction result, but you can tell it to do so
using the MPI_IN_PLACE specifier:

// allreduceinplace.c
int nrandoms = 500000;
float *myrandoms;
myrandoms = (float*) malloc(nrandoms*sizeof(float));
for (int irand=0; irand<nrandoms; irand++)

myrandoms[irand] = (float) rand()/(float)RAND_MAX;
// add all the random variables together
MPI_Allreduce(MPI_IN_PLACE,myrandoms,

nrandoms,MPI_FLOAT,MPI_SUM,comm);
// the result should be approx ntids/2:
if (mytid==ntids-1) {

float sum=0.;
for (int i=0; i<nrandoms; i++) sum += myrandoms[i];
sum /= nrandoms*ntids;
printf("Result %6.9f compared to .5\n",sum);

}
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3.4 Rooted collectives: gather and scatter

In the MPI_Scatter operation, the root spreads information to all other processes. The difference with
a broadcast is that it involves individual information from/to every process. Thus, the gather operation
typically has an array of items, one coming from each sending process, and scatter has an array, with an

Figure 3.2: A scatter operation

individual item for each receiving process; see figure 3.2.

These gather and scatter collectives have a different parameter list from the broadcast/reduce. The broad-
cast/reduce involves the same amount of data on each process, so it was enough to have a buffer, datatype,
and size. In the gather/scatter calls you have

• a large buffer on the root, with a datatype and size specification, and
• a smaller buffer on each process, with its own type and size specification.

Of course, since we’re in SPMD mode, even non-root processes have the argument for the send buffer, but
they ignore it. For instance:

int MPI_Scatter
(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

The sendcount is not, as you might expect, the total length of the sendbuffer; instead, it is the amount of
data sent to each process.

Exercise 3.7. Let each process compute a random number. You want to print the maximum
value and on what processor it is computed. What collective(s) do you use? Write a
short program.

3.4.1 Reference

In the gather and scatter calls, each processor has n elements of individual data. There is also a root pro-
cessor that has an array of length np, where p is the number of processors. The gather call collects all this
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data from the processors to the root; the scatter call assumes that the information is initially on the root and
it is spread to the individual processors.

The prototype for MPI_Gather has two ‘count’ parameters, one for the length of the individual send
buffers, and one for the receive buffer. However, confusingly, the second parameter (which is only relevant
on the root) does not indicate the total amount of information coming in, but rather the size of each contri-
bution. Thus, the two count parameters will usually be the same (at least on the root); they can differ if you
use different MPI_Datatype values for the sending and receiving processors.

int MPI_Gather(
void *sendbuf, int sendcnt, MPI_Datatype sendtype,
void *recvbuf, int recvcnt, MPI_Datatype recvtype,
int root, MPI_Comm comm

);

Here is a small example:

// gather.c
// we assume that each process has a value "localsize"
// the root process collectes these values

if (mytid==root)
localsizes = (int*) malloc( (ntids+1)*sizeof(int) );

// everyone contributes their info
MPI_Gather(&localsize,1,MPI_INT,

localsizes,1,MPI_INT,root,comm);

This will also be the basis of a more elaborate example in section ??.

The MPI_IN_PLACE option can be used for the send buffer on the root; the data for the root is then
assumed to be already in the correct location in the receive buffer.

The MPI_Scatter operation is in some sense the inverse of the gather: the root process has an array of
length np where p is the number of processors and n the number of elements each processor will receive.

int MPI_Scatter
(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

3.4.2 Allgather

How to read routine prototypes: 1.5.4.
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3.5 Variable-size-input collectives

In the gather and scatter call above each processor received or sent an identical number of items. In many
cases this is appropriate, but sometimes each processor wants or contributes an individual number of items.

Let’s take the gather calls as an example. Assume that each processor does a local computation that produces
a number of data elements, and this number is different for each processor (or at least not the same for all).
In the regular MPI_Gather call the root processor had a buffer of size nP , where n is the number of
elements produced on each processor, and P the number of processors. The contribution from processor p
would go into locations pn, . . . , (p+ 1)n− 1.

For the variable case, we first need to compute the total required buffer size. This can be done through a
simple MPI_Reduce with MPI_SUM as reduction operator: the buffer size is

∑
p np where np is the

number of elements on processor p. But you can also postpone this calculation for a minute.

The next question is where the contributions of the processor will go into this buffer. For the contribution
from processor p that is

∑
q<p np, . . .

∑
q≤p np − 1. To compute this, the root processor needs to have all

the np numbers, and it can collect them with an MPI_Gather call.

We now have all the ingredients. All the processors specify a send buffer just as with MPI_Gather.
However, the receive buffer specification on the root is more complicated. It now consists of:

outbuffer, array-of-outcounts, array-of-displacements, outtype

and you have just seen how to construct that information.

3.5.1 Reference

There are various calls where processors can have buffers of differing sizes.

• In MPI_Scatterv the root process has a different amount of data for each recipient.
• In MPI_Gatherv, conversely, each process contributes a different sized send buffer to the

received result; MPI_Allgatherv does the same, but leaves its result on all processes; MPI_
Alltoallv does a different variable-sized gather on each process.

int MPI_Scatterv
(void* sendbuf, int *sendcounts, int *displs, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

C:
int MPI_Gatherv(

const void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, const int recvcounts[], const int displs[],
MPI_Datatype recvtype, int root, MPI_Comm comm)

Semantics:
IN sendbuf: starting address of send buffer (choice)
IN sendcount: number of elements in send buffer (non-negative integer)
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IN sendtype: data type of send buffer elements (handle)
OUT recvbuf: address of receive buffer (choice, significant only at root)
IN recvcounts: non-negative integer array (of length group size) containing the number of elements that are received from each process (significant only at root)
IN displs: integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from process i (significant only at root)
IN recvtype: data type of recv buffer elements (significant only at root) (handle)
IN root: rank of receiving process (integer)
IN comm: communicator (handle)

Fortran:
MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
Gatherv(self, sendbuf, [recvbuf,counts], int root=0)

How to read routine prototypes: 1.5.4.

int MPI_Allgatherv
(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, MPI_Comm comm)

MPI_Alltoallv.

int MPI_Alltoallv
(void *sendbuf, int *sendcnts, int *sdispls, MPI_Datatype sendtype,
void *recvbuf, int *recvcnts, int *rdispls, MPI_Datatype recvtype,
MPI_Comm comm)

For example, in an MPI_Gatherv call each process has an individual number of items to contribute.
To gather this, the root process needs to find these individual amounts with an MPI_Gather call, and
locally construct the offsets array. Note how the offsets array has size ntids+1: the final offset value is
automatically the total size of all incoming data.

// gatherv.c
// we assume that each process has an array "localdata"
// of size "localsize"

// the root process decides how much data will be coming:
// allocate arrays to contain size and offset information
if (mytid==root) {

localsizes = (int*) malloc( (ntids+1)*sizeof(int) );
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offsets = (int*) malloc( ntids*sizeof(int) );
}
// everyone contributes their info
MPI_Gather(&localsize,1,MPI_INT,

localsizes,1,MPI_INT,root,comm);
// the root constructs the offsets array
if (mytid==root) {
offsets[0] = 0;
for (int i=0; i<ntids; i++)

offsets[i+1] = offsets[i]+localsizes[i];
alldata = (int*) malloc( offsets[ntids]*sizeof(int) );

}
// everyone contributes their data
MPI_Gatherv(localdata,localsize,MPI_INT,

alldata,localsizes,offsets,MPI_INT,root,comm);

3.5.2 Examples

3.5.2.1 MPI_Gatherv

MPI_Gatherv

Gather irregularly sized data onto a root. We first need an MPI_Gather to determine offsets.

// gatherv.c
// we assume that each process has an array "localdata"
// of size "localsize"

// the root process decides how much data will be coming:
// allocate arrays to contain size and offset information
if (mytid==root) {
localsizes = (int*) malloc( (ntids+1)*sizeof(int) );
offsets = (int*) malloc( ntids*sizeof(int) );

}
// everyone contributes their info
MPI_Gather(&localsize,1,MPI_INT,

localsizes,1,MPI_INT,root,comm);
// the root constructs the offsets array
if (mytid==root) {
offsets[0] = 0;
for (int i=0; i<ntids; i++)

offsets[i+1] = offsets[i]+localsizes[i];
alldata = (int*) malloc( offsets[ntids]*sizeof(int) );

}
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// everyone contributes their data
MPI_Gatherv(localdata,localsize,MPI_INT,

alldata,localsizes,offsets,MPI_INT,root,comm);

// gatherv.py
# implicitly using root=0
globalsize = comm.reduce(localsize)
if procid==0:

print "Global size=%d" % globalsize
collecteddata = np.empty(globalsize,dtype=np.int)
counts = comm.gather(localsize)
comm.Gatherv(localdata, [collecteddata, counts])

3.5.2.2 MPI_Allgatherv

MPI_Allgatherv

Prior to the actual gatherv call, we need to construct the count and displacement arrays. The easiest way is
to use a reduction.

// allgatherv.c
MPI_Allgather

( &my_count,1,MPI_INT,
recv_counts,1,MPI_INT, comm );

int accumulate = 0;
for (int i=0; i<ntids; i++) {
recv_displs[i] = accumulate; accumulate += recv_counts[i]; }

int *global_array = (int*) malloc(accumulate*sizeof(int));
MPI_Allgatherv

( my_array,mytid+1,MPI_INT,
global_array,recv_counts,recv_displs,MPI_INT, comm );

In python the receive buffer has to contain the counts and displacements arrays.
// allgatherv.py
my_count = np.empty(1,dtype=np.int)
my_count[0] = mycount
comm.Allgather( my_count,recv_counts )

accumulate = 0
for p in range(nprocs):

recv_displs[p] = accumulate; accumulate += recv_counts[p]
global_array = np.empty(accumulate,dtype=np.float64)
comm.Allgatherv( my_array, [global_array,recv_counts,recv_displs,MPI.DOUBLE] )
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3.6 Scan operations

The MPI_Scan operation also performs a reduction, but it keeps the partial results. That is, if processor i
contains a number xi, and ⊕ is an operator, then the scan operation leaves x0 ⊕ · · · ⊕ xi on processor i.

MPI_Scan( send data, recv data, operator, communicator);

This type of operation is often called a prefix operation; see HPSC-23.

The MPI_Scan routine is an inclusive scan operation. Often, the more useful variant is the exclusive scan
MPI_Exscan

MPI_Exscan( send data, recv data, operator, communicator);

with the same prototype.

Exercise 3.8. The exclusive definition, which computes x0 ⊕ xi−1 on processor i, can easily
be derived from the inclusive operation for operations such as MPI_PLUS or
MPI_MULT. Are there operators where that is not the case?

The MPI_Scan operation is often useful with indexing data. Suppose that every processor p has a local
vector where the number of elements np is dynamically determined. In order to translate the local number-
ing 0 . . . np − 1 to a global numbering one does a scan with the number of local elements as input. The
output is then the global number of the first local variable.

Exercise 3.9. Do you use MPI_Scan or MPI_Exscan for this operation? How would you
describe the result of the other scan operation, given the same input?

It is possible to do a segmented scan . Let xi be a series of numbers that we want to sum to Xi as follows.
Let yi be a series of booleans such that{

Xi = xi if yi = 0

Xi = Xi−1 + xi if yi = 1

(This is the basis for the implementation of the sparse matrix vector product as prefix operation; see HPSC-
23.2.) This means thatXi sums the segments between locations where yi = 0 and the first subsequent place
where yi = 1. To implement this, you need a user-defined operatorXx

y

 =

X1

x1
y1

⊕X2

x2
y2

 :

{
X = x1 + x2 if y2 == 1

X = x2 if y2 == 0

This operator is not communitative, and it needs to be declared as such with MPI_Op_create; see
section ??

3.6.1 Reference

MPI has two routines for scan, or prefix, operations: the inclusive scan
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C:
int MPI_Scan(const void* sendbuf, void* recvbuf,

int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
IN sendbuf: starting address of send buffer (choice)
OUT recvbuf: starting address of receive buffer (choice)
IN count: number of elements in input buffer (non-negative integer)
IN datatype: data type of elements of input buffer (handle)
IN op: operation (handle)
IN comm: communicator (handle)

Fortran:
MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
res = Intracomm.scan( sendobj=None,recvobj=None,op=MPI.SUM)
res = Intracomm.exscan( sendobj=None,recvobj=None,op=MPI.SUM)

How to read routine prototypes: 1.5.4.

and the exclusive scan:

How to read routine prototypes: 1.5.4.

The MPI_Op operations do not return an error code.

The result of the exclusive scan is undefined on processor 0 (None in python), and on processor 1 it is a
copy of the send value of processor 1. In particular, the MPI_Op need not be called on these two processors.

Scan operations are often useful in index calculations. Suppose that every processor has part of a long array,
and it knows only how many element it has. The following bit computes the global index of its first element.

// exscan.c
int my_first=0,localsize;
// localsize = ..... result of local computation ....
// find myfirst location based on the local sizes
err = MPI_Exscan(&localsize,&my_first,

1,MPI_INT,MPI_SUM,comm); CHK(err);
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3.6.2 Examples

3.6.2.1 MPI_Scan

MPI_Scan

In native mode the result is a function return value.

// scan.py
mycontrib = 10+random.randint(1,nprocs)
myfirst = 0
mypartial = comm.scan(mycontrib)
sbuf = np.empty(1,dtype=np.int)
rbuf = np.empty(1,dtype=np.int)
sbuf[0] = mycontrib
comm.Scan(sbuf,rbuf)

3.6.2.2 MPI_Exscan

MPI_Exscan

Exclusive scan:

// exscan.c
int my_first=0,localsize;
// localsize = ..... result of local computation ....
// find myfirst location based on the local sizes
err = MPI_Exscan(&localsize,&my_first,

1,MPI_INT,MPI_SUM,comm); CHK(err);

// exscan.py
localsize = 10+random.randint(1,nprocs)
myfirst = 0
mypartial = comm.exscan(localsize,0)

3.7 More collective stuff

3.7.1 Barrier and all-to-all

The reference for the commands introduced here can be found in section ??.

There are two collectives we have not mentioned yet. A barrier is a call that blocks all processes until they
have all reached the barrier call. This call’s simplicity is contrasted with its usefulness, which is very limited.
It is almost never necessary to synchronize processes through a barrier: for most purposes it does not matter
if processors are out of sync. Conversely, collectives (except the new non-blocking ones) introduce a barrier
of sorts themselves.
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The all-to-all call is a generalization of a scatter and gather: every process is scattering an array of data, and
every process is gathering an array of data. There is also a ‘v’ variant of this routine.

MPI_Alltoall

int MPI_Alltoall
(void *sendbuf, int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

3.7.2 Reduce-scatter

There are several MPI collectives that are functionally equivalent to a combination of others. You have
already seen MPI_Allreduce which is equivalent to a reduction followed by a broadcast. Often such
combinations can be more efficient than using the individual calls; see HPSC-6.1.

Here is another example: MPI_Reduce_scatter is equivalent to a reduction on an array of data (mean-
ing a pointwise reduction on each array location) followed by a scatter of this array to the individual pro-
cesses.

One important example of this command is the sparse matrix-vector product ; see HPSC-6.5.1 for back-
ground information. Each process contains one or more matrix rows, so by looking at indices the process
can decide what other processes it needs data from. The problem is for a process to find out what other
processes it needs to send data to.

Using MPI_Reduce_scatter the process goes as follows:

• Each process creates an array of ones and zeros, describing who it needs data from.
• The reduce part of the reduce-scatter yields an array of requester counts; after the scatter each

process knows how many processes request data from it.
• Next, the sender processes need to find out what elements are requested from it. For this, each

process sends out arrays of indices.
• The big trick is that each process now knows how many of these requests will be coming in, so

it can post precisely that many MPI_Irecv calls, with a source of MPI_ANY_SOURCE.

The MPI_Reduce_scatter command is equivalent to a reduction on an array of data, followed by a
scatter of that data to the individual processes.

To be precise, there is an array recvcounts where recvcounts[i] gives the number of elements
that ultimate wind up on process i. The result is equivalent to doing a reduction with a length equal to the
sum of the recvcounts[i] values, followed by a scatter where process i receives recvcounts[i]
values. (Since the amount of data to be scattered depends on the process, this is in fact equivalent to MPI_
Scatterv rather than a regular scatter.)

Semantics:
MPI_REDUCE_SCATTER( sendbuf, recvbuf, recvcounts, datatype, op, comm)
IN sendbuf: starting address of send buffer (choice)
OUT recvbuf: starting address of receive buffer (choice)
IN recvcounts: non-negative integer array (of length group size)
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specifying the number of elements of the result distributed to each
process.

IN datatype: data type of elements of send and receive buffers (handle)
IN op: operation (handle)
IN comm: communicator (handle)

C:
int MPI_Reduce_scatter(const void* sendbuf, void* recvbuf, const int
recvcounts[], MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

F:
MPI_Reduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm,
ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: recvcounts(*)
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Py:
comm.Reduce_scatter(sendbuf, recvbuf, recvcounts=None, Op op=SUM)

How to read routine prototypes: 1.5.4.

For instance, if all recvcounts[i] values are 1, the sendbuffer has one element for each process, and
the receive buffer has length 1.

An important application of this is establishing an irregular communication pattern. Assume that each
process knows which other processes it wants to communicate with; the problem is to let the other processes
know about this. The solution is to use MPI_Reduce_scatter to find out how many processes want to
communicate with you, and then wait for precisely that many messages with a source value of MPI_ANY_
SOURCE.

// reducescatter.c
// record what processes you will communicate with
int *recv_requests;
// find how many procs want to communicate with you
MPI_Reduce_scatter
(recv_requests,&nsend_requests,counts,MPI_INT,
MPI_SUM,comm);

// send a msg to the selected processes
for (int i=0; i<ntids; i++)
if (recv_requests[i]>0)

MPI_Isend(&msg,1,MPI_INT, /*to:*/ i,0,comm,
mpi_requests+irequest++);

// do as many receives as you know are coming in
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for (int i=0; i<nsend_requests; i++)
MPI_Irecv(&msg,1,MPI_INT,MPI_ANY_SOURCE,MPI_ANY_TAG,comm,

mpi_requests+irequest++);
MPI_Waitall(irequest,mpi_requests,MPI_STATUSES_IGNORE);

3.7.2.1 MPI_Reduce_scatter

MPI_Reduce_scatter

A simple illustration.

// reducescatter.c
// record what processes you will communicate with
int *recv_requests;
// find how many procs want to communicate with you
MPI_Reduce_scatter

(recv_requests,&nsend_requests,counts,MPI_INT,
MPI_SUM,comm);

// send a msg to the selected processes
for (int i=0; i<ntids; i++)

if (recv_requests[i]>0)
MPI_Isend(&msg,1,MPI_INT, /*to:*/ i,0,comm,

mpi_requests+irequest++);
// do as many receives as you know are coming in
for (int i=0; i<nsend_requests; i++)

MPI_Irecv(&msg,1,MPI_INT,MPI_ANY_SOURCE,MPI_ANY_TAG,comm,
mpi_requests+irequest++);

MPI_Waitall(irequest,mpi_requests,MPI_STATUSES_IGNORE);

Use of MPI_Reduce_scatter to implement the two-dimensional matrix-vector product. Set up separate
row and column communicators with MPI_Comm_split, use MPI_Reduce_scatter to combine
local products.

MPI_Allgather(&my_x,1,MPI_DOUBLE,
local_x,1,MPI_DOUBLE,environ.col_comm);

bli_dgemv( BLIS_NO_TRANSPOSE,
BLIS_NO_CONJUGATE,
size_y, size_x,

&one,
local_matrix, 1, size_y,

local_x, 1,
&zero,
local_y, 1 );

// blas_dgemv(CblasColMajor,CblasNoTrans,
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// size_y,size_x,1.e0,
// local_matrix,size_y,
// local_x,1,0.e0,local_y,1);
MPI_Reduce_scatter(local_y,&my_y,&ione,MPI_DOUBLE,
MPI_SUM,environ.row_comm);

3.7.3 Non-blocking collectives

Above you have seen how the ‘Isend’ and ‘Irecv’ routines can overlap communication with computation.
This is not possible with the collectives you have seen so far: they act like blocking sends or receives.
However, there are also non-blocking collectives . These have roughly the same calling sequence as their
blocking counterparts, except that they output an MPI_Request. You can then use an MPI_Wait call
to make sure the collective has completed.

Such operations can be used to increase efficiency. For instance, computing

y ← Ax+ (xtx)y

involves a matrix-vector product, which is dominated by computation in the sparse matrix case, and an
inner product which is typically dominated by the communication cost. You would code this as

MPI_Iallreduce( .... x ..., &request);
// compute the matrix vector product
MPI_Wait(request);
// do the addition

This can also be used for 3D FFT operations [4]. Occasionally, a non-blocking collective can be used for
non-obvious purposes, such as the MPI_Ibarrier in [5].

The same calling sequence as the blocking counterpart, except for the addition of an MPI_Request
parameter. For instance MPI_Ibcast:

int MPI_Ibcast(
void *buffer, int count, MPI_Datatype datatype,
int root, MPI_Comm comm,
MPI_Request *request)

3.7.4 Performance of collectives

It is easy to visualize a broadcast as in figure 3.3: see figure 3.3. the root sends all of its data directly to
every other process. While this describes the semantics of the operation, in practice the implementation
works quite differently.

The time that a message takes can simply be modeled as

α+ βn,
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Figure 3.3: A simple broadcast

where α is the latency, a one time delay from establishing the communication between two processes, and
β is the time-per-byte, or the inverse of the bandwidth , and n the number of bytes sent.

Under the assumption that a processor can only send one message at a time, the broadcast in figure 3.3
would take a time proportional to the number of processors. One way to ameliorate that is to structure
the broadcast in a tree-like fashion. This is depicted in figure 3.4. How does the communication time now

Figure 3.4: A tree-based broadcast

depend on the number of processors? The theory of the complexity of collectives is described in more detail
in HPSC-6.1; see also [1].

3.7.5 Collectives and synchronization

Collectives, other than a barrier, have a synchronizing effect between processors. For instance, in

MPI_Bcast( ....data... root);
MPI_Send(....);

the send operations on all processors will occur after the root executes the broadcast. Conversely, in a reduce
operation the root may have to wait for other processors. This is illustrated in figure 3.5, which gives a TAU
trace of a reduction operation on two nodes, with two six-core sockets (processors) each. We see that1:

• In each socket, the reduction is a linear accumulation;
• on each node, cores zero and six then combine their result;
• after which the final accumulation is done through the network.

1. This uses mvapich version 1.6; in version 1.9 the implementation of an on-node reduction has changed to simulate shared
memory.
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Figure 3.5: Trace of a reduction operation between two dual-socket 12-core nodes

We also see that the two nodes are not perfectly in sync, which is normal for MPI applications. As a result,
core 0 on the first node will sit idle until it receives the partial result from core 12, which is on the second
node.

While collectives synchronize in a loose sense, it is not possible to make any statements about events before
and after the collectives between processors:

...event 1...
MPI_Bcast(....);
...event 2....

Consider a specific scenario:

switch(rank) {
case 0:

MPI_Bcast(buf1, count, type, 0, comm);
MPI_Send(buf2, count, type, 1, tag, comm);
break;

case 1:
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
MPI_Bcast(buf1, count, type, 0, comm);
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
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break;
case 2:

MPI_Send(buf2, count, type, 1, tag, comm);
MPI_Bcast(buf1, count, type, 0, comm);
break;

}

Note the MPI_ANY_SOURCE parameter in the receive calls on processor 1. One obvious execution of this
would be:

1. The send from 2 is caught by processor 1;
2. Everyone executes the broadcast;
3. The send from 0 is caught by processor 1.

However, it is equally possible to have this execution:

1. Processor 0 starts its broadcast, then executes the send;
2. Processor 1’s receive catches the data from 0, then it executes its part of the broadcast;
3. Processor 1 catches the data sent by 2, and finally processor 2 does its part of the broadcast.

3.7.6 MPI Operators

The following is the list of predefined MPI_OP values.

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bitwise and
MPI_LOR logical or
MPI_BOR bitwise or
MPI_LXOR logical xor
MPI_BXOR bitwise xor
MPI_MAXLOC max value and location
MPI_MINLOC min value and location

All except the last two operate on MPI datatypes;

the last two operate on a value/index pair.
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Chapter 4

MPI topic 3: Distributed data

4.1 Distributed computing and distributed data

One reason for using MPI is that sometimes you need to work on more data than can fit in the memory of a
single processor. With distributed memory, each processor then gets a part of the whole data structure and
only works on that.

So let’s say we have a large array, and we want to distribute the data over the processors. That means that,
with p processes and n elements per processor, we have a total of n · p elements.

Figure 4.1: Local parts of a distributed array

We sometimes say that data is the local part of a distributed array with a total size of n · p elements.
However, this array only exists conceptually: each processor has an array with lowest index zero, and you
have to translate that yourself to an index in the global array. In other words, you have to write your code in
such a way that it acts like you’re working with a large array that is distributed over the processors, while
actually manipulating only the local arrays on the processors.

Your typical code then looks like

int myfirst = .....;
for (int ilocal=0; ilocal<nlocal; ilocal++) {

int iglobal = myfirst+ilocal;
array[ilocal] = f(iglobal);
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}

Exercise 4.1. We want to compute
∑N

n=1 n
2, and we do that as follows by filling in an array

and summing the elements. (Yes, you can do it without an array, but for purposes of
the exercise do it with.)
Read in the global N parameter, and make sure that it is a multiple of the number P
of processors. Your code should produce an error message and exit immediately if it
doesn’t.
• Now allocate the local parts: each processor should allocate only N/P

elements.
(Allocate your array as real numbers. Why are integers not a good idea?)
• On each processor, initialize the local array so that the i-th location of the

distributed array (for i = 0, . . . , N − 1) contains (i+ 1)2.
• Now use a collective operation to compute the sum of the array values. The

right value is (2N3 + 3N2 +N)/6. Is that what you get?
To debug your program, first start with N = P .

Exercise 4.2. In exercise 4.1 you worked with a distributed array, computing a local quantity
and combining that into a global quantity. Why is it not a good idea to gather the
whole distributed array on a single processor, and do all the computation locally?

If the array size is not perfectly divisible by the number of processors, we have to come up with a division
that is uneven, but not too much. You could for instance, write

int Nglobal, // is something large
Nlocal = Nglobal/ntids,
excess = Nglobal%ntids;

if (mytid==ntids-1)
Nlocal += excess;

Exercise 4.3. Read the section HPSC-2.10.1 about load balancing, and argue that this
strategy is not optimal. Can you come up with a better distribution?

One of the more common applications of the reduction operation is the inner product computation. Typi-
cally, you have two vectors x, y that have the same distribution, that is, where all processes store equal parts
of x and y. The computation is then

local_inprod = 0;
for (i=0; i<localsize; i++)

local_inprod += x[i]*y[i];
MPI_Reduce( &local_inprod, &global_inprod, 1,MPI_DOUBLE ... )

If all processors need the result, you could then do a broadcast, but it is more efficient to use MPI_
Allreduce; see section ??.
Exercise 4.4. Implement an inner product routine: let x be a distributed vector of size N

with elements x[i] = i, and compute xtx. As before, the right value is
(2N3 + 3N2 +N)/6.
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Use the inner product value to scale to vector so that it has norm 1. Check that your
computation is correct.

4.2 Blocking point-to-point operations

Suppose you have an array of numbers xi : i = 0, . . . , N and you want to compute yi = (xi−1 + xi +
xi+1)/3: i = 1, . . . , N − 1. As before (see figure 4.1), we give each processor a subset of the xis and yis.
Let’s define ip as the first index of y that is computed by processor p. (What is the last index computed by
processor p? How many indices are computed on that processor?)

We often talk about the owner computes model of parallel computing: each processor ‘owns’ certain data
items, and it computes their value.

Now let’s investigate how processor p goes about computing yi for the i-values it owns. Let’s assume that
processor p also stores the values xi for these same indices. Now, it can compute

yip+1 = (xip + xip+1 + xip+2)/3

and likewise yip+2 and so on. However, there is a problem with

yip = (xip−1 + xip + xip+1)/3

since xip is not stored on processor p: it is stored on p− 1.

There is a similar story with the last index that p tries to compute: that involves a value that is only present
on p+ 1.

You see that there is a need for processor-to-processor, or technically point-to-point , information exchange.
MPI realizes this through matched send and receive calls:

• One process does a send to a specific other process;
• the other process does a specific receive from that source.

4.2.1 Send example: ping-pong

A simple scenario for information exchange between just two processes is the ping-pong: process A sends
data to process B, which sends data back to A. This means that process A executes the code

MPI_Send( /* to: */ B ..... );
MPI_Recv( /* from: */ B ... );

while process B executes

MPI_Recv( /* from: */ A ... );
MPI_Send( /* to: */ A ..... );

Since we are programming in SPMD mode, this means our program looks like:
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if ( /* I am process A */ ) {
MPI_Send( /* to: */ B ..... );
MPI_Recv( /* from: */ B ... );

} else if ( /* I am process B */ ) {
MPI_Recv( /* from: */ A ... );
MPI_Send( /* to: */ A ..... );

}

Look up the syntax of the send and receive commands in section ??, and do the following exercises. You
will also need the timer calls of section 9.6.

Exercise 4.5. Implement the ping-pong program. Add a timer using MPI_Wtime. For the
status argument of the receive call, use MPI_STATUS_IGNORE.
• Run multiple ping-pongs (say a thousand) and put the timer around the loop.

The first run may take longer; try to discard it.
• Run your code with the two communicating processes first on the same node,

then on different nodes. Do you see a difference?
• Then modify the program to use longer messages. How does the timing

increase with message size?
For bonus points, can you do a regression to determine α, β?

Exercise 4.6. Take your pingpong program and modify it to let half the processors be source
and the other half the targets. Does the pingpong time increase?

In the syntax of the MPI_Recv command you saw one parameter that the send call lacks: the MPI_
Status object. This serves the following purpose: the receive call can have a ‘wildcard’ behaviour, for
instance specifying that the message can come from any source rather than a specific one. The status object
then allows you to find out where the message actually came from.

4.2.2 Blocking communication

The use of MPI_Send and MPI_Recv is known as blocking communication: when your code reaches
a send or receive call, it blocks until the call is succesfully completed. For a receive call it is clear that the
receiving code will wait until the data has actually come in, but for a send call this is more subtle.

You may be tempted to think that the send call puts the data somewhere in the network, and the sending
code can progress, as in figure 4.2, left. But this ideal scenario is not realistic: it assumes that somewhere
in the network there is buffer capacity for all messages that are in transit. This is not the case: data resides
on the sender, and the sending call blocks, until the receiver has received all of it. (There is a exception for
small messages, as explained in the next section.)

4.2.3 Problems with blocking communication

Suppose two process need to exchange data, and consider the following pseudo-code, which purports to
exchange data between processes 0 and 1:
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Figure 4.2: Illustration of an ideal (left) and actual (right) send-receive interaction

other = 1-mytid; /* if I am 0, other is 1; and vice versa */
receive(source=other);
send(target=other);

Imagine that the two processes execute this code. They both issue the send call. . . and then can’t go on,
because they are both waiting for the other to issue a receive call. This is known as deadlock .

(If you reverse the send and receive call, you should get deadlock, but in practice that code will often work.
The reason is that MPI implementations sometimes send small messages regardless of whether the receive
has been posted. This relies on the availability of some amount of available buffer space. The size under
which this behaviour is used is sometimes referred to as the eager limit .)

Formally you can describe deadlock as follows. Draw up a graph where every process is a node, and draw
a directed arc from process A to B if A is waiting for B. There is deadlock if this directed graph has a loop.

The solution to the deadlock in the above example is to first do the send from 0 to 1, and then from 1 to 0
(or the other way around). So the code would look like:

if ( /* I am processor 0 */ ) {
send(target=other);
receive(source=other);

} else {
receive(source=other);
send(target=other);

}

There is a second, even more subtle problem with blocking communication. Consider the scenario where
every processor needs to pass data to its successor, that is, the processor with the next higher rank. The
basic idea would be to first send to your successor, then receive from your predecessor. Since the last
processor does not have a successor it skips the send, and likewise the first processor skips the receive. The
pseudo-code looks like:

successor = mytid+1; predecessor = mytid-1;
if ( /* I am not the last processor */ )
send(target=successor);
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if ( /* I am not the first processor */ )
receive(source=predecessor)

This code does not deadlock. All processors but the last one block on the send call, but the last processor
executes the receive call. Thus, the processor before the last one can do its send, and subsequently continue
to its receive, which enables another send, et cetera.

In one way this code does what you intended to do: it will terminate (instead of hanging forever on a dead-
lock) and exchange data the right way. However, the execution now suffers from unexpected serialization:
only one processor is active at any time, so what should have been a parallel operation becomes a sequential

Figure 4.3: Trace of a simple send-recv code

one. This is illustrated in figure 4.3.
Exercise 4.7. (Classroom exercise) Each student holds a piece of paper in the right hand

– keep your left hand behind your back – and execute the following program:
1. If you are not the rightmost student, turn to the right and give the paper to

your right neighbour.
2. If you are not the leftmost student, turn to your left and accept the paper from

your left neighbour.
Exercise 4.8. Implement the above algorithm using MPI_Send and MPI_Receive calls.

Run the code, and reproduce the trace output of figure 4.3. See chapter 29.2 on how
to use the TAU utility. If you don’t have TAU, can you show this serialization
behaviour using timings?

It is possible to orchestrate your processes to get an efficient and deadlock-free execution, but doing so is a
bit cumbersome.
Exercise 4.9. The above solution treated every processor equally. Can you come up with a

solution that uses blocking sends and receives, but does not suffer from the
serialization behaviour?
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There are better solutions which we will explore next.

4.2.4 Pairwise exchange

The reference for the commands introduced here can be found in section ??.

Above you saw that with blocking sends the precise ordering of the send and receive calls is crucial. Use the
wrong ordering and you get either deadlock, or something that is not efficient at all in parallel. MPI has a
way out of this problem that is sufficient for many purposes: the combined send/recv call MPI_Sendrecv

Semantics:

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status)
IN sendbuf: initial address of send buffer (choice)
IN sendcount: number of elements in send buffer (non-negative integer)
IN sendtype: type of elements in send buffer (handle)
IN dest: rank of destination (integer)
IN sendtag: send tag (integer)
OUT recvbuf: initial address of receive buffer (choice)
IN recvcount: number of elements in receive buffer (non-negative integer)
IN recvtype: type of elements in receive buffer (handle)
IN source: rank of source or MPI_ANY_SOURCE (integer)
IN recvtag: receive tag or MPI_ANY_TAG (integer)
IN comm: communicator (handle)
OUT status: status object (Status)

C:
int MPI_Sendrecv(

const void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag,
void *recvbuf, int recvcount, MPI_Datatype recvtype,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

Fortran:
MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source,
recvtag
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
Sendrecv(self, sendbuf, int dest, int sendtag=0,

recvbuf=None, int source=ANY_SOURCE, int recvtag=ANY_TAG,
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Status status=None)

How to read routine prototypes: 1.5.4.

The sendrecv call works great if every process is paired up. You would then write

sendrecv( ....from... ...to... );

However, in cases such as the right-shift this is true for all but the first and last. MPI allows for the following
variant which makes the code slightly more homogeneous:

MPI_Comm_rank( .... &mytid );
if ( /* I am not the first processor */ )
predecessor = mytid-1;

else
predecessor = MPI_PROC_NULL;

if ( /* I am not the last processor */ )
successor = mytid+1;

else
successor = MPI_PROC_NULL;

sendrecv(from=predecessor,to=successor);

where the sendrecv call is executed by all processors.

All processors but the last one send to their neighbour; the target value of MPI_PROC_NULL for the last
processor means a ‘send to the null processor’: no actual send is done. The null processor value is also of
use with the MPI_Sendrecv call; section 4.2.4

Exercise 4.10. Implement the above right-shift scheme using MPI_Sendrecv; every
processor only has a single number to send to its neighbour.
If you have TAU installed, make a trace. Does it look different from the serialized
send/recv code? If you don’t have TAU, run your code with different numbers of
processes and show that the runtime is essentially constant.

This call makes it easy to exchange data between two processors: both specify the other as both target and
source. However, there need not be any such relation between target and source: it is possible to receive
from a predecessor in some ordering, and send to a successor in that ordering; see figure 4.4. Above you

Figure 4.4: An MPI Sendrecv call

saw some examples that had most processors doing both a send and a receive, but some only a send or
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only a receive. You can still use MPI_Sendrecv in this call if you use MPI_PROC_NULL for the unused
source or target argument.

If the send and receive buffer have the same size, the routine MPI_Sendrecv_replace will do an
in-place replacement.

int MPI_Sendrecv_replace(
void *buf, int count, MPI_Datatype datatype,
int dest, int sendtag,
int source, int recvtag,
MPI_Comm comm, MPI_Status *status)

The following exercise lets you implement a
sorting algorithm with the send-receive call.
Exercise 4.11. A very simple

sorting algorithm
is exchange sort : pairs
of processors compare
data, and if necessary
exchange. The elementary step is called a compare-and-swap1: in a pair of
processors each sends their data to the other; one keeps the minimum values, and
the other the maximum. For simplicity, in this exercise we give each processor just
a single number.
The exchange sort
algorithm is split in
even and odd stages:
• In the even stage, processors 2i and 2i+ 1 compare and swap data;
• In the odd stage, processors 2i+ 1 and 2i+ 2 compare and swap.

You need to repeat this
P/2 times, where P is
the number of
processors.
Implement this
algorithm using
MPI_Sendrecv.
(You can use
MPI_PROC_NULL for
the edge cases, but that
is not strictly
necessary.) Use a
gather call to print the
global state of the
distributed array at the

1. There is an MPI Compare and swap call. Do not use that.
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beginning and end of
the sorting process.

4.2.5 Message status

In some circumstances the recipient may not know all details of a message when you make the receive call,
so MPI has a way of querying the message status

• If you are expecting multiple incoming messages, it may be most efficient to deal with them in
the order in which they arrive. For that, you have to be able to ask ‘who did this message come
from, and what is in it’.
• Maybe you know the sender of a message, but the amount of data is unknown. In that case you

can overallocate your receive buffer, and after the message is received ask how big it was, or
you can ‘probe’ an incoming message and allocate enough data when you find out how much
data is being sent.

The MPI_Status object is a structure with the following freely accessible members: MPI_SOURCE,
MPI_TAG, and MPI_ERROR. There is also opaque information: the amount of data received can be re-
trieved by a function call to MPI_Get_count.

int MPI_Get_count(
MPI_Status *status,
MPI_Datatype datatype,
int *count

);

This may be necessary since the count argument to MPI_Recv is the buffer size, not an indication of the
actually expected number of data items.

Python note The status is an object
recv_status = MPI.Status()

with methods such as recv_status.Get_tag() and recv_status.Get_count(datatype=MPI.DOUBLE)

If you precisely know what is going to be sent, the status argument tells you nothing new. Therefore, there
is a special value MPI_STATUS_IGNORE that you can supply instead of a status object, which tells MPI
that the status does not have to be reported. For routines such as MPI_Waitany where an array of statuses
is needed, you can supply MPI_STATUSES_IGNORE.

4.2.6 Reference

The blocking send command:
C:
int MPI_Send(

const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

Semantics:
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IN buf: initial address of send buffer (choice)
IN count: number of elements in send buffer (non-negative integer)
IN datatype: datatype of each send buffer element (handle)
IN dest: rank of destination (integer)
IN tag: message tag (integer)
IN comm: communicator (handle)

Fortran:
MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python native:
MPI.Comm.send(self, obj, int dest, int tag=0)
Python numpy:
MPI.Comm.Send(self, buf, int dest, int tag=0)

How to read routine prototypes: 1.5.4.

This routine may not blocking for small messages; to force blocking behaviour use MPI_Ssend with
the same argument list. http://www.mcs.anl.gov/research/projects/mpi/www/www3/
MPI_Ssend.html

The basic blocking receive command:

C:
int MPI_Recv(

void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)

Semantics:
OUT buf: initial address of receive buffer (choice)
IN count: number of elements in receive buffer (non-negative integer)
IN datatype: datatype of each receive buffer element (handle)
IN source: rank of source or MPI_ANY_SOURCE (integer)
IN tag: message tag or MPI_ANY_TAG (integer)
IN comm: communicator (handle)
OUT status: status object (Status)

Fortran:
MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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Python native:
recvbuf = Comm.recv(self, buf=None, int source=ANY_SOURCE, int tag=ANY_TAG,

Status status=None)
Python numpy:
Comm.Recv(self, buf, int source=ANY_SOURCE, int tag=ANY_TAG,

Status status=None)

How to read routine prototypes: 1.5.4.

The count argument indicates the maximum length of a message; the actual length of the received message
can be determined from the status object. See section ?? for more about the status object.

The following code is guaranteed to block, since a MPI_Recv always blocks:

// recvblock.c
other = 1-mytid;
MPI_Recv(&recvbuf,1,MPI_INT,other,0,comm,&status);
MPI_Send(&sendbuf,1,MPI_INT,other,0,comm);
printf("This statement will not be reached on %d\n",mytid);

On the other hand, if we put the send call before the receive, code may not block for small messages that
fall under the eager limit .

In this example we send gradually larger messages. From the screen output you can see what the largest
message was that fell under the eager limit; after that the code hangs because of a deadlock.

// sendblock.c
other = 1-mytid;
/* loop over increasingly large messages */
for (int size=1; size<2000000000; size*=10) {

sendbuf = (int*) malloc(size*sizeof(int));
recvbuf = (int*) malloc(size*sizeof(int));
if (!sendbuf || !recvbuf) {

printf("Out of memory\n"); MPI_Abort(comm,1);
}
MPI_Send(sendbuf,size,MPI_INT,other,0,comm);
MPI_Recv(recvbuf,size,MPI_INT,other,0,comm,&status);
/* If control reaches this point, the send call

did not block. If the send call blocks,
we do not reach this point, and the program will hang.

*/
if (mytid==0)

printf("Send did not block for size %d\n",size);
free(sendbuf); free(recvbuf);

}
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// sendblock.F90
other = 1-mytid
size = 1
do

allocate(sendbuf(size)); allocate(recvbuf(size))
print *,size
call MPI_Send(sendbuf,size,MPI_INTEGER,other,0,comm,err)
call MPI_Recv(recvbuf,size,MPI_INTEGER,other,0,comm,status,err)
if (mytid==0) then

print *,"MPI_Send did not block for size",size
end if
deallocate(sendbuf); deallocate(recvbuf)
size = size*10
if (size>2000000000) goto 20

end do
20 continue

// sendblock.py
size = 1
while size<2000000000:

sendbuf = np.empty(size, dtype=np.int)
recvbuf = np.empty(size, dtype=np.int)
comm.Send(sendbuf,dest=other)
comm.Recv(sendbuf,source=other)
if procid<other:

print "Send did not block for",size
size *= 10

If you want a code to behave the same for all message sizes, you force the send call to be blocking by using
MPI_Ssend:

// ssendblock.c
other = 1-mytid;
sendbuf = (int*) malloc(sizeof(int));
recvbuf = (int*) malloc(sizeof(int));
size = 1;
MPI_Ssend(sendbuf,size,MPI_INT,other,0,comm);
MPI_Recv(recvbuf,size,MPI_INT,other,0,comm,&status);
printf("This statement is not reached\n");

Any time you receive data, there can be an MPI_Status object describing the data that was received.
C:
MPI_Status status;
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Fortran:
integer :: status(MPI_STATUS_SIZE)

Python:
MPI.Status() # returns object

How to read routine prototypes: 1.5.4.

Fortran note In Fortran there is no MPI_Status type, instead an integer array is
created by the user.

Python note The status object is created as a python object. See also section 10.2.3.

The use of a status parameter can be necessary if you use MPI_ANY_SOURCE or MPI_ANY_TAG in
the description of the receive message. If you are not interested in the status information, you can use the
values MPI_STATUS_IGNORE for MPI_Wait and MPI_Waitany, or MPI_STATUSES_IGNORE
for MPI_Waitall and MPI_Waitsome.

A receive call has a count parameter, but this describes the length of the buffer, not the amount of data
expected. That quantity can be retrieved with MPI_Get_count.

// C:
int MPI_Get_count(MPI_Status *status,MPI_Datatype datatype,

int *count)
! Fortran:
MPI_Get_count(INTEGER status(MPI_STATUS_SIZE),INTEGER datatype,

INTEGER count,INTEGER ierror)

The status object is returned when the message is received. Thus, with MPI_Recv it is returned explicitly,
but with MPI_Irecv it is returned from the MPI_Wait... call.

In section ?? we mentioned the master-worker model as one opportunity for inspecting the MPI_SOURCE
field of the MPI_Status object.

C:
int status.MPI_SOURCE;

F:

Python:
status.Get_source() # returns int

How to read routine prototypes: 1.5.4.

4.2.7 Examples

4.2.7.1 MPI_Send

MPI_Send
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A regular ping-pong operation with MPI_Send and MPI_Recv. We repeat the experiment multiple times
to get a reliable measurement of the time taken.

// pingpong.c
int src = 0,tgt = ntids/2;
double t, send=1.1,recv;
if (mytid==src) {
t = MPI_Wtime();
for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Send(&send,1,MPI_DOUBLE,tgt,0,comm);
MPI_Recv(&recv,1,MPI_DOUBLE,tgt,0,comm,MPI_STATUS_IGNORE);

}
t = MPI_Wtime()-t; t /= NEXPERIMENTS;
printf("Time for pingpong: %e\n",t);

} else if (mytid==tgt) {
for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Recv(&recv,1,MPI_DOUBLE,src,0,comm,MPI_STATUS_IGNORE);
MPI_Send(&recv,1,MPI_DOUBLE,src,0,comm);

}
}

// pingpong.py
if mytid==0:

data = [ 2.*i for i in range(s) ]
starttime = MPI.Wtime()
for test in range(ntests):

comm.send(data,dest=ntids-1)
rdata = comm.recv(source=ntids-1)

elapsed = MPI.Wtime()-starttime
print "Size=%d, elapsed time: %e" % (s,elapsed)
c = data==rdata
if not c:

print "oops",data,rdata
elif mytid==ntids-1:

for test in range(ntests):
zdata = comm.recv(source=0)
comm.send(zdata,dest=0)

// scipingpong.py
if mytid==0:

data = np.arange(s, dtype=np.float64)
rdata = np.empty(s, dtype=np.float64)
for i in range(s):

data[i] = i+1
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starttime = MPI.Wtime()
for test in range(ntests):

comm.Send([data,MPI.DOUBLE],dest=ntids-1)
comm.Recv([rdata,MPI.DOUBLE],source=ntids-1)

elapsed = MPI.Wtime()-starttime
print "Size=%d, elapsed time: %e" % (s,elapsed)
c = data==rdata #reduce( lambda x,y:x and y, [ data[i]==rdata
if not c.all():

print "oops",data,rdata
elif mytid==ntids-1:

zdata = np.empty(s, dtype=np.float64)
for test in range(ntests):

comm.Recv([zdata,MPI.DOUBLE],source=0)
comm.Send([zdata,MPI.DOUBLE],dest=0)

4.2.7.2 MPI_Recv

MPI_Recv

Using the MPI_ANY_SOURCE specifier. We retrieve the actual source from the MPI_Status object
through the MPI_SOURCE field.

// anysource.c
if (mytid==ntids-1) {

int *recv_buffer;
MPI_Status status;

recv_buffer = (int*) malloc((ntids-1)*sizeof(int));

for (int p=0; p<ntids-1; p++) {
err = MPI_Recv(recv_buffer+p,1,MPI_INT, MPI_ANY_SOURCE,0,comm,

&status); CHK(err);
int sender = status.MPI_SOURCE;
printf("Message from sender=%d: %d\n",
sender,recv_buffer[p]);

}
} else {

float randomfraction = (rand() / (double)RAND_MAX);
int randomwait = (int) ( ntids * randomfraction );
printf("process %d waits for %e/%d=%d\n",
mytid,randomfraction,ntids,randomwait);
sleep(randomwait);
err = MPI_Send(&randomwait,1,MPI_INT, ntids-1,0,comm); CHK(err);

}
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// anysource.py
rstatus = MPI.Status()
comm.Recv(rbuf,source=MPI.ANY_SOURCE,status=rstatus)
print "Message came from %d" % rstatus.Get_source()

4.2.7.3 MPI_Sendrecv

MPI_Sendrecv

We set up a ring structure and use MPI_Sendrecv to communicate between pairs.

// sendrecv.c
right = (mytid+1)%3; left = (mytid+2)%3;
MPI_Sendrecv( &my_data,1,MPI_INTEGER, right,0,
&other_data,1,MPI_INTEGER, left,0,
comm,MPI_STATUS_IGNORE);

4.3 Non-blocking point-to-point operations

4.3.1 Irregular data exchange

The structure of communication is often a reflection of the structure of the operation. With some regular
applications we also get a regular communication pattern. Consider again the above operation:

yi = xi−1 + xi + xi+1 : i = 1, . . . , N − 1

Doing this in parallel induces communication, as pictured in figure 4.5. We note:

Figure 4.5: Communication in an one-dimensional operation

• The data is one-dimensional, and we have a linear ordering of the processors.
• The operation involves neighbouring data points, and we communicate with neighbouring pro-

cessors.

Above you saw how you can use information exchange between pairs of processors
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Figure 4.6: Processors with unbalanced send/receive patterns

• using MPI_Send and MPI_Recv, if you are careful; or
• using MPI_Sendrecv, as long as there is indeed some sort of pairing of processors.

However, there are circumstances where it is not possible, not efficient, or simply not convenient, to have
such a deterministic setup of the send and receive calls. Figure 4.6 illustrates such a case, where processors
are organized in a general graph pattern. Here, the numbers of sends and receive of a processor do not need
to match.

In such cases, one wants a possibility to state ‘these are the expected incoming messages’, without having
to wait for them in sequence. Likewise, one wants to declare the outgoing messages without having to do
them in any particular sequence. Imposing any sequence on the sends and receives is likely to run into
the serialization behaviour observed above, or at least be inefficient since processors will be waiting for
messages.

4.3.2 Non-blocking communication

In the previous section you saw that blocking communication makes programming tricky if you want to
avoid deadlock and performance problems. The main advantage of these routines is that you have full
control about where the data is: if the send call returns the data has been successfully received, and the send
buffer can be used for other purposes or de-allocated.

Figure 4.7: Non-blocking send
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By constrast, the non-blocking calls MPI_Isend and MPI_Irecv do not wait for their counterpart: in
effect they tell the runtime system ‘here is some data and please send it as follows’ or ‘here is some buffer
space, and expect such-and-such data to come’. This is illustrated in figure 4.7.

While the use of non-blocking routines prevents deadlock, it introduces two new problems:

1. When the send call returns, the actual send may not have been executed, so the send buffer may
not be safe to overwrite. When the recv call returns, you do not know for sure that the expected
data is in it. Thus, you need a mechanism to make sure that data was actually sent or received.

2. With a blocking send call, you could repeatedly fill the send buffer and send it off.
double *buffer;
for ( ... p ... ) {

buffer = // fill in the data
MPI_Send( buffer, ... /* to: */ p );

To send multiple messages with non-blocking calls you have to allocate multiple buffers.
double **buffers;
for ( ... p ... ) {

buffers[p] = // fill in the data
MPI_Send( buffers[p], ... /* to: */ p );

For the first problem, MPI has two types of routines. The MPI_Wait... calls are blocking: when you
issue such a call, your execution will wait until the specified requests have been completed. A typical way
of using them is:

// start non-blocking communication
MPI_Isend( ... ); MPI_Irecv( ... );
// wait for the Isend/Irecv calls to finish in any order
MPI_Wait( ... );

Exercise 4.12. Now use nonblocking send/receive routines to implement the three-point
averaging operation

yi =
(
xi−1 + xi + xi+1

)
/3: i = 1, . . . , N − 1

on a distributed array.

There is a second motivation for the Isend/Irecv calls: if your hardware supports it, the communication
can progress while your program can continue to do useful work:

// start non-blocking communication
MPI_Isend( ... ); MPI_Irecv( ... );
// do work that does not depend on incoming data
....
// wait for the Isend/Irecv calls to finish
MPI_Wait( ... );
// now do the work that absolutely needs the incoming data
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....

This is known as overlapping computation and communication, or latency hiding .

4.3.2.1 Wait and test calls

The reference for the commands introduced here can be found in section ??.

There are several wait calls.

4.3.2.1.1 Wait for one request MPI_Wait waits for a a single request. If you are indeed waiting for
a single nonblocking communication to complete, this is the right routine. If you are waiting for multiple
requests you could call this routine in a loop.

for (p=0; p<nrequests ; p++)
MPI_Wait(request[p],&(status[p]));

However, this would be inefficient if the first request is fulfilled much later than the others: your waiting
process would have lots of idle time. In that case, use one of the following routines.

4.3.2.1.2 Wait for all requests MPI_Waitall allows you to wait for a number of requests, and it does
not matter in what sequence they are satisfied. Using this routine is easier to code than the loop above, and
it could be more efficient.

Semantics:
MPI_WAITALL( count, array_of_requests, array_of_statuses)
IN count: lists length (non-negative integer)
INOUT array_of_requests: array of requests (array of handles)
OUT array_of_statuses: array of status objects (array of Status)

C:
int MPI_Waitall(

int count, MPI_Request array_of_requests[], MPI_Status array_of_statuses[])

Fortran:
MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Request.Waitall(type cls, requests, statuses=None)

How to read routine prototypes: 1.5.4.
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4.3.2.1.3 Wait for any/some requests The ‘waitall’ routine is good if you need all nonblocking com-
munications to be finished before you can proceed with the rest of the program. However, sometimes it is
possible to take action as each request is satisfied. In that case you could use MPI_Waitany and write:

for (p=0; p<nrequests; p++) {
MPI_Waitany(nrequests,request_array,&index,&status);
// operate on buffer[index]

}

Note that this routine takes a single status argument, passed by reference, and not an array of statuses!
Semantics:
int MPI_Waitany(

int count, MPI_Request array_of_requests[], int *index,
MPI_Status *status)

IN count: list length (non-negative integer)
INOUT array_of_requests: array of requests (array of handles)
OUT index: index of handle for operation that completed (integer)
OUT status: status object (Status)

C:
MPI_Waitany(count, array_of_requests, index, status, ierror)

Fortran:
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, INTENT(OUT) :: index
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Request.Waitany( requests,status=None )
class method, returns index

How to read routine prototypes: 1.5.4.

Finally, MPI_Waitsome is very much like Waitany, except that it returns multiple numbers, if multiple
requests are satisfied. Now the status argument is an array of MPI_Status objects.

Figure 4.8 shows the trace of a non-blocking execution using MPI_Waitall.

4.3.2.2 Test: non-blocking request wait

The MPI_Wait... routines are blocking. Thus, they are a good solution if the receiving process can
not do anything until the data (or at least some data) is actually received. The MPI_Test.... calls are
themselves non-blocking: they test for whether one or more requests have been fullfilled, but otherwise
immediately return. This can be used in the master-worker model : the master process creates tasks, and
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Figure 4.8: A trace of a nonblocking send between neighbouring processors

sends them to whichever worker process has finished its work, but while it waits for the workers it can itself
do useful work. Pseudo-code:

while ( not done ) {
// create new inputs for a while
....
// see if anyone has finished
MPI_Test( .... &index, &flag );
if ( flag ) {

// receive processed data and send new
}

C:
int MPI_Testany(

int count, MPI_Request array_of_requests[],
int *index, int *flag, MPI_Status *status)

Fortran:

MPI_Testany(count, array_of_requests, index, flag, status, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, INTENT(OUT) :: index
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.
Semantics:
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MPI_TESTALL(count, array_of_requests, flag, array_of_statuses)
IN countlists length (non-negative integer)
INOUT array_of_requestsarray of requests (array of handles)
OUT flag(logical)
OUT array_of_statusesarray of status objects (array of Status)

C:
int MPI_Testall(

int count, MPI_Request array_of_requests[],
int *flag, MPI_Status array_of_statuses[])

Fortran:
MPI_Testall(count, array_of_requests, flag, array_of_statuses, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

Exercise 4.13. Read section HPSC-6.5 and give pseudo-code for the distributed sparse
matrix-vector product using the above idiom for using MPI_Test... calls.
Discuss the advantages and disadvantages of this approach. The answer is not going
to be black and white: discuss when you expect which approach to be preferable.

4.3.3 Reference

The non-blocking routines have much the same parameter list as the blocking ones, with the addition of an
MPI_Request parameter. The MPI_Isend routine does not have an MPI_Status parameter, which
has moved to the ‘wait’ routine.

int MPI_Isend(void *buf,
int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm, MPI_Request *request)

http://www.mcs.anl.gov/research/projects/mpi/www/www3/MPI_Isend.html

int MPI_Irecv(void *buf,
int count, MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Request *request)

http://www.mcs.anl.gov/research/projects/mpi/www/www3/MPI_Irecv.html

Fortran note The request parameter is an integer.

There are various ‘wait’ routines. Since you will often do at least one send and one receive, this routine is
useful:
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int MPI_Waitall(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

http://www.mcs.anl.gov/research/projects/mpi/www/www3/MPI_Waitall.html

Here is a simple code that does a non-blocking exchange between two processors:

// irecvnonblock.c
MPI_Request request[2];
MPI_Status status[2];
other = ntids-mytid;
MPI_Irecv(&recvbuf,1,MPI_INT,other,0,comm,&(request[0]));
MPI_Isend(&sendbuf,1,MPI_INT,other,0,comm,&(request[1]));
MPI_Waitall(2,request,status);

It is possible to omit the status array by specifying MPI_STATUSES_IGNORE. Other routines are MPI_Wait
for a single request, and MPI_Waitsome, MPI_Waitany.

The above fragment is unrealistically simple. In a more general scenario we have to manage send and
receive buffers: we need as many buffers as there are simultaneous non-blocking sends and receives.

Instead of waiting for all messages, we can wait for any message to come with MPI_Waitany, and
process the receive data as it comes in.

// irecv_source.c
if (mytid==ntids-1) {

int *recv_buffer;
MPI_Request *request; MPI_Status status;
recv_buffer = (int*) malloc((ntids-1)*sizeof(int));
request = (MPI_Request*) malloc((ntids-1)*sizeof(MPI_Request));

for (int p=0; p<ntids-1; p++) {
ierr = MPI_Irecv(recv_buffer+p,1,MPI_INT, p,0,comm,

request+p); CHK(ierr);
}
for (int p=0; p<ntids-1; p++) {

int index,sender;
MPI_Waitany(ntids-1,request,&index,&status); //MPI_STATUS_IGNORE);
if (index!=status.MPI_SOURCE)

printf("Mismatch index %d vs source %d\n",index,status.MPI_SOURCE);
printf("Message from %d: %d\n",index,recv_buffer[index]);

}

Note the MPI_STATUS_IGNORE parameter: we know everything about the incoming message, so we do
not need to query a status object. Contrast this with the example in section ??.

74 Parallel Computing – r428

http://www.mcs.anl.gov/research/projects/mpi/www/www3/MPI_Waitall.html


4.3. Non-blocking point-to-point operations

Fortran note The index parameter is the index in the array of requests, so it uses
1-based indexing .

// irecv_source.F90
if (mytid==ntids-1) then

do p=1,ntids-1
print *,"post"
call MPI_Irecv(recv_buffer(p),1,MPI_INTEGER,p-1,0,comm,&

requests(p),err)
end do
do p=1,ntids-1

call MPI_Waitany(ntids-1,requests,index,MPI_STATUS_IGNORE,err)
write(*,’("Message from",i3,":",i5)’) index,recv_buffer(index)

end do

4.3.4 Examples

4.3.4.1 MPI_Waitall

MPI_Waitall

Post non-blocking MPI_Irecv and MPI_Isend to/from all others, then use MPI_Waitall on the
array of requests.

// irecvloop.c
MPI_Request requests =
(MPI_Request*) malloc( 2*ntids*sizeof(MPI_Request) );

recv_buffers = (int*) malloc( ntids*sizeof(int) );
send_buffers = (int*) malloc( ntids*sizeof(int) );
for (int p=0; p<ntids; p++) {
int left_p = (p-1) % ntids,

right_p = (p+1) % ntids;
send_buffer[p] = ntids-p;
MPI_Isend(sendbuffer+p,1,MPI_INT, right_p,0, requests+2*p);
MPI_Irecv(recvbuffer+p,1,MPI_INT, left_p,0, requests+2*p+1);

}
MPI_Waitall(2*ntids,requests,MPI_STATUSES_IGNORE);

In python creating the array for the returned requests is somewhat tricky.

// irecvloop.py
requests = [ None ] * (2*nprocs)
sendbuffer = np.empty( nprocs, dtype=np.int )
recvbuffer = np.empty( nprocs, dtype=np.int )

for p in range(nprocs):
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left_p = (p-1) % nprocs
right_p = (p+1) % nprocs
requests[2*p] = comm.Isend( sendbuffer[p:p+1],dest=left_p)
requests[2*p+1] = comm.Irecv( sendbuffer[p:p+1],source=right_p)

MPI.Request.Waitall(requests)

4.3.4.2 MPI_Waitany

MPI_Waitany

Each process except for the root does a blocking send; the root posts MPI_Irecv from all other proces-
sors, then loops with MPI_Waitany until all requests have come in. Use MPI_SOURCE to test the index
parameter of the wait call.

// irecv_source.c
if (mytid==ntids-1) {

int *recv_buffer;
MPI_Request *request; MPI_Status status;
recv_buffer = (int*) malloc((ntids-1)*sizeof(int));
request = (MPI_Request*) malloc((ntids-1)*sizeof(MPI_Request));

for (int p=0; p<ntids-1; p++) {
ierr = MPI_Irecv(recv_buffer+p,1,MPI_INT, p,0,comm,

request+p); CHK(ierr);
}
for (int p=0; p<ntids-1; p++) {

int index,sender;
MPI_Waitany(ntids-1,request,&index,&status); //MPI_STATUS_IGNORE);
if (index!=status.MPI_SOURCE)

printf("Mismatch index %d vs source %d\n",index,status.MPI_SOURCE);
printf("Message from %d: %d\n",index,recv_buffer[index]);

}

In python creating the array for the returned requests is somewhat tricky.

// irecv_source.py
if procid==nprocs-1:

receive_buffer = np.empty(nprocs-1,dtype=np.int)
requests = [ None ] * (nprocs-1)
for sender in range(nprocs-1):

requests[sender] = comm.Irecv(receive_buffer[sender:sender+1],source=sender)
# alternatively: requests = [ comm.Irecv(s) for s in .... ]
status = MPI.Status()
for sender in range(nprocs-1):
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ind = MPI.Request.Waitany(requests,status=status)
if ind!=status.Get_source():

print "sender mismatch: %d vs %d" % (ind,status.Get_source())
print "received from",ind

else:
mywait = random.randint(1,2*nprocs)
print "[%d] wait for %d seconds" % (procid,mywait)
time.sleep(mywait)
mydata = np.empty(1,dtype=np.int)
mydata[0] = procid
comm.Send([mydata,MPI.INT],dest=nprocs-1)

4.4 More about point-to-point communication

4.4.1 Message probing

MPI receive calls specify a receive buffer, and its size has to be enough for any data sent. In case you really
have no idea how much data is being sent, and you don’t want to overallocate the receive buffer, you can
use a ‘probe’ call.

The calls MPI_Probe, MPI_Iprobe, accept a message, but do not copy the data. Instead, when probing
tells you that there is a message, you can use MPI_Get_count to determine its size, allocate a large
enough receive buffer, and do a regular receive to have the data copied.

4.4.2 Wildcards in the receive call

The reference for the commands introduced here can be found in section ??.

With some receive calls you know everything about the message in advance: its source, tag, and size. In
other cases you want to leave some options open, and inspect the message for them after it was received. To
do this, the receive call has a status parameter. This status is a property of the actually received messsage,
so MPI_Irecv does not have a status parameter, but MPI_Wait does.

Here are some of the uses of the status:

4.4.2.0.1 Source In some applications it makes sense that a message can come from one of a number of
processes. In this case, it is possible to specify MPI_ANY_SOURCE as the source. To find out where the
message actually came from, you would use the MPI_SOURCE field of the status object that is delivered
by MPI_Recv or the MPI_Wait... call after an MPI_Irecv.

MPI_Recv(recv_buffer+p,1,MPI_INT, MPI_ANY_SOURCE,0,comm,
&status);

sender = status.MPI_SOURCE;
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There are various scenarios where receiving from ‘any source’ makes sense. One is that of the master-
worker model . The master task would first send data to the worker tasks, then issues a blocking wait for
the data of whichever process finishes first.

If a processor is expecting more than one messsage from a single other processor, message tags are used
to distinguish between them. In that case, a value of MPI_ANY_TAG can be used, and the actual tag of a
message can be retrieved with

int tag = status.MPI_TAG;

If the amount of data received is not known a priori, the amount received can be found as

MPI_Get_count(&recv_status,MPI_INT,&recv_count);

4.4.3 Overlap of computation and communication

Non-blocking routines have long held the promise of letting a program overlap its computation and com-
munication . The idea was that after posting the non-blocking calls the program could proceed to do non-
communication work, while another part of the system would take care of the communication. Unfortu-
nately, a lot of this communication involved activity in user space, so the solution would have been to let it
be handled by a separate thread. Until recently, processors were not efficient at doing such multi-threading,
so true overlap stayed a promise for the future.

4.4.4 More about non-blocking

Above we used MPI_Irecv, but we could have used the MPI_Recv routine. There is nothing special
about a non-blocking or synchronous message once it arrives; the MPI_Recv call can match any of the
send routines you have seen so far (but not MPI_Sendrecv).

4.4.5 Synchronous and asynchronous communication

It is easiest to think of blocking as a form of synchronization with the other process, but that is not quite
true. Synchronization is a concept in itself, and we talk about synchronous communication if there is actual
coordination going on with the other process, and asynchronous communication if there is not. Blocking
then only refers to the program waiting until the user data is safe to reuse; in the synchronous case a
blocking call means that the data is indeed transferred, in the asynchronous case it only means that the data
has been transferred to some system buffer. The four possible cases are illustrated in figure 4.9.

MPI has a number of routines for synchronous communication, such as MPI_Ssend.

4.4.6 Buffered communication

By now you have probably got the notion that managing buffer space in MPI is important: data has to
be somewhere, either in user-allocated arrays or in system buffers. Buffered sends are yet another way of
managing buffer space.
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Figure 4.9: Blocking and synchronicity

1. You allocate your own buffer space, and you attach it to your process;
2. You use the MPI_Bsend call for sending;
3. You detach the buffer when you’re done with the buffered sends.

There can be only one buffer per process; its size should be enough for all outstanding MPI_Bsend calls
that are simultaneously outstanding, plus MPI_BSEND_OVERHEAD.

MPI_Buffer_attach

int MPI_Buffer_attach(
void *buffer,int size);

where the size is indicated in bytes. The possible error codes are

• MPI_SUCCESS the routine completed successfully.
• MPI_ERR_BUFFER The buffer pointer is invalid; this typically means that you have supplied a

null pointer.
• MPI_ERR_INTERN An internal error in MPI has been detected.

The buffer is detached with MPI_Buffer_detach:

int MPI_Buffer_detach(
void *buffer, int *size);

This returns the address and size of the buffer; the call blocks until all buffered messages have been deliv-
ered.

You can compute the needed size of the buffer with MPI_Pack_size; see section ??.
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MPI_Bsend

int MPI_Bsend(
const void *buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

The asynchronous version is MPI_Ibsend.

You can force delivery by

MPI_Buffer_detach( &b, &n );
MPI_Buffer_attach( b, n );

4.4.7 Persistent communication

The reference for the commands introduced here can be found in section ??.

An Isend or Irecv call has an MPI_Request parameter. This is an object that gets created in the
send/recv call, and deleted in the wait call. You can imagine that this carries some overhead, and if the
same communication is repeated many times you may want to avoid this overhead by reusing the request
object.

To do this, MPI has persistent communication:

• You describe the communication with MPI_Send_init, which has the same calling sequence
as MPI_Isend, or MPI_Recv_init, which has the same calling sequence as MPI_Irecv.
• The actual communication is performed by calling MPI_Start, for a single request, or MPI_
Startall for an array or requests.
• Completion of the communication is confirmed with MPI_Wait or similar routines as you

have seen in the explanation of non-blocking communication.
• The wait call does not release the request object: that is done with MPI_Request_free.

The calls MPI_Send_init and MPI_Recv_init for creating a persistent communication have the
same syntax as those for non-blocking sends and receives. The difference is that they do not start an actual
communication, they only create the request object.

C:
int MPI_Send_init(

const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

Fortran:
MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
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Python:
MPI.Comm.Send_init(self, buf, int dest, int tag=0)

Semantics:
IN buf: initial address of send buffer (choice)
IN count: number of elements sent (non-negative integer)
IN datatype: type of each element (handle)
IN dest: rank of destination (integer)
IN tag: message tag (integer)
IN comm: communicator (handle)
OUT request: communication request (handle)

How to read routine prototypes: 1.5.4.

C:
int MPI_Recv_init(

void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Request *request)

Fortran:
MPI_Recv_init(buf, count, datatype, source, tag, comm, request,
ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Comm.Recv_init(

self, buf, int source=ANY_SOURCE, int tag=ANY_TAG)

Semantics:
OUT buf: initial address of receive buffer (choice)
IN count: number of elements received (non-negative integer)
IN datatype: type of each element (handle)
IN source: rank of source or MPI_ANY_SOURCE (integer)
IN tag: message tag or MPI_ANY_TAG (integer)
IN com: mcommunicator (handle)
OUT request: communication request (handle)

How to read routine prototypes: 1.5.4.

Given these request object, a communication (both send and receive) is then started with MPI_Start for
a single request or MPI_Start_all for multiple requests, given in an array.

int MPI_Start(MPI_Request *request)

C:
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int MPI_Startall(int count, MPI_Request array_of_requests[])

Fortran:
MPI_Startall(count, array_of_requests, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

Python:
MPI.Prequest.Startall(type cls, requests)

Semantics:
IN countlist length (non-negative integer)
INOUT array_of_requestsarray of requests (array of handle)

How to read routine prototypes: 1.5.4.

These are equivalent to starting an Isend or Isend; correspondingly, it is necessary to issue an MPI_Wait...
call (section ??) to determine their completion.

After a request object has been used, possibly multiple times, it can be freed; see 4.4.8.

In the following example a ping-pong is implemented with persistent communication.

// persist.c
if (mytid==src) {

MPI_Send_init(send,s,MPI_DOUBLE,tgt,0,comm,requests+0);
MPI_Recv_init(recv,s,MPI_DOUBLE,tgt,0,comm,requests+1);
printf("Size %d\n",s);
t[cnt] = MPI_Wtime();
for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Startall(2,requests);
MPI_Waitall(2,requests,MPI_STATUSES_IGNORE);

}
t[cnt] = MPI_Wtime()-t[cnt];
MPI_Request_free(requests+0); MPI_Request_free(requests+1);

} else if (mytid==tgt) {
for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Recv(recv,s,MPI_DOUBLE,src,0,comm,MPI_STATUS_IGNORE);
MPI_Send(recv,s,MPI_DOUBLE,src,0,comm);

}
}

As with ordinary send commands, there are the variants MPI_Bsend_init, MPI_Ssend_init,
MPI_Rsend_init.
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4.4.8 About MPI Request

An MPI_Request object is not actually an object, unlike MPI_Status. Instead it is an (opaque) pointer.
This meeans that when you call, for instance, MPI_Irecv, MPI will allocate an actual request object, and
return its address in the MPI_Request variable.

Correspondingly, calls to MPI_Wait... or MPI_Test free this object. If your application is such that
you do not use ‘wait’ call, you can free the request object explicitly with MPI_Request_free.

int MPI_Request_free(MPI_Request *request)

You can inspect the status of a request without freeing the request object with MPI_Request_get_
status:

int MPI_Request_get_status(
MPI_Request request,
int *flag,
MPI_Status *status

);
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Chapter 5

MPI topic 4: Dealing with complicated data

5.1 MPI Datatypes

In the examples you have seen so far, every time data was sent, it was as a contiguous buffer with elements
of a single type. In practice you may want to send heterogeneous data, or non-contiguous data. Figure 5.1
indicates one source of irregular data: with a matrix on column-major storage , a column is stored in con-

Figure 5.1: Memory layout of a row and column of a matrix in column-major storage

tiguous memory. However, a row of such a matrix is not contiguous; its elements being separated by a stride
equal to the column length.

Exercise 5.1. How would you describe the memory layout of a submatrix, if the whole
matrix has size M ×N and the submatrix m× n?

The datatypes you have dealt with so far are known as elementary datatypes; irregular objects are known
as derived datatypes .
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5.2 Elementary data types

MPI has a number of elementary data types, corresponding to the simple data types of programming
languages. The names are made to resemble the types of C and Fortran, for instance MPI_FLOAT and
MPI_DOUBLE versus MPI_REAL and MPI_DOUBLE_PRECISION.

MPI calls accept arrays of elements:

double x[20];
MPI_Send( x,20,MPI_DOUBLE, ..... )

so for a single element you need to take its address:

double x;
MPI_Send( &x,1,MPI_DOUBLE, ..... )

5.2.1 Reference

C/C++:

MPI_CHAR only for text data, do not use for small integers
MPI_UNSIGNED_CHAR
MPI_SIGNED_CHAR
MPI_SHORT
MPI_UNSIGNED_SHORT
MPI_INT
MPI_UNSIGNED
MPI_LONG
MPI_UNSIGNED_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE

There is some, but not complete, support for C99 types.

Fortran:

MPI_CHARACTER Character(Len=1)
MPI_LOGICAL
MPI_INTEGER
MPI_REAL
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_DOUBLE_COMPLEX Complex(Kind=Kind(0.d0))

Addresses have type MPI_Aint or INTEGER (KIND=MPI_ADDRESS_KIND) in Fortran. The start of
the address range is given in MPI_BOTTOM.
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5.3 Derived datatypes

MPI allows you to create your own data types, somewhat (but not completely. . . ) analogous to defining
structures in a programming language. MPI data types are mostly of use if you want to send multiple items
in one message.

There are two problems with using only elementary datatypes as you have seen so far.
• MPI communication routines can only send multiples of a single data type: it is not possible to

send items of different types, even if they are contiguous in memory. It would be possible to use
the MPI_BYTE data type, but this is not advisable.
• It is also ordinarily not possible to send items of one type if they are not contiguous in memory.

You could of course send a contiguous memory area that contains the items you want to send,
but that is wasteful of bandwidth.

With MPI data types you can solve these problems in several ways.
• You can create a new contiguous data type consisting of an array of elements of another data

type. There is no essential difference between sending one element of such a type and multiple
elements of the component type.
• You can create a vector data type consisting of regularly spaced blocks of elements of a compo-

nent type. This is a first solution to the problem of sending non-contiguous data.
• For not regularly spaced data, there is the indexed data type , where you specify an array of index

locations for blocks of elements of a component type. The blocks can each be of a different size.
• The struct data type can accomodate multiple data types.

And you can combine these mechanisms to get irregularly spaced heterogeneous data, et cetera.

5.3.1 Basic calls

The reference for the commands introduced here can be found in section 5.3.8.2.

New MPI data types are created by
• MPI_Type_contiguous
• MPI_Type_create_subarray
• MPI_Type_vector
• MPI_Type_struct
• MPI_Type_indexed
• MPI_Type_hindexed

It is necessary to call MPI_Type_commit which makes MPI do the indexing calculations for the data
type. When you no longer need the data type, you call MPI_Type_free.

5.3.2 Contiguous type

The reference for the commands introduced here can be found in section 5.3.8.3.

The simplest derived type is the ‘contiguous’ type, constructed with MPI_Type_contiguous A con-
tigous type describes an array of items of an elementary or earlier defined type. There is no difference
between sending one item of a contiguous type and multiple items of the constituent type. This is illus-
trated in figure 5.2.
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Figure 5.2: A contiguous datatype is built up out of elements of a constituent type

5.3.3 Vector type

The reference for the commands introduced here can be found in section 5.3.8.4.

The simplest non-contiguous datatype is the ‘vector’ type, constructed with MPI_Type_vector. A vec-
tor type describes a series of blocks, all of equal size, spaced with a constant stride. This is illustrated in

Figure 5.3: A vector datatype is built up out of strided blocks of elements of a constituent type

figure 5.3.

The vector datatype gives the first non-trivial illustration that datatypes can be different on the sender and
receiver . If the sender sends b blocks of length l each, the receiver can receive them as bl contiguous
elements, either as a contiguous datatype, or as a contiguous buffer of an elementary type; see figure 5.4.
In this case, the receiver has no knowledge of the stride of the datatype on the sender.

As an example of this datatype, consider the example of transposing a matrix, for instance to convert
between C and Fortran arrays (see section HPSC-34.2). Suppose that a processor has a matrix stored in C,
row-major, layout, and it needs to send a column to another processor. If the matrix is declared as

int M,N; double mat[M][N]

then a column has M blocks of one element, spaced N locations apart. In other words:

MPI_Datatype MPI_column;
MPI_Type_vector(

/* count= */ M, /* blocklength= */ 1, /* stride= */ N,
MPI_DOUBLE, &MPI_column );
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Figure 5.4: Sending a vector datatype and receiving it as elementary or contiguous

Sending the first column is easy:

MPI_Send( mat, 1,MPI_column, ... );

The second column is just a little trickier: you now need to pick out elements with the same stride, but
starting at A[0][1].

MPI_Send( &(mat[0][1]), 1,MPI_column, ... );

You can make this marginally more efficient (and harder to read) by replacing the index expression by
mat+1.

Exercise 5.2. Suppose you have a matrix of size 4N × 4N , and you want to send the
elements A[4*i][4*j] with i, j = 0, . . . , N − 1. How would you send these
elements with a single transfer?

Exercise 5.3. Allocate a matrix on processor zero, using Fortran column-major storage.
Using P sendrecv calls, distribute the rows of this matrix among the processors.

5.3.4 Subarray type

The vector datatype can be used for blocks in an array of dimension more than 2 by using it recursively.
However, this gets tedious. Instead, there is an explicit subarray type

Semantics:
MPI_TYPE_CREATE_SUBARRAY(

ndims, array_of_sizes, array_of_subsizes,
array_of_starts, order, oldtype, newtype)

IN ndims: number of array dimensions (positive integer)
IN array_of_sizes: number of elements of type oldtype in each dimension

of the full array (array of positive integers)
IN array_of_subsizes: number of elements of type oldtype in each
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dimension of the subarray (array of positive integers)
IN array_of_starts: starting coordinates of the subarray in each

dimension (array of non-negative integers)
IN order: array storage order flag (state)
IN oldtype: array element datatype (handle)
OUT newtype: new datatype (handle)

C:
int MPI_Type_create_subarray(

int ndims, const int array_of_sizes[],
const int array_of_subsizes[], const int array_of_starts[],
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran:
MPI_Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,

array_of_starts, order, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: ndims, array_of_sizes(ndims),

array_of_subsizes(ndims), array_of_starts(ndims), order
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Datatype.Create_subarray(self, sizes, subsizes, starts, int order=ORDER_C)

How to read routine prototypes: 1.5.4.

This describes the dimensionality and extent of the array, and the starting point (the ‘upper left corner’) and
extent of the subarray.

5.3.5 Indexed type

The reference for the commands introduced here can be found in section 5.3.8.5.

The indexed datatype, constructed with MPI_Type_indexed can send arbitrarily located elements from
an array of a single datatype. You need to supply an array of index locations, plus an array of blocklengths
with a separate blocklength for each index. The total number of elements sent is the sum of the blocklengths.

5.3.6 Struct type

The reference for the commands introduced here can be found in section 5.3.8.6.

The structure type, created with MPI_Type_create_struct, can contain multiple data types. The
specification contains a ‘count’ parameter that specifies how many blocks there are in a single structure.
For instance,

struct {
int i;
float x,y;
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Figure 5.5: The elements of an MPI Indexed datatype

Figure 5.6: The elements of an MPI Struct datatype

} point;

has two blocks, one of a single integer, and one of two floats. This is illustrated in figure 5.6.

The structure type is very similar in functionality to MPI_Type_hindexed, which uses byte-based
indexing. The structure-based type is probably cleaner in use.

5.3.7 Examples

Semantics:
MPI_TYPE_CONTIGUOUS(count, oldtype, newtype)
IN count: replication count (non-negative integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

C:
int MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran:
MPI_Type_contiguous(count, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
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INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
Create_contiguous(self, int count)

How to read routine prototypes: 1.5.4.

We send a contiguous data type of double and receive it as an array of separate doubles; we use MPI_
Get_count to ensure that we got the right amount of data.

// contiguous.c
MPI_Datatype newvectortype;
if (mytid==sender) {
MPI_Type_contiguous(count,MPI_DOUBLE,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,receiver,0,comm);
MPI_Type_free(&newvectortype);

} else if (mytid==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_DOUBLE,sender,0,comm,

&recv_status);
MPI_Get_count(&recv_status,MPI_DOUBLE,&recv_count);
ASSERT(count==recv_count);

}

// contiguous.F90
integer :: newvectortype
if (mytid==sender) then

call MPI_Type_contiguous(count,MPI_DOUBLE_PRECISION,newvectortype,err)
call MPI_Type_commit(newvectortype,err)
call MPI_Send(source,1,newvectortype,receiver,0,comm,err)
call MPI_Type_free(newvectortype,err)

else if (mytid==receiver) then
call MPI_Recv(target,count,MPI_DOUBLE_PRECISION,sender,0,comm,&

recv_status,err)
call MPI_Get_count(recv_status,MPI_DOUBLE_PRECISION,recv_count,err)
!ASSERT(count==recv_count);

end if

5.3.7.1 MPI_Type_indexed

MPI_Type_indexed

We send an indexed data type and receive as separate integers.
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// indexed.c
displacements = (int*) malloc(count*sizeof(int));
blocklengths = (int*) malloc(count*sizeof(int));
source = (int*) malloc(totalcount*sizeof(int));
target = (int*) malloc(count*sizeof(int));
MPI_Datatype newvectortype;
if (mytid==sender) {

MPI_Type_indexed(count,blocklengths,displacements,MPI_INT,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,the_other,0,comm);
MPI_Type_free(&newvectortype);

} else if (mytid==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_INT,the_other,0,comm,

&recv_status);
MPI_Get_count(&recv_status,MPI_INT,&recv_count);
ASSERT(recv_count==count);

}

// indexed.F90
integer :: newvectortype;
ALLOCATE(indices(count))
ALLOCATE(blocklengths(count))
ALLOCATE(source(totalcount))
ALLOCATE(targt(count))
if (mytid==sender) then

call MPI_Type_indexed(count,blocklengths,indices,MPI_INT,&
newvectortype,err)

call MPI_Type_commit(newvectortype,err)
call MPI_Send(source,1,newvectortype,receiver,0,comm,err)
call MPI_Type_free(newvectortype,err)

else if (mytid==receiver) then
call MPI_Recv(targt,count,MPI_INT,sender,0,comm,&

recv_status,err)
call MPI_Get_count(recv_status,MPI_INT,recv_count,err)
! ASSERT(recv_count==count);

end if

// indexed.py
displacements = np.empty(count,dtype=np.int)
blocklengths = np.empty(count,dtype=np.int)
source = np.empty(totalcount,dtype=np.float64)
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target = np.empty(count,dtype=np.float64)
if procid==sender:

newindextype = MPI.DOUBLE.Create_indexed(blocklengths,displacements)
newindextype.Commit()
comm.Send([source,1,newindextype],dest=the_other)
newindextype.Free()

elif procid==receiver:
comm.Recv([target,count,MPI.DOUBLE],source=the_other)

5.3.7.2 MPI_Type_struct

MPI_Type_struct

A struct data type can consist of different elementary datatypes, so in addition to the displacements and
blocklengths we now have an array of MPI datatypes. Also note how the displacement computation is done
in bytes.

// struct.c
struct object {
char c;
double x[2];
int i;

};
MPI_Datatype newstructuretype;
int structlen = 3;
int blocklengths[structlen]; MPI_Datatype types[structlen];
MPI_Aint displacements[structlen];
// where are the components relative to the structure?
blocklengths[0] = 1; types[0] = MPI_CHAR;
displacements[0] = (size_t)&(myobject.c) - (size_t)&myobject;
blocklengths[1] = 2; types[1] = MPI_DOUBLE;
displacements[1] = (size_t)&(myobject.x[0]) - (size_t)&myobject;
blocklengths[2] = 1; types[2] = MPI_INT;
displacements[2] = (size_t)&(myobject.i) - (size_t)&myobject;
MPI_Type_create_struct(structlen,blocklengths,displacements,types,&newstructuretype);
MPI_Type_commit(&newstructuretype);
{
MPI_Aint typesize;
MPI_Type_extent(newstructuretype,&typesize);
if (mytid==0) printf("Type extent: %d bytes\n",typesize);

}
if (mytid==sender) {
MPI_Send(&myobject,1,newstructuretype,the_other,0,comm);

} else if (mytid==receiver) {

Victor Eijkhout 93



5. MPI topic 4: Dealing with complicated data

MPI_Recv(&myobject,1,newstructuretype,the_other,0,comm,MPI_STATUS_IGNORE);
}
MPI_Type_free(&newstructuretype);

5.3.7.3 MPI_Type_vector

MPI_Type_vector

Send a strided data object with Type_vector and receive it as individual doubles. Use MPI_Get_
count to inspect the MPI_Status object.

// vector.c
source = (double*) malloc(stride*count*sizeof(double));
target = (double*) malloc(count*sizeof(double));
MPI_Datatype newvectortype;
if (mytid==sender) {

MPI_Type_vector(count,1,stride,MPI_DOUBLE,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,the_other,0,comm);
MPI_Type_free(&newvectortype);

} else if (mytid==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_DOUBLE,the_other,0,comm,

&recv_status);
MPI_Get_count(&recv_status,MPI_DOUBLE,&recv_count);
ASSERT(recv_count==count);

}

// vector.F90
integer :: newvectortype
ALLOCATE(source(stride*count))
ALLOCATE(target(stride*count))
if (mytid==sender) then

call MPI_Type_vector(count,1,stride,MPI_DOUBLE_PRECISION,&
newvectortype,err)

call MPI_Type_commit(newvectortype,err)
call MPI_Send(source,1,newvectortype,receiver,0,comm,err)
call MPI_Type_free(newvectortype,err)

else if (mytid==receiver) then
call MPI_Recv(target,count,MPI_DOUBLE_PRECISION,sender,0,comm,&

recv_status,err)
call MPI_Get_count(recv_status,MPI_DOUBLE_PRECISION,recv_count,err)

end if

94 Parallel Computing – r428



5.3. Derived datatypes

// vector.py
source = np.empty(stride*count,dtype=np.float64)
target = np.empty(count,dtype=np.float64)
if procid==sender:

newvectortype = MPI.DOUBLE.Create_vector(count,1,stride)
newvectortype.Commit()
comm.Send([source,1,newvectortype],dest=the_other)
newvectortype.Free()

elif procid==receiver:
comm.Recv([target,count,MPI.DOUBLE],source=the_other)

5.3.8 Reference

5.3.8.1 Type extent

The space taken by a derived type is not immediately obvious from its definition since padding maybe
applied. The actual size can be retrieved with MPI_Type_extent:

int MPI_Type_extent(MPI_Datatype datatype, MPI_Aint *extent)

See the example in section 5.3.8.6

5.3.8.2 Type create and release calls

This reference section gives the syntax for routines introduced in section 5.3.1.
A derived type needs to be committed before it can be used:

C:
int MPI_Type_commit(MPI_Datatype *datatype)

Fortran:
MPI_Type_commit(datatype, ierror)
TYPE(MPI_Datatype), INTENT(INOUT) :: datatype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

The commit call is typically used to find an efficient ‘flat’ representation of recursively defined datatypes.

When you no longer need the derived type, its space can be released with MPI_Type_free:
int MPI_Type_free (MPI_datatype *datatype)

After the type free call
• The definition of the datatype identifier will be changed to MPI_DATATYPE_NULL.
• Any communication using this data type, that was already started, will be completed succesfully.
• Datatypes that are defined in terms of this data type will still be usable.
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5.3.8.3 Contiguous type

This reference section gives the syntax for routines introduced in section 5.3.2.
A contiguous datatype, created with a call to MPI_Type_contiguous,

Semantics:
MPI_TYPE_CONTIGUOUS(count, oldtype, newtype)
IN count: replication count (non-negative integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

C:
int MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran:
MPI_Type_contiguous(count, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
Create_contiguous(self, int count)

How to read routine prototypes: 1.5.4.

consists of a number of elements of a datatype, contiguous in memory. Sending one element of a contiguous
type is fully equivalent to sending a number of elements of the constituent type.

// contiguous.c
MPI_Datatype newvectortype;
if (mytid==sender) {

MPI_Type_contiguous(count,MPI_DOUBLE,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,receiver,0,comm);
MPI_Type_free(&newvectortype);

} else if (mytid==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_DOUBLE,sender,0,comm,

&recv_status);
MPI_Get_count(&recv_status,MPI_DOUBLE,&recv_count);
ASSERT(count==recv_count);

}

5.3.8.4 Vector type

This reference section gives the syntax for routines introduced in section 5.3.3.
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The MPI_Type_vector type can be used to create a type of regularly spaced blocks of data. All block
lengths need to be the same, and the vector type is built out of a single constituent type.

Semantics:
MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype)
IN count: number of blocks (non-negative integer)
IN blocklength: number of elements in each block (non-negative integer)
IN stride: number of elements between start of each block (integer)
IN oldtype: old datatype (handle)
OUT newtype: new datatype (handle)

C:
int MPI_Type_vector

(int count, int blocklength, int stride,
MPI_Datatype oldtype, MPI_Datatype *newtype)

Fortran:
MPI_Type_vector(count, blocklength, stride, oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, blocklength, stride
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Datatype.Create_vector(self, int count, int blocklength, int stride)

How to read routine prototypes: 1.5.4.

In this example a vector type is created only on the sender, in order to send a strided subset of an array; the
receiver receives the data as a contiguous block.

// vector.c
source = (double*) malloc(stride*count*sizeof(double));
target = (double*) malloc(count*sizeof(double));
MPI_Datatype newvectortype;
if (mytid==sender) {
MPI_Type_vector(count,1,stride,MPI_DOUBLE,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,the_other,0,comm);
MPI_Type_free(&newvectortype);

} else if (mytid==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_DOUBLE,the_other,0,comm,

&recv_status);
MPI_Get_count(&recv_status,MPI_DOUBLE,&recv_count);
ASSERT(recv_count==count);

}
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Exercise 5.4. Let processor 0 have an array x of length 10P , where P is the number of
processors. Elements 0, P, 2P, . . . , 9P should go to processor zero,
1, P + 1, 2P + 1, . . . to processor 1, et cetera. Code this as a sequence of send/recv
calls, using a vector datatype for the send, and a contiguous buffer for the receive.
For simplicity, skip the send to/from zero. What is the most elegant solution if you
want to include that case?
For testing, define the array as x[i] = i.

5.3.8.5 Indexed data

This reference section gives the syntax for routines introduced in section 5.3.5.
The indexed datatype is similar to the vector type, in the sense that it consists of a series of blocks of items,
all of the same type. However, where the vector type was described by a single stride and blocklength, with
MPI_Type_indexed you can specify the location and length of each block.

Semantics:
count [in] number of blocks --

also number of entries in indices and blocklens
blocklens [in] number of elements in each block (array of nonnegative integers)
indices [in] displacement of each block in multiples of old_type

(array of integers)
old_type [in] old datatype (handle)
newtype [out] new datatype (handle)

C:
int MPI_Type_indexed(int count, const int array_of_blocklengths[],

const int array_of_displacements[], MPI_Datatype oldtype, MPI_Datatype

*newtype)

Fortran:
MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements,

oldtype, newtype, ierror)
INTEGER, INTENT(IN) :: count, array_of_blocklengths(count),
array_of_displacements(count)
TYPE(MPI_Datatype), INTENT(IN) :: oldtype
TYPE(MPI_Datatype), INTENT(OUT) :: newtype
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Datatype.Create_vector(self, blocklengths,displacements )

How to read routine prototypes: 1.5.4.

The following example picks items that are on prime number-indexed locations.

// indexed.c
displacements = (int*) malloc(count*sizeof(int));
blocklengths = (int*) malloc(count*sizeof(int));
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source = (int*) malloc(totalcount*sizeof(int));
target = (int*) malloc(count*sizeof(int));
MPI_Datatype newvectortype;
if (mytid==sender) {
MPI_Type_indexed(count,blocklengths,displacements,MPI_INT,&newvectortype);
MPI_Type_commit(&newvectortype);
MPI_Send(source,1,newvectortype,the_other,0,comm);
MPI_Type_free(&newvectortype);

} else if (mytid==receiver) {
MPI_Status recv_status;
int recv_count;
MPI_Recv(target,count,MPI_INT,the_other,0,comm,

&recv_status);
MPI_Get_count(&recv_status,MPI_INT,&recv_count);
ASSERT(recv_count==count);

}

You can also MPI_Type_create_hindexed which describes blocks of a single old type, but with
indix locations in bytes, rather than in multiples of the old type.

int MPI_Type_create_hindexed
(int count, int blocklens[], MPI_Aint indices[],
MPI_Datatype old_type,MPI_Datatype *newtype)

You can use this to pick all occurrences of a single component out of an array of structures. However,
you need to be very careful with the index calculation. Use pointer arithmetic, as in the example in sec-
tion 5.3.8.6. Another use of this function is in sending an stl<vector>, that is, a vector object from the
C++ standard library, if the component type is a pointer. No further explanation here.

5.3.8.6 Structure data

This reference section gives the syntax for routines introduced in section 5.3.6.

The MPI_Type_create_struct routine creates a type consisting of blocks of multiple datatypes,
much like MPI_Type_indexed makes an array of blocks of a single type.

int MPI_Type_create_struct(
int count, int blocklengths[], MPI_Aint displacements[],
MPI_Datatype types[], MPI_Datatype *newtype);

count The number of blocks in this datatype. The blocklengths, displacements, types argu-
ments have to be at least of this length.

blocklengths array containing the lengths of the blocks of each datatype.
displacements array describing the relative location of the blocks of each datatype.
types array containing the datatypes; each block in the new type is of a single datatype; there can be

multiple blocks consisting of the same type.
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In this example, unlike the previous ones, both sender and receiver create the structure type. With structures
it is no longer possible to send as a derived type and receive as a array of a simple type. (It would be possible
to send as one structure type and receive as another, as long as they have the same datatype signature .)

// struct.c
struct object {

char c;
double x[2];
int i;

};
MPI_Datatype newstructuretype;
int structlen = 3;
int blocklengths[structlen]; MPI_Datatype types[structlen];
MPI_Aint displacements[structlen];
// where are the components relative to the structure?
blocklengths[0] = 1; types[0] = MPI_CHAR;
displacements[0] = (size_t)&(myobject.c) - (size_t)&myobject;
blocklengths[1] = 2; types[1] = MPI_DOUBLE;
displacements[1] = (size_t)&(myobject.x[0]) - (size_t)&myobject;
blocklengths[2] = 1; types[2] = MPI_INT;
displacements[2] = (size_t)&(myobject.i) - (size_t)&myobject;
MPI_Type_create_struct(structlen,blocklengths,displacements,types,&newstructuretype);
MPI_Type_commit(&newstructuretype);
{

MPI_Aint typesize;
MPI_Type_extent(newstructuretype,&typesize);
if (mytid==0) printf("Type extent: %d bytes\n",typesize);

}
if (mytid==sender) {

MPI_Send(&myobject,1,newstructuretype,the_other,0,comm);
} else if (mytid==receiver) {

MPI_Recv(&myobject,1,newstructuretype,the_other,0,comm,MPI_STATUS_IGNORE);
}
MPI_Type_free(&newstructuretype);

Note the displacement calculations in this example, which involve some not so elegant pointer arith-
metic. It would have been incorrect to write

displacement[0] = 0;
displacement[1] = displacement[0] + sizeof(char);

since you do not know the way the compiler lays out the structure in memory1.

1. Homework question: what does the language standard say about this?
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5.3.8.7 Type size

The space that MPI takes for a structure type can be queried
Semantics:

int MPI_Type_get_extent(
MPI_Datatype datatype,
MPI_Aint *lb, MPI_Aint *extent
);

datatype: [in] datatype to get information on (handle)
lb: [out] lower bound of datatype (integer)
extent: [out] extent of datatype (integer)

How to read routine prototypes: 1.5.4.

(There is a deprecated function MPI_Type_extent with the same functionality.)

5.4 More about data

5.4.1 Datatype signatures

With the primitive types it pretty much went without saying that if the sender sends an array of doubles,
the receiver had to declare the datatype also as doubles. With derived types that is no longer the case: the
sender and receiver can declare a different datatype for the send and receive buffer, as long as these have
the same datatype signature .

The signature of a datatype is the internal representation of that datatype. For instance, if the sender declares
a datatype consisting of two doubles, and it sends four elements of that type, the receiver can receive it as
two elements of a type consisting of four doubles.

You can also look at the signature as the form ‘under the hood’ in which MPI sends the data.

5.4.2 Big data types

The size parameter in MPI send and receive calls is of type integer, meaning that it’s maximally 231 − 1.
These day computers are big enough that this is a limitation. Derived types offer some way out: to send
abig data type of 1040 elements you would

• create a contiguous type with 1020 elements, and
• send 1020 elements of that type.

This often works, but it’s not perfect. For instance, the routine returns the total number of basic elements
sent (as opposed to MPI_Get_count which would return the number of elements of the derived type).
Since its output argument is of integer type, it can’t store the right value.

The MPI 3 standard has addressed this as follows.

• To preserve backwards compatibility, the size parameter keeps being of type integer.
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• The trick with sending elements of a derived type still works, but
• There are new routines that can return the correct information about the total amount of data;

for instance, MPI_Get_elements_x returns its result as a MPI_Count.

5.4.3 Packing

One of the reasons for derived datatypes is dealing with non-contiguous data. In older communication
libraries this could only be done by packing data from its original containers into a buffer, and likewise
unpacking it at the receiver into its destination data structures.

MPI offers this packing facility, partly for compatibility with such libraries, but also for reasons of flexibil-
ity. Unlike with derived datatypes, which transfers data atomically, packing routines add data sequentially
to the buffer and unpacking takes them sequentially.

This means that one could pack an integer describing how many floating point numbers are in the rest of
the packed message. Correspondingly, the unpack routine could then investigate the first integer and based
on it unpack the right number of floating point numbers.

MPI offers the following:

• The MPI_Pack command adds data to a send buffer;
• the MPI_Unpack command retrieves data from a receive buffer;
• the buffer is sent with a datatype of MPI_PACKED.

With MPI_PACK data elements can be added to a buffer one at a time. The position parameter is
updated each time by the packing routine.

int MPI_Pack(
void *inbuf, int incount, MPI_Datatype datatype,
void *outbuf, int outcount, int *position,
MPI_Comm comm);

Conversely, MPI_UNPACK retrieves one element from the buffer at a time. You need to specify the MPI
datatype.

int MPI_Unpack(
void *inbuf, int insize, int *position,
void *outbuf, int outcount, MPI_Datatype datatype,
MPI_Comm comm);

A packed buffer is sent or received with a datatype of MPI_PACKED. The sending routine uses the
position parameter to specify how much data is sent, but the receiving routine does not know this
value a priori, so has to specify an upper bound.

// pack.c
if (mytid==sender) {

MPI_Pack(&nsends,1,MPI_INT,buffer,buflen,&position,comm);
for (int i=0; i<nsends; i++) {

double value = rand()/(double)RAND_MAX;
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MPI_Pack(&value,1,MPI_DOUBLE,buffer,buflen,&position,comm);
}
MPI_Pack(&nsends,1,MPI_INT,buffer,buflen,&position,comm);
MPI_Send(buffer,position,MPI_PACKED,other,0,comm);

} else if (mytid==receiver) {
int irecv_value;
double xrecv_value;
MPI_Recv(buffer,buflen,MPI_PACKED,other,0,comm,MPI_STATUS_IGNORE);
MPI_Unpack(buffer,buflen,&position,&nsends,1,MPI_INT,comm);
for (int i=0; i<nsends; i++) {

MPI_Unpack(buffer,buflen,&position,&xrecv_value,1,MPI_DOUBLE,comm);
}
MPI_Unpack(buffer,buflen,&position,&irecv_value,1,MPI_INT,comm);
ASSERT(irecv_value==nsends);

}

You can precompute the size of the required buffer as follows:

int MPI_Pack_size(
int incount, MPI_Datatype datatype,
MPI_Comm comm, int *size);

Add one time MPI_BSEND_OVERHEAD.
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6.1 Subcommunications

In many scenarios you divide a large job over all the available processors. However, your job has two
or more parts that can be considered as jobs by themselves. In that case it makes sense to divide your
processors into subgroups accordingly.

Suppose for instance that you are running a simulation where inputs are generated, a computation is per-
formed on them, and the results of this computation are analyzed or rendered graphically. You could then
consider dividing your processors in three groups corresponding to generation, computation, rendering.

As long as you only do sends and receives, this division works fine. However, if one group of processes
needs to perform a collective operation, you don’t want the other groups involved in this. Thus, you really
want the three groups to be really distinct from each other.

In order to make such subsets of processes, MPI has the mechanism of taking a subset of MPI_COMM_
WORLD and turning that subset into a new communicator.

Now you understand why the MPI collective calls had an argument for the communicator: a collective in-
volves all proceses of that communicator. By making a communicator that contains a subset of all available
processes, you can do a collective on that subset.

6.1.1 Scenario: climate model

A climate simulation code has several components, for instance corresponding to land, air, ocean, and ice.
You can imagine that each needs a different set of equations and algorithms to simulate. You can then divide
your processes, where each subset simulates one component of the climate, occasionally communicating
with the other components.

6.1.2 Scenario: quicksort

The popular quicksort algorithm works by splitting the data into two subsets that each can be sorted indi-
vidually. If you want to sort in parallel, you could implement this by making two subcommunicators, and
sorting the data on these, creating recursively more subcommunicators.
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6.2 Communicator basics

A communicator is an object describing a group of processes. In many applications all processes work
together closely coupled, and the only communicator you need is MPI_COMM_WORLD. However, there
are circumstances where you want one subset of processes to operate independently of another subset. For
example:

• If processors are organized in a 2 × 2 grid, you may want to do broadcasts inside a row or
column.
• For an application that includes a producer and a consumer part, it makes sense to split the

processors accordingly.

In this section we will see mechanisms for defining new communicators and sending messages between
communicators.

An important reason for using communicators is the development of software libraries. If the routines in
a library use their own communicator (even if it is a duplicate of the ‘outside’ communicator), there will
never be a confusion between message tags inside and outside the library.

There are three predefined communicators:

• MPI_COMM_WORLD comprises all processes that were started together by mpirun (or some
related program).
• MPI_COMM_SELF is the communicator that contains only the current process.
• MPI_COMM_NULL is the invalid communicator. Routines that construct communicators can

give this as result if an error occurs.

In some applications you will find yourself regularly creating new communicators, using the mechanisms
described below. In that case, you should de-allocate communicators with MPI_Comm_free when you’re
done with them.

6.3 Duplicating communicators

With MPI_Comm_dup you can make an exact duplicate of a communicator. This may seem pointless, but
it is actually very useful for the design of software libraries. Image that you have a code

MPI_Isend(...); MPI_Irecv(...);
// library call
MPI_Waitall(...);

and suppose that the library has receive calls. Now it is possible that the receive in the library inadvertently
catches the message that was sent in the outer environment.

First of all, here is code where the library stores the communicator of the calling program:

// commdup_wrong.cxx
class library {
private:

MPI_Comm comm;
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int mytid,ntids,other;
MPI_Request *request;

public:
library(MPI_Comm incomm) {

comm = incomm;
MPI_Comm_rank(comm,&mytid);
other = 1-mytid;
request = new MPI_Request[2];

};
int communication_start();
int communication_end();

};

To prevent this confusion, the library should duplicate the outer communicator, and send all messages with
respect to its duplicate. Now messages from the user code can never reach the library software, since they
are on different communicators.

Semantics:
MPI_COMM_DUP(comm, newcomm)
IN comm: communicator (handle)
OUT newcomm: copy of comm (handle)

C:
int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

F:
MPI_Comm_dup(comm, newcomm, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Comm), INTENT(OUT) :: newcomm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Py:
newcomm = oldcomm.Dup(Info info=None)

How to read routine prototypes: 1.5.4.

// commdup_right.cxx
class library {
private:

MPI_Comm comm;
int mytid,ntids,other;
MPI_Request *request;

public:
library(MPI_Comm incomm) {

MPI_Comm_dup(incomm,&comm);
MPI_Comm_rank(comm,&mytid);
other = 1-mytid;
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request = new MPI_Request[2];
};
˜library() {

MPI_Comm_free(&comm);
}
int communication_start();
int communication_end();

};

// commdup.py
class Library():

def __init__(self,comm):
# wrong: self.comm = comm
self.comm = comm.Dup()
self.other = self.comm.Get_size()-self.comm.Get_rank()-1
self.requests = [ None ] * 2

def communication_start(self):
sendbuf = np.empty(1,dtype=np.int); sendbuf[0] = 37
recvbuf = np.empty(1,dtype=np.int)
self.requests[0] = self.comm.Isend( sendbuf, dest=other,tag=2 )
self.requests[1] = self.comm.Irecv( recvbuf, source=other )

def communication_end(self):
MPI.Request.Waitall(self.requests)

mylibrary = Library(comm)
my_requests[0] = comm.Isend( sendbuffer,dest=other,tag=1 )
mylibrary.communication_start()
my_requests[1] = comm.Irecv( recvbuffer,source=other )
MPI.Request.Waitall(my_requests,my_status)
mylibrary.communication_end()

6.4 Splitting a communicator
The reference for the commands introduced here can be found in section 10.1.2.

Splitting a communicator into multiple disjoint communicators can be done with MPI_Comm_split.
This uses a ‘colour’:

MPI_Comm_split( old_comm, colour, new_comm, .... );

and all processes in the old communicator with the same colour wind up in a new communicator together.
The old communicator still exists, so processes now have two different contexts in which to communicate.

Here is one example of communicator splitting. Suppose your processors are in a two-dimensional grid:
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MPI_Comm_rank( MPI_COMM_WORLD, &mytid );
proc_i = mytid % proc_column_length;
proc_j = mytid / proc_column_length;

You can now create a communicator per column:

MPI_Comm column_comm;
MPI_Comm_split( MPI_COMM_WORLD, proc_j, mytid, &column_comm );

and do a broadcast in that column:

MPI_Bcast( data, /* tag: */ 0, column_comm );

Because of the SPMD nature of the program, you are now doing in parallel a broadcast in every processor
column. Such operations often appear in dense linear algebra .

Exercise 6.1. Organize your processes in a grid, and make subcommunicators for the rows
and columns. First let each processor print out its global rank, column number and
rank, and row number and rank. Then, design a gather operation that lets the root
print out the state of all processors as a nicely formatted matrix. For instance, a
2× 3 processor grid should print:

Global ranks:
0 1 2
3 4 4

Row ranks:
0 1 2
0 1 2

Initialize all processes in the first row with their column number and the ones in the
first column with their row number; all others should be set to zero. Use a gather
operation to print out this state of affairs.
Now do a broadcast from the first row and column through the columns and rows
respectively; processor (i, j) winds up with the numbers i and j. Again use a gather
to print this out.
Run your code on different number of processes, for instance a number of rows and
columns that is a power of 2, or that is a prime number.

As an example of communicator splitting, consider the recursive algorithm for matrix transposition . Pro-
cessors are organized in a square grid. The matrix is divided on 2× 2 block form.

Exercise 6.2. Implement a recursive algorithm for matrix transposition:
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• Swap blocks (1, 2) and (2, 1); then
• Divide the processors into four subcommunicators, and apply this algorithm

recursively on each;
• If the communicator has only one process, transpose the matrix in place.

There is an important application of communicator splitting in the context of one-sided communication,
grouping processes by whether they access the same shared memory area; see section 26.2.

6.4.1 Process groups

The most general mechanism is based on groups: you can extract the group from a communicator, combine
different groups, and form a new communicator from the resulting group.

The group mechanism is more involved. You get the group from a communicator, or conversely make a
communicator from a group with MPI_Comm_group and MPI_Comm_create:

MPI_Comm_group( comm, &group);
MPI_Comm_create( old_comm, group, &new_comm );

and groups are manipulated with MPI_Group_incl, MPI_Group_excl, MPI_Group_difference
and a few more.

You can name your communicators with MPI_Comm_set_name, which could improve the quality of
error messages when they arise.

6.4.2 Intra-communicators

We start by exploring the mechanisms for creating a communicator that encompasses a subset of MPI_COMM_WORLD.

The most general mechanism for creating communicators is through process groups: you can query the
group of processes of a communicator, manipulate groups, and make a new communicator out of a group
you have formed.
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MPI_COMM_GROUP (comm, group, ierr)
MPI_COMM_CREATE (MPI_Comm comm,MPI_Group group, MPI_Comm newcomm, ierr)

MPI_GROUP_UNION(group1, group2, newgroup, ierr)
MPI_GROUP_INTERSECTION(group1, group2, newgroup, ierr)
MPI_GROUP_DIFFERENCE(group1, group2, newgroup, ierr)

MPI_GROUP_INCL(group, n, ranks, newgroup, ierr)
MPI_GROUP_EXCL(group, n, ranks, newgroup, ierr)

MPI_GROUP_SIZE(group, size, ierr)
MPI_GROUP_RANK(group, rank, ierr)

6.5 Inter-communicators

If two disjoint communicators exist, it may be necessary to communicate between them. This can of course
be done by creating a new communicator that overlaps them, but this would be complicated: since the ‘inter’
communication happens in the overlap communicator, you have to translate its ordering into those of the two
worker communicators. It would be easier to express messages directly in terms of those communicators,
and this can be done with ‘inter-communicators’.

MPI_Intercomm_create (local_comm, local_leader, bridge_comm, remote_leader, tag, newintercomm, ierr)

After this, the intercommunicator can be used in collectives such as
MPI_Bcast (buff, count, dtype, root, comm, ierr)

• In group A, the root process passes MPI_ROOT as ‘root’ value; all others use MPI_NULL_PROC.
• In group B, all processes use a ‘root’ value that is the rank of the root process in the root group.

Gather and scatter behave similarly; the allgather is different: all send buffers of group A are concatenated
in rank order, and places on all processes of group B.

Inter-communicators can be used if two groups of process work asynchronously with respect to each other;
another application is fault tolerance (section 9.4).

6.6 Process topologies

In the communicators you have seen so far, processes are linearly ordered. In some circumstances the
problem you are coding has some structure, and expressing the program in terms of that structure would be
convenient. For this purpose, MPI can define a virtual topology . There are two types:

• regular, Cartesian, grids; and
• general graphs.
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6.6.1 Cartesian grid topology

A Cartesian grid is a structure, typically in 2 or 3 dimensions, of points that have two neighbours in each
of the dimensions. Thus, if a Cartesian grid has sizes K ×M × N , its points have coordinates (k,m, n)
with 0 ≤ k < K et cetera. Most points have six neighbours (k± 1,m, n), (k,m± 1, n), (k,m, n± 1); the
exception are the edge points. A grid where edge processors are connected through wraparound connections
is called a periodic grid .

The most common use of Cartesian coordinates is to find the rank of process by referring to it in grid terms.
For instance, one could ask ‘what are my neighbours offset by (1, 0, 0), (−1, 0, 0), (0, 1, 0) et cetera’.
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7.1 Process management

The first version of MPI did not contain any process management routines, even though the earlier PVM
project did have that functionality. Process management was later added with MPI-2.

Unlike what you might think, newly added processes do not become part of MPI_COMM_WORLD; rather,
they get their own communicator, and an intercommunicator is established between this new group and the
existing one. The first routine is MPI_Comm_spawn, which tries to fire up multiple copies of a single
named executable. You could imagine using this mechanism to start the whole of your MPI code, but that
is likely to be inefficient.

Semantics:
MPI_COMM_SPAWN(command, argv, maxprocs, info, root, comm,

intercomm,array_of_errcodes)

IN command: name of program to be spawned
(string, significant only at root)

IN argv: arguments to command
(array of strings, significant only at root)

IN maxprocs: maximum number of processes to start
(integer, significant only at root)

IN info: a set of key-value pairs telling the runtime system where and
how to start the processes (handle, significant only at root)

IN root: rank of process in which previous arguments are examined
(integer)

IN comm: intracommunicator containing group of spawning processes
(handle)

OUT intercomm: intercommunicator between original group and the
newly spawned group (handle)

OUT array_of_errcodes: one code per process (array of integer)

C:
int MPI_Comm_spawn(const char *command, char *argv[], int maxprocs,

MPI_Info info, int root, MPI_Comm comm,
MPI_Comm *intercomm, int array_of_errcodes[])
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Fortran:
MPI_Comm_spawn(command, argv, maxprocs, info, root, comm, intercomm,
array_of_errcodes, ierror)
CHARACTER(LEN=*), INTENT(IN) :: command, argv(*)
INTEGER, INTENT(IN) :: maxprocs, root
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Comm), INTENT(OUT) :: intercomm
INTEGER :: array_of_errcodes(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:

MPI.Intracomm.Spawn(self,
command, args=None, int maxprocs=1, Info info=INFO_NULL,
int root=0, errcodes=None)

returns an intracommunicator

How to read routine prototypes: 1.5.4.

(If you’re feeling sure of yourself, specify MPI_ERRCODES_IGNORE.)

Here is an example of a work manager.

// spawn_manager.c
MPI_Comm_size(MPI_COMM_WORLD, &world_size);
MPI_Comm_rank(MPI_COMM_WORLD, &manager_rank);

MPI_Attr_get(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,
(void*)&universe_sizep, &flag);

if (!flag) {
if (manager_rank==0) {

printf("This MPI does not support UNIVERSE_SIZE.\nHow many processes total?");
scanf("%d", &universe_size);

}
MPI_Bcast(&universe_size,1,MPI_INTEGER,0,MPI_COMM_WORLD);

} else {
universe_size = *universe_sizep;
if (manager_rank==0)

printf("Universe size deduced as %d\n",universe_size);
}
ASSERTm(universe_size>world_size,"No room to start workers");
int nworkers = universe_size-world_size;

/*
* Now spawn the workers. Note that there is a run-time determination
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* of what type of worker to spawn, and presumably this calculation must

* be done at run time and cannot be calculated before starting

* the program. If everything is known when the application is

* first started, it is generally better to start them all at once

* in a single MPI_COMM_WORLD.

*/

const char *worker_program = "spawn_worker";
int errorcodes[nworkers];
MPI_Comm_spawn(worker_program, MPI_ARGV_NULL, nworkers,
MPI_INFO_NULL, 0, MPI_COMM_WORLD, &everyone,
errorcodes);

// spawn_manager.py
nworkers = universe_size - nprocs

itercomm = comm.Spawn("spawn_worker.py", maxprocs=nworkers)

You could start up a single copy of this program with

mpirun -np 1 spawn_manager

but with a hostfile that has more than one host. In that case the MPI_UNIVERSE_SIZE will tell you
to the total number of hosts available. If this option is not supported, you can determine yourself how
many processes you want to spawn. If you exceed the hardware resources, your multi-tasking operating
system (which is some variant of Unix for almost everyone) will use time-slicing , but you will not gain any
performance.

The spawned program looks very much like a regular MPI program, with its own initialization and finalize
calls.

// spawn_worker.c
MPI_Comm_size(MPI_COMM_WORLD,&nworkers);
MPI_Comm_rank(MPI_COMM_WORLD,&workerno);
MPI_Comm_get_parent(&parent);
ASSERTm(parent!=MPI_COMM_NULL,"No parent!");

MPI_Comm_remote_size(parent, &remotesize);
if (workerno==0) {

printf("Deducing %d workers and %d parents\n",nworkers,remotesize);
}
// ASSERTm(nworkers==size-1,"nworkers mismatch. probably misunderstanding");

// spawn_worker.py
parentcomm = comm.Get_parent()

114 Parallel Computing – r428



7.1. Process management

nparents = parentcomm.Get_remote_size()

Spawned processes wind up with a value of MPI_COMM_WORLD of their own, but managers and workers
can find each other regardless. The spawn routine returns the intercommunicator to the parent; the children
can find it through MPI_Comm_get_parent. The number of spawning processes can be found through
MPI_Comm_remote_size on the parent communicator.

Semantics:
MPI_COMM_REMOTE_SIZE(comm, size)
IN comm: inter-communicator (handle)
OUT size: number of processes in the remote group of comm (integer)

C:
int MPI_Comm_remote_size(MPI_Comm comm, int *size)

Fortran:
MPI_Comm_remote_size(comm, size, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
Intercomm.Get_remote_size(self)

How to read routine prototypes: 1.5.4.

7.1.1 MPMD

Instead of spawning a single executable, you can spawn multiple with MPI_Comm_spawn_multiple.

7.1.2 Socket-style communications

MPI_Comm_connect MPI_Comm_accept

MPI_Open_port MPI_Close_port MPI_Publish_name MPI_Unpublish_name MPI_Comm_
join MPI_Comm_disconnect
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Above, you saw point-to-point operations of the two-sided type: they require the co-operation of a sender
and receiver. This co-operation could be loose: you can post a receive with MPI_ANY_SOURCE as sender,
but there had to be both a send and receive call. In this section, you will see one-sided communication rou-
tines where a process can do a ‘put’ or ‘get’ operation, writing data to or reading it from another processor,
without that other processor’s involvement.

In one-sided MPI operations, also known as Remote Direct Memory Access (RDMA) or Remote Memory
Access (RMA) operations, there are still two processes involved: the origin , which is the process that
originates the transfer, whether this is a ‘put’ or a ‘get’, and the target whose memory is being accessed.
Unlike with two-sided operations, the target does not perform an action that is the counterpart of the action
on the origin.

That does not mean that the origin can access arbitrary data on the target at arbitrary times. First of all,
one-sided communication in MPI is limited to accessing only a specifically declared memory area on the
target: the target declares an area of user-space memory that is accessible to other processes. This is known
as a window . Windows limit how origin processes can access the target’s memory: you can only ‘get’ data
from a window or ‘put’ it into a window; all the other memory is not reachable from other processes.

The alternative to having windows is to use distributed shared memory or virtual shared memory: memory
is distributed but acts as if it shared. The so-called Partitioned Global Address Space (PGAS) languages
such as Unified Parallel C (UPC) use this model. The MPI RMA model makes it possible to lock a window
which makes programming slightly more cumbersome, but the implementation more efficient.

Within one-sided communication, MPI has two modes: active RMA and passive RMA. In active RMA , or
active target synchronization , the target sets boundaries on the time period (the ‘epoch’) during which its
window can be accessed. The main advantage of this mode is that the origin program can perform many
small transfers, which are aggregated behind the scenes. Active RMA acts much like asynchronous transfer
with a concluding Waitall.

In passive RMA , or passive target synchronization , the target process puts no limitation on when its window
can be accessed. (PGAS languages such as UPC are based on this model: data is simply read or written at
will.) While intuitively it is attractive to be able to write to and read from a target at arbitrary time, there
are problems. For instance, it requires a remote agent on the target, which may interfere with execution of
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the main thread, or conversely it may not be activated at the optimal time. Passive RMA is also very hard
to debug and can lead to strange deadlocks.

8.1 Windows
The reference for the commands introduced here can be found in section ??.

In one-sided communication, each processor can make an area of memory available, called a window. This
has the following characteristics:

• The window is defined on a communicator, so the create call is collective.
• The window size can be set individually on each process. A zero size is allowed, but since

window creation is collective, it is not possible to skip the create call.

Figure 8.1: Collective definition of a window for one-sided data access

defined with respect to a communicator: each process specifies a memory area. Routine for creating and
releasing windows are collective, so each process has to call them; see figure 8.1.

MPI_Info info;
MPI_Win window;
MPI_Win_create( /* memory area */, info, comm, &window );
MPI_Win_free( &window );

(For the info parameter you can often use MPI_INFO_NULL.) While the creation of a window is col-
lective, each processor can specify its own window size, including zero, and even the type of the elements
in it.

C syntax for MPI_Win_create

C:
int MPI_Win_create

(void *base, MPI_Aint size, int disp_unit,
MPI_Info info, MPI_Comm comm, MPI_Win *win)

Frotran:
MPI_Win_create(base, size, disp_unit, info, comm, win, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base
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INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size
INTEGER, INTENT(IN) :: disp_unit
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Win), INTENT(OUT) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Win.Create

(memory, int disp_unit=1,
Info info=INFO_NULL, Intracomm comm=COMM_SELF)

How to read routine prototypes: 1.5.4.

The data array must not be PARAMETER or static const.

The size parameter is measured in bytes. In C this is easily done with the sizeof operator; for doing this
calculation in Fortran, see section 10.2.2.3.

8.1.1 Window memory

MPI Windows are strange objects. You can create them from user memory, that is, from arrays that are
normally declared in your program, or you can use memory allocated by MPI. In that case, the MPI specifi-
cation allows that the memory of a window can be separate from the regular program memory. The routine
MPI_Alloc_mem can return a pointer to such priviliged memory.

\begin{verbatim}
int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)
\end{verbatim}

How to read routine prototypes: 1.5.4.

8.1.2 Window information

The MPI_Info parameter can be used to pass implementation-dependent information:

MPI_Info info ;
int error ;
error = MPI_Info_create ( &info ) ;
error = MPI_Info_set ( info , "no_locks" , "true" ) ;
/* Use the info object*/
error = MPI_Info_free ( &info ) ;

MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag),
MPI_Win_get_attr(win, MPI_WIN_SIZE, &size, &flag),
MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag),
MPI_Win_get_attr(win, MPI_WIN_CREATE_FLAVOR, &create_kind, &flag), and
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MPI_Win_get_attr(win, MPI_WIN_MODEL, &memory_model, &flag) will return in base a pointer to the start of the window win, and will return in size, disp_unit, create_kind, and memory_model pointers to the size, displacement unit of the window, the kind of routine used to create the window, and the memory model, respectively.

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)
MPI_Win_get_group(win, group, ierror)
TYPE(MPI_Win), INTENT(IN) :: win
TYPE(MPI_Group), INTENT(OUT) :: group
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

int MPI_Win_set_info(MPI_Win win, MPI_Info info)
MPI_Win_set_info(win, info, ierror)
TYPE(MPI_Win), INTENT(IN) :: win
TYPE(MPI_Info), INTENT(IN) :: info
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

int MPI_Win_get_info(MPI_Win win, MPI_Info *info_used)
MPI_Win_get_info(win, info_used, ierror)
TYPE(MPI_Win), INTENT(IN) :: win
TYPE(MPI_Info), INTENT(OUT) :: info_used
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

8.2 Active target synchronization: epochs
The reference for the commands introduced here can be found in section ??.

There are two mechanisms for active target synchronization , that is, one-sided communications where both
sides are involved to the extent that they declare the communication epoch. In this section we look at the
first mechanism, which is to use a fence operation:

MPI_Win_fence (int assert, MPI_Win win)

This operation is collective on the communicator of the window. It is comparable to MPI_Wait calls for
non-blocking communication.

The use of fences is somewhat complicated. The interval between two fences is known as an epoch . You
can give various hints to the system about this epoch versus the ones before and after through the assert
parameter.

MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);
MPI_Get( /* operands */, win);
MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

In between the two fences the window is exposed, and while it is you should not access it locally. If you
absolutely need to access it locally, you can use an RMA operation for that. Also, there can be only one
remote process that does a put; multiple accumulate accesses are allowed.
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Fences are, together with other window calls, collective operations. That means they imply some amount
of synchronization between processes. Consider:

MPI_Win_fence( ... win ... ); // start an epoch
if (mytid==0) // do lots of work
else // do almost nothing
MPI_Win_fence( ... win ... ); // end the epoch

and assume that all processes execute the first fence more or less at the same time. The zero process does
work before it can do the second fence call, but all other processes can call it immediately. However, they
can not finish that second fence call until all one-sided communication is finished, which means they wait
for the zero process.

Figure 8.2: A trace of a one-sided communication epoch where process zero only originates a one-sided
transfer

// putfence.c
MPI_Win the_window;
MPI_Win_create(&window_data,2*sizeof(int),sizeof(int),
MPI_INFO_NULL,comm,&the_window);
MPI_Win_fence(0,the_window);
if (mytid==0) {

MPI_Put( /* data on origin: */ &my_number, 1,MPI_INT,
/* data on target: */ other,1, 1,MPI_INT,
the_window);

}
MPI_Win_fence(0,the_window);
MPI_Win_free(&the_window);
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As a further restriction, you can not mix Get with Put or Accumulate calls in a single epoch. Hence,
we can characterize an epoch as an access epoch on the origin, and as an exposure epoch on the target.

Assertions are an integer parameter: you can add or logical-or values. The value zero is always correct. For
further information, see section 8.3.3.

8.3 Put, get, accumulate

Window areas are accessible to other processes in the communicator by specifying the process rank and an
offset from the base of the window.

The MPI_Put routine is used to put data in the window of a target process
C:
int MPI_Put(

const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,
MPI_Win win)

Semantics:
IN origin_addr: initial address of origin buffer (choice)
IN origin_count: number of entries in origin buffer (non-negative integer)
IN origin_datatype: datatype of each entry in origin buffer (handle)
IN target_rank: rank of target (non-negative integer)
IN target_disp: displacement from start of window to target buffer (non-negative integer)
IN target_count: number of entries in target buffer (non-negative integer)
IN target_datatype: datatype of each entry in target buffer (handle)
IN win: window object used for communication (handle)

Fortran:
MPI_Put(origin_addr, origin_count, origin_datatype,

target_rank, target_disp, target_count, target_datatype, win, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
INTEGER, INTENT(IN) :: origin_count, target_rank, target_count
TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:

win.Put(self, origin, int target_rank, target=None)

How to read routine prototypes: 1.5.4.

The data is written in the buffer of the target window, using the window parameters that were specified on
the target. Specifically, data is written starting at

window base + target disp× disp unit.
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Here is a single put operation. Note that the window create and window fence calls are collective, so they
have to be performed on all processors of the communicator that was used in the create call.

// putfence.c
MPI_Win the_window;
MPI_Win_create(&window_data,2*sizeof(int),sizeof(int),
MPI_INFO_NULL,comm,&the_window);
MPI_Win_fence(0,the_window);
if (mytid==0) {

MPI_Put( /* data on origin: */ &my_number, 1,MPI_INT,
/* data on target: */ other,1, 1,MPI_INT,
the_window);

}
MPI_Win_fence(0,the_window);
MPI_Win_free(&the_window);

Exercise 8.1. Write code where process 0 randomly writes in the window on 1 or 2.
// randomput_skl.c
MPI_Win_create(&window_data,sizeof(int),sizeof(int),

MPI_INFO_NULL,comm,&the_window);

for (int c=0; c<10; c++) {
float randomfraction = (rand() / (double)RAND_MAX);
if (randomfraction>.5)

other = 2;
else other = 1;
window_data = 0;
your_code_goes_here.........
my_sum += window_data;

}

if (mytid>0 && mytid<3)
printf("Sum on %d: %d\n",mytid,my_sum);

if (mytid==0) printf("(sum should be 10)\n");

The MPI_Get call is very similar.

int MPI_Get(void *origin_addr, int origin_count, MPI_Datatype
origin_datatype, int target_rank, MPI_Aint target_disp,
int target_count, MPI_Datatype target_datatype, MPI_Win
win)

A third one-sided routine is MPI_Accumulate which does a reduction operation on the results that are
being put:
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MPI_Accumulate (
void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
int target_rank,
MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,
MPI_Op op,MPI_Win window)

Exercise 8.2. Implement an ‘all-gather’ operation using one-sided communication: each
processor stores a single number, and you want each processor to build up an array
that contains the values from all processors. Note that you do not need a special
case for a processor collecting its own value: doing ‘communication’ between a
processor and itself is perfectly legal.

Accumulate is a reduction with remote result. As with MPI_Reduce, the order in which the operands are
accumulated is undefined. The same predefined operators are available, but no user-defined ones. There is
one extra operator: MPI_REPLACE, this has the effect that only the last result to arrive is retained.

8.3.1 Put vs Get

while(!converged(A)){
update(A);
MPI_Win_fence(MPI_MODE_NOPRECEDE, win);
for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],
todisp[i], 1, totype[i], win);

MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);
}

while(!converged(A)){
update_boundary(A);
MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);
for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],
fromdisp[i], 1, fromtype[i], win);

update_core(A);
MPI_Win_fence(MPI_MODE_NOSUCCEED, win);
}

8.3.2 Request-based operations

Analogous to MPI_Isend there are request based one-sided operations:
C:
int MPI_Rput(

const void *origin_addr, int origin_count, MPI_Datatype origin_datatype,
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int target_rank, MPI_Aint target_disp, int target_count, MPI_Datatype target_datatype,
MPI_Win win, MPI_Request *request)

Semantics:
IN origin_addr: initial address of origin buffer (choice)
IN origin_count: number of entries in origin buffer (non-negative integer)
IN origin_datatype: datatype of each entry in origin buffer (handle)
IN target_rank: rank of target (non-negative integer)
IN target_disp: displacement from start of window to target buffer (non-negative integer)
IN target_count: number of entries in target buffer (non-negative integer)
IN target_datatype: datatype of each entry in target buffer (handle)
IN win: window object used for communication (handle)
OUT request: RMA request (handle)

How to read routine prototypes: 1.5.4.

and similarly MPI_Rget and MPI_Raccumulate.

These only apply to passive target synchronization. Any MPI_Win_flush... call also terminates these
transfers.

8.3.3 Assertions

The MPI_Win_fence call, as well MPI_Win_start and such, take an argument through which asser-
tions can be passed about the activity before, after, and during the epoch. The value zero is always allowed,
by you can make your program more efficient by specifying one or more of the following, combined by
bitwise OR in C/C++ or IOR in Fortran.

MPI WIN START Supports the option:
MPI MODE NOCHECK the matching calls to MPI_WIN_POST have already completed on all

target processes when the call to MPI_WIN_START is made. The nocheck option can
be specified in a start call if and only if it is specified in each matching post call. This is
similar to the optimization of “ready-send” that may save a handshake when the handshake
is implicit in the code. (However, ready-send is matched by a regular receive, whereas both
start and post must specify the nocheck option.)

MPI WIN POST supports the following options:
MPI MODE NOCHECK the matching calls to MPI_WIN_START have not yet occurred on any

origin processes when the call to MPI_WIN_POST is made. The nocheck option can be
specified by a post call if and only if it is specified by each matching start call.

MPI MODE NOSTORE the local window was not updated by local stores (or local get or receive
calls) since last synchronization. This may avoid the need for cache synchronization at the
post call.

MPI MODE NOPUT the local window will not be updated by put or accumulate calls after the
post call, until the ensuing (wait) synchronization. This may avoid the need for cache
synchronization at the wait call.

MPI WIN FENCE supports the following options:
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MPI MODE NOSTORE the local window was not updated by local stores (or local get or receive
calls) since last synchronization.

MPI MODE NOPUT the local window will not be updated by put or accumulate calls after the
fence call, until the ensuing (fence) synchronization.

MPI MODE NOPRECEDE the fence does not complete any sequence of locally issued RMA
calls. If this assertion is given by any process in the window group, then it must be given
by all processes in the group.

MPI MODE NOSUCCEED the fence does not start any sequence of locally issued RMA calls.
If the assertion is given by any process in the window group, then it must be given by all
processes in the group.

MPI WIN LOCK supports the following option:
MPI MODE NOCHECK no other process holds, or will attempt to acquire a conflicting lock,

while the caller holds the window lock. This is useful when mutual exclusion is achieved
by other means, but the coherence operations that may be attached to the lock and unlock
calls are still required.

As an example, let’s look at halo update . The array A is
updated using the local values and the halo that comes
from bordering processors, either through Put or Get
operations.

In a first version we separate computation and com-
munication. Each iteration has two fences. Between
the two fences in the loop body we do the MPI_Put
operation; between the second and and first one of
the next iteration there is only computation, so we
add the NOPRECEDE and NOSUCCEED assertions. The
NOSTORE assertion states that the local window was
not updated: the Put operation only works on remote
windows.

for ( .... ) {
update(A);
MPI_Win_fence(MPI_MODE_NOPRECEDE, win);
for(i=0; i < toneighbors; i++)

MPI_Put( ... );
MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);
}

Next, we split the update in the core part, which can be done purely from local values, and the boundary,
which needs local and halo values. Update of the core can overlap the communication of the halo.

for ( .... ) {
update_boundary(A);
MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);
for(i=0; i < fromneighbors; i++)
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MPI_Get( ... );
update_core(A);
MPI_Win_fence(MPI_MODE_NOSUCCEED, win);
}

The NOPRECEDE and NOSUCCEED assertions still hold, but the Get operation implies that instead of
NOSTORE in the second fence, we use NOPUT in the first.

8.3.4 More active target synchronization

This reference section gives the syntax for routines introduced in section 8.4.

The ‘fence’ mechanism (section ??) uses a global synchronization on the communicator of the window,
which may lead to performance inefficiencies if processors are not in step which each other. There is a
mechanism that is more fine-grained, by using synchronization only on a processor group . This takes four
different calls, two for starting and two for ending the epoch, separately for target and origin.

Figure 8.3: Window locking calls in fine-grained active target synchronization

You start and complete an exposure epoch with :

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)
int MPI_Win_wait(MPI_Win win)

In other words, this turns your window into the target for a remote access.

You start and complete an access epoch with :

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)
int MPI_Win_complete(MPI_Win win)
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In other words, these calls border the access to a remote window, with the current processor being the origin
of the remote access.

In the following snippet a single processor puts data on one other. Note that they both have their own
definition of the group, and that the receiving process only does the post and wait calls.

// postwaitwin.c
if (mytid==origin) {
MPI_Group_incl(all_group,1,&target,&two_group);
// access
MPI_Win_start(two_group,0,the_window);
MPI_Put( /* data on origin: */ &my_number, 1,MPI_INT,

/* data on target: */ target,0, 1,MPI_INT,
the_window);

MPI_Win_complete(the_window);
}

if (mytid==target) {
MPI_Group_incl(all_group,1,&origin,&two_group);
// exposure
MPI_Win_post(two_group,0,the_window);
MPI_Win_wait(the_window);

}

8.3.5 Passive target synchronization

This reference section gives the syntax for routines introduced in section 8.5.
MPI_Win_lock (int locktype, int rank, int assert, MPI_Win win)
MPI_Win_unlock (int rank, MPI_Win win)

The call atomically retrieves an item from the window indicated, and replaces the item on the target by
doing an accumulate on it with the data on the origin.

Semantics:

MPI_FETCH_AND_OP(origin_addr, result_addr, datatype, target_rank,
target_disp, op, win)

IN origin_addr: initial address of buffer (choice)
OUT result_addr: initial address of result buffer (choice)
IN datatype: datatype of the entry in origin, result, and target buffers
(handle)
IN target_rank: rank of target (non-negative integer)
IN target_disp: displacement from start of window to beginning of target
buffer (non-negative integer)
IN op: reduce operation (handle)
IN win: window object (handle)
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C:
int MPI_Fetch_and_op

(const void *origin_addr, void *result_addr,
MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,
MPI_Op op, MPI_Win win)

Fortran:
MPI_Fetch_and_op(origin_addr, result_addr, datatype, target_rank,

target_disp, op, win, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(IN) :: target_rank
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp
TYPE(MPI_Op), INTENT(IN) :: op
TYPE(MPI_Win), INTENT(IN) :: win
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

8.4 More active target synchronization
The reference for the commands introduced here can be found in section 8.3.4.

There is a more fine-grained ways of doing active target synchronization . While fences corresponded
to a global synchronization of one-sided calls, the MPI_Win_start, MPI_Win_complete, MPI_
Win_post, Win_wait routines are suitable, and possibly more efficient, if only a small number of pro-
cessor pairs is involved. Which routines you use depends on whether the processor is an origin or target .

If the current process is going to have the data in its window accessed, you define an exposure epoch by:

MPI_Win_post( /* group of origin processes */ )
MPI_Win_wait()

This turns the current processor into a target for access operations issued by a different process.

If the current process is going to be issuing one-sided operations, you define an access epoch by:

MPI_Win_start( /* group of target processes */ )
// access operations
MPI_Win_complete()

This turns the current process into the origin of a number of one-sided access operations.

Both pairs of operations declare a group of processors; see section 6.4.2 for how to get such a group from a
communicator. On an origin processor you would specify a group that includes the targets you will interact
with, on a target processor you specify a group that includes the possible origins.
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8.5 Passive target synchronization
The reference for the commands introduced here can be found in section 8.3.5.

In passive target synchronization only the origin is actively involved: the target makes no calls whatsoever.
This means that the origin process remotely locks the window on the target.

During an access epoch, a process can initiate and finish a one-sided transfer.
If (rank == 0) {
MPI_Win_lock (MPI_LOCK_EXCLUSIVE, 1, 0, win);
MPI_Put (outbuf, n, MPI_INT, 1, 0, n, MPI_INT, win);
MPI_Win_unlock (1, win);

}

The two lock types are:
• MPI_LOCK_SHARED which should be used for Get calls: since multiple processors are al-

lowed to read from a window in the same epoch, the lock can be shared.
• MPI_LOCK_EXCLUSIVE which should be used for Put and Accumulate calls: since only

one processor is allowed to write to a window during one epoch, the lock should be exclusive.
These routines make MPI behave like a shared memory system; the instructions between locking and un-
locking the window effectively become atomic operations .

The above mechanism is of limited use. Suppose processor zero has a data structure work_table with
items that need to be processed. A counter first_work keeps track of the lowest numbered item that
still needs processing. You can imagine the following master-worker scenario:

• Each process connects to the master,
• inspects the first_work variable,
• retrieves the corresponding work item, and
• increments the first_work variable.

It is important here to avoid a race condition (see section HPSC-2.6.1.5) that would result from a second
process reading the first_work variable before the first process could have updated it. Therefore, the
reading and updating needs to be an atomic operation .

Unfortunately, you can not have a put and get call in the same access epoch. For this reason, MPI version 3
has added certain atomic operations, such as MPI_Fetch_and_op.

8.6 Details

Sometimes an architecture has memory that is shared between processes, or that otherwise is fast for one-
sided communication. To put a window in such memory, it can be placed in memory that is especially
allocated:

MPI_Alloc_mem() and MPI_Free_mem()

These calls reduce to malloc and free if there is no special memory area; SGI is an example where such
memory does exist.
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8.7 Implementation

You may wonder how one-sided communication is realized1. Can a processor somehow get at another
processor’s data? Unfortunately, no.

Active target synchronization is implemented in terms of two-sided communication. Imagine that the first
fence operation does nothing, unless it concludes prior one-sided operations. The Put and Get calls do
nothing involving communication, except for marking with what processors they exchange data. The con-
cluding fence is where everything happens: first a global operation determines which targets need to issue
send or receive calls, then the actual sends and receive are executed.

Exercise 8.3. Assume that only Get operations are performed during an epoch. Sketch how
these are translated to send/receive pairs. The problem here is how the senders find
out that they need to send. Show that you can solve this with an
MPI_Scatter_reduce call.

The previous paragraph noted that a collective operation was necessary to determine the two-sided traffic.
Since collective operations induce some amount of synchronization, you may want to limit this.

Exercise 8.4. Argue that the mechanism with window post/wait/start/complete operations
still needs a collective, but that this is less burdensome.

Passive target synchronization needs another mechanism entirely. Here the target process needs to have a
background task (process, thread, daemon,. . . ) running that listens for requests to lock the window. This
can potentially be expensive.

1. For more on this subject, see [7].
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Chapter 9

MPI topics

9.1 Synchronization

MPI programs conform to the SPMD model, and this means that events in one process can be unrelated in
time to events in another process. Any synchronization that happens is induced by communication and other
MPI mechanisms. By synchronization here we mean any sort of temporal ordering of events in different
processes.

You have already seen some mechanisms.
1. In blocking communication, the receive call does not return until the send call has completed.
2. In non-blocking communication, the wait on a receive request will not return until the send has

been completed.
3. In one-sided communication, the fence mechanism impose a certain ordering on events.

Another synchronization mechanism is induced by the barrier mechanism. However, while an MPI_
Barrier call guarantees that all processes have reached a certain location in their source, this does not
necessarily imply anything about message traffic. Consider this example

Proc 0 Proc 1 Proc 2
Isend to 1 Irecv from any source
Barrier Barrier Barrier
Wait for send request wait for recv request Isend to 1

(another wildcard recv) wait for send request
The unexpected behaviour here is that the (first) receive on process 1 can be matched with the send on
process 2: the barrier on process 1 only guarantees that the receive instruction was performed, not the
actual transfer. For that you need the MPI_Wait call, which is after the barrier.

9.2 Error handling
The reference for the commands introduced here can be found in section 10.3.

Errors in normal programs can be tricky to deal with; errors in parallel programs can be even harder. This is
because in addition to everything that can go wrong with a single executable (floating point errors, memory
violation) you now get errors that come from faulty interaction between multiple executables.

A few examples of what can go wrong:
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• MPI errors: an MPI routine can abort for various reasons, such as receiving much more data than
its buffer can accomodate. Such errors, as well as the more common type mentioned above,
typically cause your whole execution to abort. That is, if one incarnation of your executable
aborts, the MPI runtime will kill all others.
• Deadlocks and other hanging executions: there are various scenarios where your processes in-

dividually do not abort, but are all waiting for each other. This can happen if two processes are
both waiting for a message from each other, and this can be helped by using non-blocking calls.
In another scenario, through an error in program logic, one process will be waiting for more
messages (including non-blocking ones) than are sent to it.

The MPI library has a general mechanism for dealing with errors that it detects. The default behaviour,
where the full run is aborted, is equivalent to your code having the following call 1:

MPI_Comm_set_errhandler(MPI_COMM_WORLD,MPI_ERRORS_ARE_FATAL);

Another simple possibility is to specify

MPI_Comm_set_errhandler(MPI_COMM_WORLD,MPI_ERRORS_RETURN);

which gives you the opportunity to write code that handles the error return value.

In most cases where an MPI error occurs a complete abort is the sensible thing, since there are few ways to
recover. The second possibility can for instance be used to print out debugging information:

ierr = MPI_Something();
if (ierr!=0) {

// print out information about what your programming is doing
MPI_Abort();

}

For instance,

Fatal error in MPI_Waitall:
See the MPI_ERROR field in MPI_Status for the error code

You could code this as

MPI_Comm_set_errhandler(MPI_COMM_WORLD,MPI_ERRORS_RETURN);
ierr = MPI_Waitall(2*ntids-2,requests,status);
if (ierr!=0) {

char errtxt[200];
for (int i=0; i<2*ntids-2; i++) {

int err = status[i].MPI_ERROR; int len=200;
MPI_Error_string(err,errtxt,&len);
printf("Waitall error: %d %s\n",err,errtxt);

}

1. The routine MPI Errhandler set is deprecated.
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MPI_Abort(MPI_COMM_WORLD,0);
}

One cases where errors can be handled is that of MPI file I/OMPI!I/O : if an output file has the wrong
permissions, code can possibly progress without writing data, or writing to a temporary file.

9.3 Fortran issues

The reference for the commands introduced here can be found in section 10.2.2.

MPI is typically written in C, what if you program Fortran?

Assumed shape arrays can be a problem: they need to be copied. That’s a problem with Isend.

• Fortran routines have the same prototype as C routines except for the addition of an integer error
parameter.

• The call for MPI_Init in Fortran does not have the commandline arguments; they need
to be handled separately.

• The routine MPI_Sizeof is only available in Fortran, it provides the functionality of the
C/C++ operator sizeof.

9.4 Fault tolerance

Processors are not completely reliable, so it may happen that one ‘breaks’: for software or hardware reasons
it becomes unresponsive. For an MPI program this means that it becomes impossible to send data to it, and
any collective operation involving it will hang. Can we deal with this case? Yes, but it involves some
programming.

First of all, one of the possible MPI error return codes (section ??) is MPI_ERR_COMM, which can be
returned if a processor in the communicator is unavailable. You may want to catch this error, and add a
‘replacement processor’ to the program. For this, the MPI_Comm_spawn can be used (see 7.1 for details).
But this requires a change of program design: the communicator containing the new process(es) is not part
of the old MPI_COMM_WORLD, so it is better to set up your code as a collection of inter-communicators to
begin with.

9.5 Context information

The reference for the commands introduced here can be found in section ??.

The MPI version is available through two parameters MPI_VERSION and MPI_SUBVERSION or the
function MPI_Get_version.
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9.6 Timing
The reference for the commands introduced here can be found in section 10.5.

Timing of parallel programs is tricky. On each node you can use a timer, typically based on some Operating
System (OS) call. MPI supplies its own routine MPI_Wtime which gives wall clock time . Normally you
don’t worry about the starting point for this timer: you call it before and after an event and subtract the
values.

t = MPI_Wtime();
// something happens here
t = MPI_Wtime()-t;

If you execute this on a single processor you get fairly reliable timings, except that you would need to
subtract the overhead for the timer. This is the usual way to measure timer overhead:

t = MPI_Wtime();
// absolutely nothing here
t = MPI_Wtime()-t;

9.6.1 Global timing

However, if you try to time a parallel application you will most likely get different times for each process,
so you would have to take the average or maximum. Another solution is to synchronize the processors by
using a barrier :

MPI_Barrier(comm)
t = MPI_Wtime();
// something happens here
MPI_Barrier(comm)
t = MPI_Wtime()-t;

Exercise 9.1. This scheme also has some overhead associated with it. How would you
measure that?

9.6.2 Local timing

Now suppose you want to measure the time for a single send. It is not possible to start a clock on the sender
and do the second measurement on the receiver, because the two clocks need not be synchronized. Usually
a ping-pong is done:

if ( proc_source ) {
MPI_Send( /* to target */ );
MPI_Recv( /* from target */ );

else if ( proc_target ) {
MPI_Recv( /* from source */ );
MPI_Send( /* to source */ );
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Figure 9.1: A stack trace, showing the PMPI calls.

}

Exercise 9.2. Why is it generally not a good idea to use processes 0 and 1 for the source and
target processor? Can you come up with a better guess?

No matter what sort of timing you are doing, it is good to know the accuracy of your timer. The routine
MPI_Wtick gives the smallest possible timer increment. If you find that your timing result is too close to
this ‘tick’, you need to find a better timer (for CPU measurements there are cycle-accurate timers), or you
need to increase your running time, for instance by increasing the amount of data.

9.7 Profiling

The reference for the commands introduced here can be found in section ??.

MPI allows you to write your own profiling interface. To make this possible, every routine MPI_Something
calls a routine PMPI_Something that does the actual work. You can now write your MPI_... routine
which calls PMPI_..., and inserting your own profiling calls. As you can see in figure 9.1, normally only
the PMPI routines show up in the stack trace.

Does the standard mandate this?

9.8 Determinism

MPI processes are only synchronized to a certain extent, so you may wonder what guarantees there are that
running a code twice will give the same result. You need to consider two cases: first of all, if the two runs
are on different numbers of processors there are already numerical problems; see HPSC-3.3.7.

Victor Eijkhout 135



9. MPI topics

Let us then limit ourselves to two runs on the same set of processors. In that case, MPI is deterministic
as long as you do not use wildcards such as MPI_ANY_SOURCE. Formally, MPI messages are ‘non-
overtaking’: two messages between the same sender-receiver pair will arrive in sequence. Actually, they
may not arrive in sequence: they are matched in sequence in the user program. If the second message is
much smaller than the first, it may actually arrive earlier in the lower transport layer.

9.9 Progress

Non-blocking communication implies that messages make progress while computation is going on. How-
ever, communication of this sort can typically not be off-loaded to the network card, so it has to be done by
a process. This requires a separate thread of execution, with obvious performance problems. Therefore, in
practice overlap may not actually happen, and for the message to make progress it is necessary for the MPI
library to become active occasionally. For instance, people have inserted dummy MPI_Probe calls.

A similar problem arises with passive target synchronization: it is possible that the origin process may hang
until the target process makes an MPI call.

9.10 Subtleties with processor synchronization

Blocking communication involves a complicated dialog between the two processors involved. Processor
one says ‘I have this much data to send; do you have space for that?’, to which processor two replies ‘yes,
I do; go ahead and send’, upon which processor one does the actual send. This back-and-forth (technically
known as a handshake) takes a certain amount of communication overhead. For this reason, network hard-
ware will sometimes forgo the handshake for small messages, and just send them regardless, knowing that
the other process has a small buffer for such occasions.

One strange side-effect of this strategy is that a code that should deadlock according to the MPI specifi-
cation does not do so. In effect, you may be shielded from you own programming mistake! Of course, if
you then run a larger problem, and the small message becomes larger than the threshold, the deadlock will
suddenly occur. So you find yourself in the situation that a bug only manifests itself on large problems,
which are usually harder to debug. In this case, replacing every MPI_Send with a MPI_Ssend will force
the handshake, even for small messages.

Conversely, you may sometimes wish to avoid the handshake on large messages. MPI as a solution for this:
the MPI_Rsend (‘ready send’) routine sends its data immediately, but it needs the receiver to be ready for
this. How can you guarantee that the receiving process is ready? You could for instance do the following
(this uses non-blocking routines, which are explained below in section 4.3.2):

if ( receiving ) {
MPI_Irecv() // post non-blocking receive
MPI_Barrier() // synchronize

else if ( sending ) {
MPI_Barrier() // synchronize
MPI_Rsend() // send data fast
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When the barrier is reached, the receive has been posted, so it is safe to do a ready send. However, global
barriers are not a good idea. Instead you would just synchronize the two processes involved.

Exercise 9.3. Give pseudo-code for a scheme where you synchronize the two processes
through the exchange of a blocking zero-size message.

9.11 The origin of one-sided communication in ShMem

The Cray T3E had a library called shmem which offered a type of shared memory. Rather than having a
true global address space it worked by supporting variables that were guaranteed to be identical between
processors, and indeed, were guaranteed to occupy the same location in memory. Variables could be de-
clared to be shared a ‘symmetric’ pragma or directive; their values could be retrieved or set by shmem_get
and shmem_put calls.

9.12 Literature

Online resources:

• MPI 1 Complete reference:
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

• Official MPI documents:
http://www.mpi-forum.org/docs/

• List of all MPI routines:
http://www.mcs.anl.gov/research/projects/mpi/www/www3/

Tutorial books on MPI:

• Using MPI [3] by some of the original authors.
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Chapter 10

MPI Reference

This section gives reference information and illustrative examples of the use of MPI. While the code snip-
pets given here should be enough, full programs can be found in the repository for this book https:
//bitbucket.org/VictorEijkhout/parallel-computing-book.

10.1 Communicators

10.1.1 Communicator duplication

This reference section gives the syntax for routines introduced in section 6.3.

In section 9.8 it was explained that MPI messages are non-overtaking. This may lead to confusing situations,
witness the following snippet:

This models a main program that does a simple message exchange, and it makes two calls to library routines.
Unbeknown to the user, the library also issues send and receive calls, and they turn out to interfere:

// commdup_wrong.cxx
class library {
private:

MPI_Comm comm;
int mytid,ntids,other;
MPI_Request *request;

public:
library(MPI_Comm incomm) {

comm = incomm;
MPI_Comm_rank(comm,&mytid);
other = 1-mytid;
request = new MPI_Request[2];

};
int communication_start();
int communication_end();

};
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Here

• The main program does a send,
• the library call function_start does a send and a receive; because the receive can match

either send, it is paired with the first one;
• the main program does a receive, which will be paired with the send of the library call;
• both the main program and the library do a wait call, and in both cases all requests are succes-

fully fulfilled, just not the way you intended.
The solution is to give the library a separate communicator with MPI_Comm_dup.

Semantics:
MPI_COMM_DUP(comm, newcomm)
IN comm: communicator (handle)
OUT newcomm: copy of comm (handle)

C:
int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

F:
MPI_Comm_dup(comm, newcomm, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Comm), INTENT(OUT) :: newcomm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Py:
newcomm = oldcomm.Dup(Info info=None)

How to read routine prototypes: 1.5.4.

Newly created communicators should be released again with MPI_Comm_free.

// commdup_right.F90
class library {
private:
MPI_Comm comm;
int mytid,ntids,other;
MPI_Request *request;

public:
library(MPI_Comm incomm) {

MPI_Comm_dup(incomm,&comm);
MPI_Comm_rank(comm,&mytid);
other = 1-mytid;
request = new MPI_Request[2];

};
˜library() {

MPI_Comm_free(&comm);
}
int communication_start();
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int communication_end();
};

10.1.2 Splitting communicators

This reference section gives the syntax for routines introduced in section 6.4.
The command MPI_Comm_split takes a communicator, and divides it into a number of disjoint com-
municators. It does this by assigning processes to the same subcommunicator if they have the same user-
specified ‘colour’ value.

Semantics:
MPI_COMM_SPLIT(comm, color, key, newcomm)
IN comm: communicator (handle)
IN color: control of subset assignment (integer)
IN key: control of rank assigment (integer)
OUT newcomm: new communicator (handle)

C:
int MPI_Comm_split(

MPI_Comm comm, int color, int key,
MPI_Comm *newcomm)

F:
MPI_Comm_split(comm, color, key, newcomm, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(IN) :: color, key
TYPE(MPI_Comm), INTENT(OUT) :: newcomm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror
MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)
INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

Py:
newcomm = comm.Split(int color=0, int key=0)

How to read routine prototypes: 1.5.4.

The ranking of processes in the new communicator is determined by a ‘key’ value. Most of the time, there
is no reason to use a relative ranking that is different from the global ranking, so the MPI_Comm_rank
value of the global communicator is a good choice.

// mvp2d.cxx
row_number = ntids % ntids_i;
col_number = ntids / ntids_j;
MPI_Comm_split(global_comm,row_number,mytid,&row_comm);
MPI_Comm_split(global_comm,col_number,mytid,&col_comm);

There are some predefined colours, named ‘types’, to use in communicator splitting. The routine MPI_
Comm_split_type looks very much like MPI_Comm_split:
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C:
int MPI_Comm_split_type(

MPI_Comm comm, int split_type, int key,
MPI_Info info, MPI_Comm *newcomm)

Fortran:
MPI_Comm_split_type(comm, split_type, key, info, newcomm, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(IN) :: split_type, key
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Comm), INTENT(OUT) :: newcomm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Comm.Split_type(

self, int split_type, int key=0, Info info=INFO_NULL)

How to read routine prototypes: 1.5.4.

but the split_type parameters has to be from the following (short) list:

• MPI_COMM_TYPE_SHARED: split the communicator into subcommunicators of processes shar-
ing a memory area.

10.1.3 Process topologies

This reference section gives the syntax for routines introduced in section 6.6.

10.1.3.1 Cartesian grid topology

This reference section gives the syntax for routines introduced in section 6.6.1.

The cartesian topology is specified by giving MPI_Cart_create the sizes of the processor grid along
each axis, and whether the grid is periodic along that axis.

int MPI_Cart_create(
MPI_Comm comm_old, int ndims, int *dims, int *periods,
int reorder, MPI_Comm *comm_cart)

Each point in this new communicator has a coordinate and a rank. They can be queried with MPI_Cart_
coord and MPI_Cart_rank respectively.

int MPI_Cart_coords(
MPI_Comm comm, int rank, int maxdims,
int *coords);

int MPI_Cart_rank(
MPI_Comm comm, init *coords,
int *rank);
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Note that these routines can give the coordinates for any rank, not just for the current process.

// cart.c
MPI_Comm comm2d;
ndim = 2; periodic[0] = periodic[1] = 0;
dimensions[0] = idim; dimensions[1] = jdim;
MPI_Cart_create(comm,ndim,dimensions,periodic,1,&comm2d);
MPI_Cart_coords(comm2d,mytid,ndim,coord_2d);
MPI_Cart_rank(comm2d,coord_2d,&rank_2d);
printf("I am %d: (%d,%d); originally %d\n",rank_2d,coord_2d[0],coord_2d[1],mytid);

The reorder parameter to MPI_Cart_create indicates whether processes can have a rank in the new
communicator that is different from in the old one.

Strangely enough you can only shift in one direction, you can not specify a shift vector.

int MPI_Cart_shift(MPI_Comm comm, int direction, int displ, int *source,
int *dest)

If you specify a processor outside the grid the result is MPI_PROC_NULL.

10.2 Leftover topics

10.2.1 32-bit size issues

The size parameter in MPI routines is defined as an int, meaning that it is limited to 32-bit quantities.
There are ways around this, such as sending a number of MPI_Type_contiguous blocks that add up
to more than 231.

10.2.2 Fortran issues

This reference section gives the syntax for routines introduced in section 9.3.

10.2.2.1 Data types

The equivalent of MPI_Aint in Fortran is

integer(kind=MPI_ADDRESS_KIND) :: winsize

10.2.2.2 Type issues

Fortran90 is a strongly typed language, so it is not possible to pass argument by reference to their address,
as C/C++ do with the void* type for send and receive buffers. In Fortran this is solved by having separate
routines for each datatype, and providing an Interface block in the MPI module. If you manage to
request a version that does not exist, the compiler will display a message like
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There is no matching specific
subroutine for this generic subroutine call [MPI_Send]

10.2.2.3 Byte calculations

Fortran lacks a sizeof operator to query the sizes of datatypes. Since sometimes exact byte counts are
necessary, for instance in one-sided communication, Fortran can use the MPI_Sizeof routine, for in-
stance for MPI_Win_create:

call MPI_Sizeof(windowdata,window_element_size,ierr)
window_size = window_element_size*500
call MPI_Win_create( windowdata,window_size,window_element_size,... );

10.2.3 Python issues

10.2.3.1 Byte calculations

The MPI_Win_create routine needs a displacement in bytes. Here is a good way for finding the size of
numpy datatypes:

numpy.dtype(’i’).itemsize

10.2.3.2 Arrays of objects

Objects of type MPI.Status or MPI.Request often need to be created in an array, for instance when
looping through a number of Isend calls. In that case the following idiom may come in handy:

requests = [ None ] * nprocs
for p in range(nprocs):
requests[p] = comm.Irecv( ... )

10.2.4 Cancelling messages

In section ?? we showed a master-worker example where the master accepts in arbitrary order the messages
from the workers. Here we will show a slightly more complicated example, where only the result of the
first task to complete is needed. Thus, we issue an MPI_Recv with MPI_ANY_SOURCE as source. When
a result comes, we broadcast its source to all processes. All the other workers then use this information to
cancel their message with an MPI_Cancel operation.

// cancel.c
if (mytid==ntids-1) {

MPI_Status status;
ierr = MPI_Recv(dummy,0,MPI_INT, MPI_ANY_SOURCE,0,comm,

&status); CHK(ierr);
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first_tid = status.MPI_SOURCE;
ierr = MPI_Bcast(&first_tid,1,MPI_INT, ntids-1,comm); CHK(ierr);
printf("first msg came from %d\n",first_tid);

} else {
float randomfraction = (rand() / (double)RAND_MAX);
int randomwait = (int) ( ntids * randomfraction );
MPI_Request request;
printf("process %d waits for %e/%d=%d\n",
mytid,randomfraction,ntids,randomwait);
sleep(randomwait);
ierr = MPI_Isend(dummy,0,MPI_INT, ntids-1,0,comm,

&request); CHK(ierr);
ierr = MPI_Bcast(&first_tid,1,MPI_INT, ntids-1,comm

); CHK(ierr);
if (mytid!=first_tid) {

ierr = MPI_Cancel(&request); CHK(ierr);
}

}

10.2.5 Constants

MPI constants such as MPI_COMM_WORLD or MPI_INT are not necessarily statitally defined, such as
by a #define statement: the best you can say is that they have a value after MPI_Init or MPI_
Init_thread. That means you can not transfer a compiled MPI file between platforms, or even between
compilers on one platform. However, a working MPI source on one MPI implementation will also work on
another.

10.3 Error handling

This reference section gives the syntax for routines introduced in section 9.2.

MPI operators ( MPI_Op) do not return an error code. In case of an error they call MPI_Abort; if MPI_
ERRORS_RETURN is the error handler, errors may be silently ignore.

10.4 Context information

10.4.1 Processor name

You can query the hostname of a processor. This name need not be unique between different processor
ranks.
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C:
int MPI_Get_processor_name(char *name, int *resultlen)

Fortran:
MPI_Get_processor_name(name, resultlen, ierror)
CHARACTER(LEN=MPI_MAX_PROCESSOR_NAME), INTENT(OUT) :: name
INTEGER, INTENT(OUT) :: resultlen
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Get_processor_name()

How to read routine prototypes: 1.5.4.

Note that you have to pass in the character storage: the character array must be at least MPI_MAX_
PROCESSOR_NAME characters long. The actual length of the name is returned in the resultlen pa-
rameter.

In C and C++,

#define MPI_VERSION 2
#define MPI_SUBVERSION 2

in Fortran,

INTEGER MPI_VERSION, MPI_SUBVERSION
PARAMETER (MPI_VERSION = 2)
PARAMETER (MPI_SUBVERSION = 2)

For runtime determination,

MPI_GET_VERSION( version, subversion )
OUT version version number (integer)
OUT subversion subversion number (integer)

int MPI_Get_version(int *version, int *subversion)
MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)
INTEGER VERSION, SUBVERSION, IERROR

10.4.2 Attributes

int MPI_Attr_get(
MPI_Comm comm, int keyval, void *attribute_val, int *flag)

How to read routine prototypes: 1.5.4.

Attributes are:
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• MPI_UNIVERSE_SIZE: the total number of processes that can be created. This can be more
than the size of MPI_COMM_WORLD if the host list is larger than the number of initially started
processes. See section 7.1.
• MPI_APPNUM: if MPI is used in MPMD! (MPMD!) mode, or if MPI_Comm_spawn_multiple

is used, this attribute reports the how-manieth program we are in.

10.5 Timing

This reference section gives the syntax for routines introduced in section 9.6.

MPI has a wall clock timer: MPI_Wtime

C:
double MPI_Wtime(void);

Fortran:
DOUBLE PRECISION MPI_WTIME()

Python:
MPI.Wtime()

How to read routine prototypes: 1.5.4.

which gives the number of seconds from a certain point in the past. (Note the absence of the error parameter
in the fortran call.)

// pingpong.c
int src = 0,tgt = ntids/2;
double t, send=1.1,recv;
if (mytid==src) {

t = MPI_Wtime();
for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Send(&send,1,MPI_DOUBLE,tgt,0,comm);
MPI_Recv(&recv,1,MPI_DOUBLE,tgt,0,comm,MPI_STATUS_IGNORE);

}
t = MPI_Wtime()-t; t /= NEXPERIMENTS;
printf("Time for pingpong: %e\n",t);

} else if (mytid==tgt) {
for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Recv(&recv,1,MPI_DOUBLE,src,0,comm,MPI_STATUS_IGNORE);
MPI_Send(&recv,1,MPI_DOUBLE,src,0,comm);

}
}

The timer has a resolution of MPI_Wtick:
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C:
double MPI_Wtick(void);

Fortran:
DOUBLE PRECISION MPI_WTICK()

Python
MPI.Wtick()

How to read routine prototypes: 1.5.4.

Timing in parallel is a tricky issue. For instance, most clusters do not have a central clock, so you can not
relate start and stop times on one process to those on another. You can test for a global clock as follows :

int *v,flag;
MPI_Attr_get( comm, MPI_WTIME_IS_GLOBAL, &v, &flag );
if (mytid==0) printf(‘‘Time synchronized? %d->%d\n’’,flag,*v);

10.6 Multi-threading
This reference section gives the syntax for routines introduced in section ??.

Hybrid MPI/threaded codes need to replace MPI_Init by MPI_Init_thread:
C:
int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

Fortran:
MPI_Init_thread(required, provided, ierror)
INTEGER, INTENT(IN) :: required
INTEGER, INTENT(OUT) :: provided
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

With the required parameter the user requests a certain level of support, and MPI reports the actual
capabilities in the provided parameter.

The following constants are defined:

• MPI_THREAD_SINGLE: each MPI process can only have a single thread.
• MPI_THREAD_FUNNELED: an MPI process can be multithreaded, but all MPI calls need to be

done from a single thread.
• MPI_THREAD_SERIALIZED: a processes can sustain multiple threads that make MPI calls,

but these threads can not be simultaneous: they need to be for instance in an OpenMP critical
section .
• MPI_THREAD_MULTIPLE: processes can be fully generally multi-threaded.
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These values are monotonically increasing.

After the initialization call, you can query the support level with MPI_Query_thread:
C:
int MPI_Query_thread(int *provided)

Fortran:
MPI_Query_thread(provided, ierror)
INTEGER, INTENT(OUT) :: provided
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

In case more than one thread performs communication, the following routine can determine whether a
thread is the main thread:

C:
int MPI_Is_thread_main(int *flag)

Fortran:
MPI_Is_thread_main(flag, ierror)
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.
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MPI Examples

11.1 A

11.2 B

11.3 C

11.3.0.1 MPI_Cancel

MPI_Cancel

Cancelling a send operation:

// cancel.c
if (mytid==ntids-1) {
MPI_Status status;
ierr = MPI_Recv(dummy,0,MPI_INT, MPI_ANY_SOURCE,0,comm,

&status); CHK(ierr);
first_tid = status.MPI_SOURCE;
ierr = MPI_Bcast(&first_tid,1,MPI_INT, ntids-1,comm); CHK(ierr);
printf("first msg came from %d\n",first_tid);

} else {
float randomfraction = (rand() / (double)RAND_MAX);
int randomwait = (int) ( ntids * randomfraction );
MPI_Request request;
printf("process %d waits for %e/%d=%d\n",
mytid,randomfraction,ntids,randomwait);

sleep(randomwait);
ierr = MPI_Isend(dummy,0,MPI_INT, ntids-1,0,comm,

&request); CHK(ierr);
ierr = MPI_Bcast(&first_tid,1,MPI_INT, ntids-1,comm

); CHK(ierr);
if (mytid!=first_tid) {

ierr = MPI_Cancel(&request); CHK(ierr);
}
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}

11.3.0.2 MPI_Cart...

MPI_Cart...

// cart.c
MPI_Comm comm2d;
ndim = 2; periodic[0] = periodic[1] = 0;
dimensions[0] = idim; dimensions[1] = jdim;
MPI_Cart_create(comm,ndim,dimensions,periodic,1,&comm2d);
MPI_Cart_coords(comm2d,mytid,ndim,coord_2d);
MPI_Cart_rank(comm2d,coord_2d,&rank_2d);
printf("I am %d: (%d,%d); originally %d\n",rank_2d,coord_2d[0],coord_2d[1],mytid);

char mychar = 65+mytid;
MPI_Cart_shift(comm2d,0,+1,&rank_2d,&rank_right);
MPI_Cart_shift(comm2d,0,-1,&rank_2d,&rank_left);
MPI_Cart_shift(comm2d,1,+1,&rank_2d,&rank_up);
MPI_Cart_shift(comm2d,1,-1,&rank_2d,&rank_down);
int irequest = 0; MPI_Request *requests = malloc(8*sizeof(MPI_Request));
MPI_Isend(&mychar,1,MPI_CHAR,rank_right, 0,comm, requests+irequest++);
MPI_Isend(&mychar,1,MPI_CHAR,rank_left, 0,comm, requests+irequest++);
MPI_Isend(&mychar,1,MPI_CHAR,rank_up, 0,comm, requests+irequest++);
MPI_Isend(&mychar,1,MPI_CHAR,rank_down, 0,comm, requests+irequest++);
MPI_Irecv( indata+idata++, 1,MPI_CHAR, rank_right, 0,comm, requests+irequest++);
MPI_Irecv( indata+idata++, 1,MPI_CHAR, rank_left, 0,comm, requests+irequest++);
MPI_Irecv( indata+idata++, 1,MPI_CHAR, rank_up, 0,comm, requests+irequest++);
MPI_Irecv( indata+idata++, 1,MPI_CHAR, rank_down, 0,comm, requests+irequest++);

11.3.0.3 MPI_Comm_dup

MPI_Comm_dup

Giving a library its own communicator.

// commdup_right.cxx
class library {
private:

MPI_Comm comm;
int mytid,ntids,other;
MPI_Request *request;

public:
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library(MPI_Comm incomm) {
MPI_Comm_dup(incomm,&comm);
MPI_Comm_rank(comm,&mytid);
other = 1-mytid;
request = new MPI_Request[2];

};
˜library() {

MPI_Comm_free(&comm);
}
int communication_start();
int communication_end();

};

library my_library(comm);
MPI_Isend(&sdata,1,MPI_INT,other,1,comm,&(request[0]));
my_library.communication_start();
MPI_Irecv(&rdata,1,MPI_INT,other,MPI_ANY_TAG,

comm,&(request[1]));
MPI_Waitall(2,request,status);
my_library.communication_end();

11.3.0.4 MPI_Comm_split

MPI_Comm_split

First we take all processes module two, then again recursively.

// commsplit.c
int mydata = mytid;
// create sub communicator modulo 2
color = mytid%2;
MPI_Comm_split(MPI_COMM_WORLD,color,mytid,&mod2comm);
MPI_Comm_rank(mod2comm,&new_mytid);

// create sub communicator modulo 4 recursively
color = new_mytid%2;
MPI_Comm_split(mod2comm,color,new_mytid,&mod4comm);
MPI_Comm_rank(mod4comm,&new_mytid);

if (mydata/4!=new_mytid)
printf("Error %d %d %d\n",mytid,new_mytid,mydata/4);

// commsplit.py
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mydata = procid

# communicator modulo 2
color = procid%2
mod2comm = comm.Split(color)
new_procid = mod2comm.Get_rank()

# communicator modulo 4 recursively
color = new_procid%2
mod4comm = mod2comm.Split(color)
new_procid = mod4comm.Get_rank()

if mydata/4!=new_procid:
print "Error",procid,new_procid,mydata/4

11.4 F

11.4.0.1 MPI_Fetch_and_op

MPI_Fetch_and_op

A root process has a table of data; the other processes do atomic gets and update of that data using passive
target synchronization through MPI_Win_lock.

// passive.cxx
if (mytid==repository) {

// Repository processor creates a table of inputs
// and associates that with the window

}
if (mytid!=repository) {

float contribution=(float)mytid,table_element;
int loc=0;
MPI_Win_lock(MPI_LOCK_EXCLUSIVE,repository,0,the_window);
// read the table element by getting the result from adding zero
err = MPI_Fetch_and_op

(&contribution,&table_element,MPI_FLOAT,
repository,loc,MPI_SUM,the_window); CHK(err);

MPI_Win_unlock(repository,the_window);
}

// passive.py
if procid==repository:

# repository process creates a table of inputs
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# and associates it with the window
win_mem = np.empty( ninputs,dtype=np.float32 )
win = MPI.Win.Create( win_mem,comm=comm )

else:
# everyone else has an empty window
win = MPI.Win.Create( None,comm=comm )

if procid!=repository:
contribution = np.empty( 1,dtype=np.float32 )
contribution[0] = 1.*procid
table_element = np.empty( 1,dtype=np.float32 )
win.Lock( repository,lock_type=MPI.LOCK_EXCLUSIVE )
win.Fetch_and_op( contribution,table_element,repository,0,MPI.SUM)
win.Unlock( repository )

11.5 G

11.5.0.1 MPI_Gather

MPI_Gather

Gather data onto a root. Only the root allocates the gather buffer.

// gather.c
// we assume that each process has a value "localsize"
// the root process collectes these values

if (mytid==root)
localsizes = (int*) malloc( (ntids+1)*sizeof(int) );

// everyone contributes their info
MPI_Gather(&localsize,1,MPI_INT,

localsizes,1,MPI_INT,root,comm);

11.5.0.2 MPI_Get

MPI_Get

One process does a one-sided get from another. This also illustrates setting size parameters in MPI_Win_
create. Synchronization is done with MPI_Win_fence.

// getfence.c
MPI_Win_create(&other_number,2*sizeof(int),sizeof(int),

MPI_INFO_NULL,comm,&the_window);
MPI_Win_fence(0,the_window);
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if (mytid==0) {
MPI_Get( /* data on origin: */ &my_number, 1,MPI_INT,

/* data on target: */ other,1, 1,MPI_INT,
the_window);

}
MPI_Win_fence(0,the_window);

We make a null window on processes that do not participate.

// getfence.py
if procid==0 or procid==nprocs-1:

win_mem = np.empty( 1,dtype=np.float64 )
win = MPI.Win.Create( win_mem,comm=comm )

else:
win = MPI.Win.Create( None,comm=comm )

# put data on another process
win.Fence()
if procid==0 or procid==nprocs-1:

putdata = np.empty( 1,dtype=np.float64 )
putdata[0] = mydata
print "[%d] putting %e" % (procid,mydata)
win.Put( putdata,other )

win.Fence()

11.6 I

11.6.0.1 MPI_Init_thread

MPI_Init_thread

The Init_thread call takes the requested level of thread support and reports back what the provided
level is.

// thread.c
MPI_Init_thread(&argc,&argv,MPI_THREAD_MULTIPLE,&threading);
comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&mytid);
MPI_Comm_size(comm,&ntids);

if (mytid==0) {
switch (threading) {
case MPI_THREAD_MULTIPLE : printf("Glorious multithreaded MPI\n"); break;
case MPI_THREAD_SERIALIZED : printf("No simultaneous MPI from threads\n"); break;
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case MPI_THREAD_FUNNELED : printf("MPI from main thread\n"); break;
case MPI_THREAD_SINGLE : printf("no threading supported\n"); break;
}

}
MPI_Finalize();

11.7 P

11.7.0.1 MPI_Put

MPI_Put

A one-sided MPI_Put with active target synchronization through the use of fences. This is more or less
the same as the MPI_Get example above.

// putfence.c
MPI_Win the_window;
MPI_Win_create(&window_data,2*sizeof(int),sizeof(int),
MPI_INFO_NULL,comm,&the_window);
MPI_Win_fence(0,the_window);
if (mytid==0) {
MPI_Put( /* data on origin: */ &my_number, 1,MPI_INT,

/* data on target: */ other,1, 1,MPI_INT,
the_window);

}
MPI_Win_fence(0,the_window);
MPI_Win_free(&the_window);

// putfence.py
window_data = np.zeros(2,dtype=np.int)
my_number = np.empty(1,dtype=np.int)
src = 0; tgt = nprocs-1
if procid==src:

my_number[0] = 37
else:

my_number[0] = 1

intsize = np.dtype(’int’).itemsize
win = MPI.Win.Create(window_data,intsize,comm=comm)

win.Fence()
if procid==src:

# put data in the second element of the window
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win.Put(my_number,tgt,target=1)
win.Fence()

11.8 R

11.9 S

11.9.0.1 MPI_Send_init

MPI_Send_init

Persistent communication is setup up on the sending process with MPI_Send_init and MPI_Recv_
init, then performed with MPI_Startall. The receiver is using regular sends and receives.

// persist.c
if (mytid==src) {

MPI_Send_init(send,s,MPI_DOUBLE,tgt,0,comm,requests+0);
MPI_Recv_init(recv,s,MPI_DOUBLE,tgt,0,comm,requests+1);
printf("Size %d\n",s);
t[cnt] = MPI_Wtime();
for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Startall(2,requests);
MPI_Waitall(2,requests,MPI_STATUSES_IGNORE);

}
t[cnt] = MPI_Wtime()-t[cnt];
MPI_Request_free(requests+0); MPI_Request_free(requests+1);

} else if (mytid==tgt) {
for (int n=0; n<NEXPERIMENTS; n++) {

MPI_Recv(recv,s,MPI_DOUBLE,src,0,comm,MPI_STATUS_IGNORE);
MPI_Send(recv,s,MPI_DOUBLE,src,0,comm);

}
}

// persist.py
sendbuf = np.ones(size,dtype=np.int)
recvbuf = np.ones(size,dtype=np.int)
if procid==src:

print "Size:",size
times[isize] = MPI.Wtime()
for n in range(nexperiments):

requests[0] = comm.Isend(sendbuf[0:size],dest=tgt)
requests[1] = comm.Irecv(recvbuf[0:size],source=tgt)
MPI.Request.Waitall(requests)
sendbuf[0] = sendbuf[0]+1
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times[isize] = MPI.Wtime()-times[isize]
elif procid==tgt:

for n in range(nexperiments):
comm.Recv(recvbuf[0:size],source=src)
comm.Send(recvbuf[0:size],dest=src)

11.9.0.2 MPI_Ssend

MPI_Ssend

Using MPI_Ssend messages that would fall under the eager limit do block.

// ssendblock.c
other = 1-mytid;
sendbuf = (int*) malloc(sizeof(int));
recvbuf = (int*) malloc(sizeof(int));
size = 1;
MPI_Ssend(sendbuf,size,MPI_INT,other,0,comm);
MPI_Recv(recvbuf,size,MPI_INT,other,0,comm,&status);
printf("This statement is not reached\n");

11.10 T

11.11 W

11.11.0.1 MPI_Win_lock

MPI_Win_lock

See the Fetch_and_op example.

11.11.0.2 MPI_Win_start

MPI_Win_start

A one-sided MPI_Put using active target synchronization: use MPI_Win_start and MPI_Win_
complete on the origin, and MPI_Win_post and MPI_Win_wait on the target.

// postwaitwin.c
if (mytid==origin) {
MPI_Group_incl(all_group,1,&target,&two_group);
// access
MPI_Win_start(two_group,0,the_window);
MPI_Put( /* data on origin: */ &my_number, 1,MPI_INT,

/* data on target: */ target,0, 1,MPI_INT,
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the_window);
MPI_Win_complete(the_window);

}

if (mytid==target) {
MPI_Group_incl(all_group,1,&origin,&two_group);
// exposure
MPI_Win_post(two_group,0,the_window);
MPI_Win_wait(the_window);

}

11.11.0.3 MPI_Win_create

MPI_Win_create

See the MPI_Get example.

11.11.0.4 MPI_Win_fence

MPI_Win_fence

One process does MPI_Put operations, randomly on one of two other processes. We use a fence for active
target synchronization.

// randomput.c
MPI_Win_create(&window_data,sizeof(int),sizeof(int),

MPI_INFO_NULL,comm,&the_window);

for (int c=0; c<10; c++) {
float randomfraction = (rand() / (double)RAND_MAX);
if (randomfraction>.5)

other = 2;
else other = 1;
window_data = 0;
my_sum += window_data;

}

if (mytid>0 && mytid<3)
printf("Sum on %d: %d\n",mytid,my_sum);

if (mytid==0) printf("(sum should be 10)\n");
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MPI Review

For all true/false questions, if you answer that a statement is false, give a one-line explanation.

12.1 Conceptual

Exercise 12.1. True or false: mpicc is a compiler.

Exercise 12.2. What is the function of a hostfile?

Exercise 12.3. An architecture is called ‘symmetric’ or ‘uniform’ if the relation between any
pair of processes is essentially the same. In what way are MPI processes run on
stampede symmetric; in what way not?

12.2 Communicators

1. True or false: in each communicator, processes are numbered consecutively from zero.
2. If a process is in two communicators, it has the same rank in both.

12.3 Point-to-point

1. Describe a deadlock scenario involving three processors.
2. True or false: a message sent with MPI_Isend from one processor can be received with an

MPI_Recv call on another processor.
3. True or false: a message sent with MPI_Send from one processor can be received with an

MPI_Irecv on another processor.
4. Why does the MPI_Irecv call not have an MPI_Status argument?
5. What is the relation between the concepts of ‘origin’, ‘target’, ‘fence’, and ‘window’ in one-

sided communication.
6. What are the three routines for one-sided data transfer?
7. In the following fragments assume that all buffers have been allocated with sufficient size. For

each fragment note whether it deadlocks or not. Discuss performance issues.
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// block1.c
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);

for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE);

// block2.c
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE);

for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);

// block3.c
int ireq = 0;
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Isend(sbuffers[p],buflen,MPI_INT,p,0,comm,&(requests[ireq++]));

for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE);

MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE);

// block4.c
int ireq = 0;
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Irecv(rbuffers[p],buflen,MPI_INT,p,0,comm,&(requests[ireq++]));

for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);

MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE);

// block5.c
int ireq = 0;
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Irecv(rbuffers[p],buflen,MPI_INT,p,0,comm,&(requests[ireq++]));

MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE);
for (int p=0; p<nprocs; p++)
if (p!=procid)
MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm);
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Fortran codes:

// block1.F90
do p=0,nprocs-1

if (p/=procid) then
call MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm,ierr)

end if
end do
do p=0,nprocs-1

if (p/=procid) then
call MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE,ierr)

end if
end do

// block2.F90
do p=0,nprocs-1

if (p/=procid) then
call MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE,ierr)

end if
end do
do p=0,nprocs-1

if (p/=procid) then
call MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm,ierr)

end if
end do

// block3.F90
ireq = 0
do p=0,nprocs-1

if (p/=procid) then
call MPI_Isend(sbuffers(1,p+1),buflen,MPI_INT,p,0,comm,&

requests(ireq+1),ierr)
ireq = ireq+1

end if
end do
do p=0,nprocs-1

if (p/=procid) then
call MPI_Recv(rbuffer,buflen,MPI_INT,p,0,comm,MPI_STATUS_IGNORE,ierr)

end if
end do
call MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE,ierr)

// block4.F90
ireq = 0
do p=0,nprocs-1

if (p/=procid) then
call MPI_Irecv(rbuffers(1,p+1),buflen,MPI_INT,p,0,comm,&

requests(ireq+1),ierr)
ireq = ireq+1

end if
end do
do p=0,nprocs-1

if (p/=procid) then
call MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm,ierr)

Victor Eijkhout 161



12. MPI Review

end if
end do
call MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE,ierr)

// block5.F90
ireq = 0
do p=0,nprocs-1

if (p/=procid) then
call MPI_Irecv(rbuffers(1,p+1),buflen,MPI_INT,p,0,comm,&

requests(ireq+1),ierr)
ireq = ireq+1

end if
end do
call MPI_Waitall(nprocs-1,requests,MPI_STATUSES_IGNORE,ierr)
do p=0,nprocs-1

if (p/=procid) then
call MPI_Send(sbuffer,buflen,MPI_INT,p,0,comm,ierr)

end if
end do

12.4 Collectives

1. MPI collectives can be divided into (a) rooted vs rootless (b) using uniform buffer lengths vs
variable length buffers (c) blocking vs non-blocking. Give examples of each type.

2. True or false: an MPI_Scatter call puts the same data on each process.
3. Given a distributed array, with every processor storing

double x[N]; // N can vary per processor

give the approximate MPI-based code that computes the maximum value in the array, and leaves
the result on every processor.

4. With data as in the previous question, given the code for normalizing the array.

12.5 Datatypes

1. Give two examples of MPI derived datatypes. What parameters are used to describe them?
2. Give a practical example where the sender uses a different type to send than the receiver uses in

the corresponding receive call. Name the types involved.

12.6 Theory

1. Give a simple model for the time a send operation takes.
2. Give a simple model for the time a broadcast of a single scalar takes.
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Chapter 13

Getting started with OpenMP

This chapter explains the basic concepts of OpenMP, and helps you get started on running your first
OpenMP program.

13.1 The OpenMP model

We start by establishing a mental picture of the hardware and software that OpenMP targets.

13.1.1 Target hardware

Modern computers have a multi-layered design. Maybe you have access to a cluster, and maybe you have
learned how to use MPI to communicate between cluster nodes. OpenMP, the topic of this chapter, is
concerned with a single cluster node or motherboard , and getting the most out of the available parallelism
available there.

Figure 13.1: A node with two sockets and a co-processor

Figure 13.1 pictures a typical design of a node: within one enclosure you find two socketssocket : single
processor chips. Your personal laptop of computer will probably have one socket, most supercomputers
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have nodes with two or four sockets (the picture is of a Stampede node with two sockets)1, although the
recent Intel Knight’s Landing is again a single-socket design.

Figure 13.2: Structure of an Intel Sandybridge eight-core socket

To see where OpenMP operates we need to dig into the sockets. Figure 13.2 shows a picture of an Intel
Sandybridge socket. You recognize a structure with eight corescore: independent processing units, that all
have access to the same memory. (In figure 13.1 you saw four memory banks attached to each of the two
sockets; all of the sixteen cores have access to all that memory.)

To summarize the structure of the architecture that OpenMP targets:
• A node has up to four sockets;
• each socket has up to 60 cores;
• each core is an independent processing unit, with access to all the memory on the node.

13.1.2 Target software

OpenMP is based on on two concepts: the use of threads and the fork/join model of parallelism. For
now you can think of a thread as a sort of process: the computer executes a sequence of instructions. The
fork/join model says that a thread can split itself (‘fork’) into a number of threads that are identical copies.
At some point these copies go away and the original thread is left (‘join’), but while the team of threads

1. In that picture you also see a co-processor: OpenMP is increasingly targeting those too.
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created by the fork exists, you have parallelism available to you. The part of the execution between fork
and join is known as a parallel region .

Figure 13.3 gives a simple picture of this: a thread forks into a team of threads, and these threads themselves
can fork again.

Figure 13.3: Thread creation and deletion during parallel execution

The threads that are forked are all copies of the master thread : they have access to all that was computed
so far; this is their shared data . Of course, if the threads were completely identical the parallelism would be
pointless, so they also have private data, and they can identify themselves: they know their thread number.
This allows you to do meaningful parallel computations with threads.

This brings us to the third important concept: that of work sharing constructs. In a team of threads, initially
there will be replicated execution; a work sharing construct divides available parallelism over the threads.

So there you have it: OpenMP uses teams of threads, and inside a parallel region
the work is distributed over the threads with a work sharing construct. Threads can
access shared data, and they have some private data.

An important difference between OpenMP and MPI is that parallelism in OpenMP is dynamically activated
by a thread spawning a team of threads. Furthermore, the number of threads used can differ between parallel
regions, and threads can create threads recursively. This is known as as dynamic mode . By contrast, in an
MPI program the number of running processes is (mostly) constant throughout the run, and determined by
factors external to the program.

13.1.3 About threads and cores

OpenMP programming is typically done to take advantage of multicore processors. Thus, to get a good
speedup you would typically let your number of threads be equal to the number of cores. However, there is
nothing to prevent you from creating more threads: the operating system will use time slicing to let them
all be executed. You just don’t get a speedup beyond the number of actually available cores.

On some modern processors there are hardware threads , meaning that a core can actually let more than
thread be executed, with some speedup over the single thread. To use such a processor efficiently you
would let the number of OpenMP threads be 2× or 4× the number of cores, depending on the hardware.

13.1.4 About thread data

In most programming languages, visibility of data is governed by rules on the scope of variables: a variable
is declared in a block, and it is then visible to any statement in that block and blocks with a lexical scope
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contained in it, but not in surrounding blocks:
main () {
// no variable ‘x’ define here
{

int x = 5;
if (somecondition) { x = 6; }
printf("x=%e\n",x); // prints 5 or 6

}
printf("x=%e\n",x); // syntax error: ‘x’ undefined

}

In C, you can redeclare a variable inside a nested scope:
{
int x;
if (something) {

double x; // same name, different entity
}
x = ... // this refers to the integer again

}

Doing so makes the outer variable inaccessible.

Fortran has simpler rules, since it does not have blocks inside blocks.

Figure 13.4: Locality of variables in threads

In OpenMP the situation is a bit more tricky because of the threads. When a team of threads is created they
can all see the data of the master thread. However, they can also create data of their own. This is illustrated
in figure 13.4. We will go into the details later.

13.2 Compiling and running an OpenMP program

13.2.1 Compiling

Your file or Fortran module needs to contain
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#include "omp.h"

in C, and

use omp_lib

or

#include "omp_lib.h"

for Fortran.

OpenMP is handled by extensions to your regular compiler, typically by adding an option to your comman-
dline:

# gcc
gcc -o foo foo.c -fopenmp
# Intel compiler
icc -o foo foo.c -openmp

If you have separate compile and link stages, you need that option in both.

When you use the openmp compiler option, a cpp variable _OPENMP will be defined. Thus, you can have
conditional compilation by writing

#ifdef _OPENMP
...

#else
...

#endif

13.2.2 Running an OpenMP program

You run an OpenMP program by invoking it the regular way (for instance ./a.out), but its behaviour is
influenced by some OpenMP environment variables . The most important one is OMP_NUM_THREADS:

export OMP_NUM_THREADS=8

which sets the number of threads that a program will use. See section 22.1 for a list of all environment
variables.

13.3 Your first OpenMP program

In this section you will see just enough of OpenMP to write a first program and to explore its behaviour.
For this we need to introduce a couple of OpenMP language constructs. They will all be discussed in much
greater detail in later chapters.
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13.3.1 Directives

OpenMP is not magic, so you have to tell it when something can be done in parallel. This is mostly done
through directives; additional specifications can be done through library calls.

In C/C++ the pragma mechanism is used: annotations for the benefit of the compiler that are otherwise not
part of the language. This looks like:

#pragma omp somedirective clause(value,othervalue)
statement_or_block;

with
• the #pragma omp sentinel to indicate that an OpenMP directive is coming;
• a directive, such as parallel;
• and possibly clauses with values.
• After the directive comes either a single statement or a block in curly braces .

Directives in C/C++ are case-sensitive. Directives can be broken over multiple lines by escaping the line
end.

The sentinel in Fortran looks like a comment:
!$omp directive clause(value)
statements

!$omp end directive

The difference with the C directive is that Fortran can not have a block, so there is an explicit end-of
directive line.

If you break a directive over more than one line, all but the last line need to have a continuation character,
and each line needs to have the sentinel:

!$OMP parallel do &
!%OMP copyin(x),copyout(y)

The directives are case-insensitive. In Fortran fixed-form source files, c$omp and *$omp are allowed too.

13.3.2 Parallel regions

The simplest way to create parallelism in OpenMP is to use the parallel pragma. A block preceded by
the omp parallel pragma is called a parallel region; it is executed by a newly created team of threads.
This is an instance of the Single Program Multiple Data (SPMD) model: all threads execute the same
segment of code.

#pragma omp parallel
{
// this is executed by a team of threads

}

We will go into much more detail in section 14.
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13.3.3 An actual OpenMP program!

Exercise 13.1. Write a program that contains the following lines:
printf("There are %d processors\n",omp_get_num_procs());
#pragma omp parallel
printf("There are %d threads\n",

/* !!!! something missing here !!!! */ );

The first print statement tells you the number of available cores in the hardware.
Your assignment is to supply the missing function that reports the number of threads
used. Compile and run the program. Experiment with the OMP_NUM_THREADS
environment variable. What do you notice about the number of lines printed?

Exercise 13.2. Extend the program from exercise 13.1. Make a complete program based on
these lines:

int tsum=0;
#pragma omp parallel

tsum += /* the thread number */
printf("Sum is %d\n",tsum);

Compile and run again. (In fact, run your program a number of times.) Do you see
something unexpected? Can you think of an explanation?
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The simplest way to create parallelism in OpenMP is to use the parallel pragma. A block preceded by
the omp parallel pragma is called a parallel region; it is executed by a newly created team of threads.
This is an instance of the SPMD model: all threads execute the same segment of code.

#pragma omp parallel
{
// this is executed by a team of threads

}

It would be pointless to have the block be executed identically by all threads. One way to get a meaningful
parallel code is to use the function omp_get_thread_num, to find out which thread you are, and
execute work that is individual to that thread. There is also a function omp_get_num_threads to find
out the total number of threads. Both these functions give a number relative to the current team; recall from
figure 13.3 that new teams can be created recursively.

For instance, if you program computes

result = f(x)+g(x)+h(x)

you could parallelize this as

double result,fresult,gresult,hresult;
#pragma omp parallel
{ int num = omp_get_thread_num();
if (num==0) fresult = f(x);
else if (num==1) gresult = g(x);
else if (num==2) hresult = h(x);

}
result = fresult + gresult + hresult;

The first thing we want to do is create a team of threads. This is done with a parallel region . Here is a very
simple example:
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// hello.c
#pragma omp parallel

{
int t = omp_get_thread_num();
printf("Hello world from %d!\n",t);

}

or in Fortran

// hellocount.F90
!$omp parallel

nthreads = omp_get_num_threads()
mythread = omp_get_thread_num()
write(*,’("Hello from",i3," out of",i3)’) mythread,nthreads

!$omp end parallel

This code corresponds to the model we just discussed:

• Immediately preceding the parallel block, one thread will be executing the code. In the main
program this is the initial thread .
• At the start of the block, a new team of threads is created, and the thread that was active before

the block becomes the master thread of that team.
• After the block only the master thread is active.
• Inside the block there is team of threads: each thread in the team executes the body of the block,

and it will have access to all variables of the surrounding environment. How many threads there
are can be determined in a number of ways; we will get to that later.

Exercise 14.1. Make a full program based on this fragment. Insert different print statements
before, inside, and after the parallel region. Run this example. How many times is
each print statement executed?

You see that the parallel directive

• Is preceded by a special marker: a #pragma omp for C/C++, and the !$OMP sentinel for
Fortran;
• Is followed by a single statement or a block in C/C++, or followed by a block in Fortran which

is delimited by an !$omp end directive.

Directives look like cpp directives , but they are actually handled by the compiler, not the preprocessor.

Exercise 14.2. Take the ‘hello world’ program above, and modify it so that you get multiple
messages to you screen, saying

Hello from thread 0 out of 4!
Hello from thread 1 out of 4!

and so on. (The messages may very well appear out of sequence.)
What happens if you set your number of threads larger than the available cores on
your computer?
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Exercise 14.3. What happens if you call omp_get_thread_num and
omp_get_num_threads outside a parallel region?

omp_get_thread_limit

OMP_WAIT_POLICY values: ACTIVE,PASSIVE

14.1 Nested parallelism

What happens if you call a function from inside a parallel region, and that function itself contains a parallel
region?

int main() {
...

#pragma omp parallel
{
...
func(...)
...
}

} // end of main
void func(...) {
#pragma omp parallel
{
...
}

}

By default, the nested parallel region will have only one thread. To allow nested thread creation, set

OMP_NESTED=true
or
omp_set_nested(1)

Exercise 14.4. Test nested parallelism by writing an OpenMP program as follows:
1. Write a subprogram that contains a parallel region.
2. Write a main program with a parallel region; call the subprogram both inside

and outside the parallel region.
3. Insert print statements

(a) in the main program outside the parallel region,
(b) in the parallel region in the main program,
(c) in the subprogram outside the parallel region,
(d) in the parallel region inside the subprogram.

Run your program and count how many print statements of each type you get.
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Writing subprograms that are called in a parallel region illustrates the following point: directives are eval-
uation with respect to the dynamic scope of the parallel region, not just the lexical scope. In the following
example:

#pragma omp parallel
{

f();
}
void f() {
#pragma omp for

for ( .... ) {
...

}
}

the body of the function f falls in the dynamic scope of the parallel region, so the for loop will be paral-
lelized.

If the function may be called both from inside and outside parallel regions, you can test which is the case
with omp_in_parallel.

The amount of nested parallelism can be set:

OMP_NUM_THREADS=4,2

means that initially a parallel region will have four threads, and each thread can create two more threads.

OMP_MAX_ACTIVE_LEVELS=123

omp_set_max_active_levels( n )
n = omp_get_max_active_levels()

OMP_THREAD_LIMIT=123

n = omp_get_thread_limit()

omp_set_max_active_levels
omp_get_max_active_levels
omp_get_level
omp_get_active_level
omp_get_ancestor_thread_num

omp_get_team_size(level)
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OpenMP topic 2: Loop parallelism

15.1 Loop parallelism

Loop parallelism is a very common type of parallelism in scientific codes, so OpenMP has an easy mecha-
nism for it. OpenMP parallel loops are a first example of OpenMP ‘worksharing’ constructs (see section 16
for the full list): constructs that take an amount of work and distribute it over the available threads in a
parallel region.

The parallel execution of a loop can be handled a number of different ways. For instance, you can create a
parallel region around the loop, and adjust the loop bounds:

#pragma omp parallel
{
int threadnum = omp_get_thread_num(),

numthreads = omp_get_num_threads();
int low = N*threadnum/numthreads,

high = N*(threadnum+1)/numthreads;
for (i=low; i<high; i++)

// do something with i
}

A more natural option is to use the parallel for pragma:

#pragma omp parallel
#pragma omp for
for (i=0; i<N; i++) {

// do something with i
}

This has several advantages. For one, you don’t have to calculate the loop bounds for the threads yourself,
but you can also tell OpenMP to assign the loop iterations according to different schedules (section 15.2).

Figure 15.1 shows the execution on four threads of
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#pragma omp parallel
{

code1();
#pragma omp for

for (i=1; i<=4*N; i++) {
code2();

}
code3();

}

The code before and after the loop is executed identically in each thread; the loop iterations are spread over
the four threads.

Figure 15.1: Execution of parallel code inside and outside a loop

Note that the parallel do and parallel for pragmas do not create a team of threads: they take the
team of threads that is active, and divide the loop iterations over them.

This means that the omp for or omp do directive needs to be inside a parallel region. It is also possible
to have a combined omp parallel for or omp parallel do directive.

If your parallel region only contains a loop, you can combine the pragmas for the parallel region and
distribution of the loop iterations:

#pragma omp parallel for
for (i=0; .....

Exercise 15.1. Compute π by numerical integration . We use the fact that π is the area of the
unit circle, and we approximate this by computing the area of a quarter circle using
Riemann sums .

176 Parallel Computing – r428



15.2. Loop schedules

• Let f(x) =
√

1− x2 be the function that describes the quarter circle for
x = 0 . . . 1;
• Then we compute

π/4 ≈
N−1∑
i=0

∆xf(xi) where xi = i∆x and ∆x = 1/N

Write a program for this, and parallelize it using OpenMP parallel for directives.
1. Put a parallel directive around your loop. Does it still compute the right

result? Does the time go down with the number of threads? (The answers
should be no and no.)

2. Change the parallel to parallel for (or parallel do). Now is
the result correct? Does execution speed up? (The answers should now be no
and yes.)

3. Put a critical directive in front of the update. (Yes and very much no.)
4. Remove the critical and add a clause reduction(+:quarterpi) to

the for directive. Now it should be correct and efficient.
Use different numbers of cores and compute the speedup you attain over the
sequential computation. Is there a performance difference between the OpenMP
code with 1 thread and the sequential code?

Remark 1 In this exercise you may have seen the runtime go up a couple of times where you weren’t
expecting it. The issue here is false sharing; see HPSC-3.3.7 for more explanation.

There are some restrictions on the loop: basically, OpenMP needs to be able to determine in advance how
many iterations there will be.

• The loop can not contains break, return, exit statements, or goto to a label outside the
loop.
• The continue (C) or cycle (F) statement is allowed.
• The index update has to be an increment (or decrement) by a fixed amount.
• The loop index variable is automatically private, and not changes to it inside the loop are al-

lowed.

15.2 Loop schedules
The reference for the commands introduced here can be found in section ??.

Usually you will have many more iterations in a loop than there are threads. Thus, there are several ways
you can assign your loop iterations to the threads. OpenMP lets you specify this with the schedule
clause.

#pragma omp for schedule(....)
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The first distinction we now have to make is between static and dynamic schedules. With static schedules,
the iterations are assigned purely based on the number of iterations and the number of threads (and the
chunk parameter; see later). In dynamic schedules, on the other hand, iterations are assigned to threads
that are unoccupied. Dynamic schedules are a good idea if iterations take an unpredictable amount of time,
so that load balancing is needed.

Figure 15.2 illustrates this: assume that each core gets assigned two (blocks of) iterations and these blocks
take gradually less and less time. You see from the left picture that thread 1 gets two fairly long blocks,
where as thread 4 gets two short blocks, thus finishing much earlier. (This phenomenon of threads having
unequal amounts of work is known as load imbalance .) On the other hand, in the right figure thread 4 gets
block 5, since it finishes the first set of blocks early. The effect is a perfect load balancing.

The default static schedule is to assign one consecutive block of iterations to each thread. If you want
different sized blocks you can defined a chunk size:

#pragma omp for schedule(static[,chunk])

(where the square brackets indicate an optional argument). With static scheduling, the compiler will split
up the loop iterations at compile time, so, provided the iterations take roughly the same amount of time,
this is the most efficient at runtime.

The choice of a chunk size is often a balance between the low overhead of having only a few chunks, versus
the load balancing effect of having smaller chunks.

Exercise 15.2. Why is a chunk size of 1 typically a bad idea? (Hint: think about cache lines,
and read HPSC-1.4.1.2.)

In dynamic scheduling OpenMP will put blocks of iterations (the default chunk size is 1) in a task queue,
and the threads take one of these tasks whenever they are finished with the previous.

#pragma omp for schedule(static[,chunk])

While this schedule may give good load balancing if the iterations take very differing amounts of time to
execute, it does carry runtime overhead for managing the queue of iteration tasks.

Finally, there is the guided schedule, which gradually decreases the chunk size. The thinking here is
that large chunks carry the least overhead, but smaller chunks are better for load balancing. The various
schedules are illustrated in figure 15.3.

If you don’t want to decide on a schedule in your code, you can specify the runtime schedule. The actual
schedule will then at runtime be read from the OMP_SCHEDULE environment variable. You can even just
leave it to the runtime library by specifying auto

Exercise 15.3. We continue with exercise 15.1. We add ‘adaptive integration’: where needed,
the program refines the step size1. This means that the iterations no longer take a
predictable amount of time.

1. It doesn’t actually do this in a mathematically sophisticated way, so this code is more for the sake of the example.
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for (i=0; i<nsteps; i++) {
double

x = i*h,x2 = (i+1)*h,
y = sqrt(1-x*x),y2 = sqrt(1-x2*x2),
slope = (y-y2)/h;

if (slope>15) slope = 15;
int

samples = 1+(int)slope, is;
for (is=0; is<samples; is++) {

double
hs = h/samples,
xs = x+ is*hs,
ys = sqrt(1-xs*xs);

quarterpi += hs*ys;
nsamples++;

}
}
pi = 4*quarterpi;

1. Use the omp parallel for construct to parallelize the loop. As in the
previous lab, you may at first see an incorrect result. Use the reduction
clause to fix this.

2. Your code should now see a decent speedup, using up to 8 cores. However, it
is possible to get completely linear speedup. For this you need to adjust the
schedule.
Start by using schedule(static,$n$). Experiment with values for n.
When can you get a better speedup? Explain this.

3. Since this code is somewhat dynamic, try schedule(dynamic). This will
actually give a fairly bad result. Why? Use schedule(dynamic,$n$)
instead, and experiment with values for n.

4. Finally, use schedule(guided), where OpenMP uses a heuristic. What
results does that give?

Exercise 15.4. Program the LU factorization algorithm without pivoting.
for k=1,n:

A[k,k] = 1./A[k,k]
for i=k+1,n:

A[i,k] = A[i,k]/A[k,k]
for j=k+1,n:

A[i,j] = A[i,j] - A[i,k]*A[k,j]

1. Argue that it is not possible to parallelize the outer loop.
2. Argue that it is possible to parallelize both the i and j loops.
3. Parallelize the algorithm by focusing on the i loop. Why is the algorithm as

given here best for a matrix on row-storage? What would you do if the matrix
was on column storage?

4. Argue that with the default schedule, if a row is updated by one thread in one
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iteration, it may very well be updated by another thread in another. Can you
find a way to schedule loop iterations so that this does not happen? What
practical reason is there for doing so?

The schedule can be declared explicitly, set at runtime through the OMP_SCHEDULE environment variable,
or left up to the runtime system by specifying auto. Especially in the last two cases you may want to
enquire what schedule is currently being used with omp_get_schedule.

int omp_get_schedule(omp_sched_t * kind, int * modifier );

Its mirror call is omp_set_schedule, which sets the value that is used when schedule value runtime
is used. It is in effect equivalent to setting the environment variable OMP_SCHEDULE.

void omp_set_schedule (omp_sched_t kind, int modifier);

Type environment variable clause modifier default
OMP SCHEDULE= schedule( ... )

static static[,n] static[,n] N/nthreads
dynamic dynamic[,n] dynamic[,n] 1
guided guided[,n] guided[,n]

Here are the various schedules you can set with the schedule clause:

affinity Set by using value omp_sched_affinity
auto The schedule is left up to the implementation. Set by using value omp_sched_auto
dynamic value: 2. The modifier parameter is the chunk size; default 1. Set by using value omp_sched_

dynamic
guided Value: 3. The modifier parameter is the chunk size. Set by using value omp_sched_guided
runtime Use the value of the OMP_SCHEDULE environment variable. Set by using value omp_sched_

runtime
static value: 1. The modifier parameter is the chunk size. Set by using value omp_sched_static

15.3 Reductions

So far we have focused on loops with independent iterations. Reductions are a common type of loop with
dependencies. There is an extended discussion of reductions in section 18

15.4 Collapsing nested loops

In general, the more work there is to divide over a number of threads, the more efficient the parallelization
will be. In the context of parallel loops, it is possible to increase the amount of work by parallelizing all
levels of loops instead of just the outer one.

Example: in
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for ( i=0; i<N; i++ )
for ( j=0; j<N; j++ )

A[i][j] = B[i][j] + C[i][j]

all N2 iterations are independent, but a regular omp for directive will only parallelize one level. The
collapse clause will parallelize more than one level:

#pragma omp for collapse(2)
for ( i=0; i<N; i++ )
for ( j=0; j<N; j++ )

A[i][j] = B[i][j] + C[i][j]

It is only possible to collapse perfectly nested loops, that is, the loop body of the outer loop can consist only
of the inner loop; there can be no statements before or after the inner loop in the loop body of the outer
loop. That is, the two loops in

for (i=0; i<N; i++) {
y[i] = 0.;
for (j=0; j<N; j++)

y[i] + A[i][j] * x[j]
}

can not be collapsed.

Exercise 15.5. Can you rewrite the preceding code example so that it can be collapsed? Do
timing tests to see if you can notice the improvement from collapsing.

15.5 Ordered iterations

Iterations in a parallel loop that are execution in parallel do not execute in lockstep. That means that in

#pragma omp parallel for
for ( ... i ... ) {

... f(i) ...
printf("something with %d\n",i);

}

it is not true that all function evaluations happen more or less at the same time, followed by all print
statements. The print statements can really happen in any order. The ordered clause coupled with the
ordered directive can force execution in the right order:

#pragma omp parallel for ordered
for ( ... i ... ) {

... f(i) ...
#pragma omp ordered

Victor Eijkhout 181



15. OpenMP topic 2: Loop parallelism

printf("something with %d\n",i);
}

Example code structure:

#pragma omp parallel for shared(y) ordered
for ( ... i ... ) {

int x = f(i)
#pragma omp ordered

y[i] += f(x)
z[i] = g(y[i])

}

There is a limitation: each iteration can encounter only one ordered directive.

15.6 nowait

The implicit barrier at the end of a work sharing construct can be cancelled with a nowait clause. This
has the effect that threads that are finished can continue with the next code in the parallel region:

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<N; i++) { ... }
// more parallel code

}

In the following example, threads that are finished with the first loop can start on the second. Note that this
requires both loops to have the same schedule.

#pragma omp parallel
{

x = local_computation()
#pragma omp for nowait

for (i=0; i<N; i++) {
x[i] = ...

}
#pragma omp for

for (i=0; i<N; i++) {
y[i] = ... x[i] ...

}
}
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15.7 While loops

OpenMP can only handle ‘for’ loops: while loops can not be parallelized. So you have to find a way around
that. While loops are for instance used to search through data:

while ( a[i]!=0 && i<imax ) {
i++; }
// now i is the first index for which \n{a[i]} is zero.

We replace the while loop by a for loop that examines all locations:

result = -1;
#pragma omp parallel for
for (i=0; i<imax; i++) {
if (a[i]!=0 && result<0) result = i;

}

Exercise 15.6. Show that this code has a race condition.

You can fix the race condition by making the condition into a critical section; section 19.2.1. In this par-
ticular example, with a very small amount of work per iteration, that is likely to be inefficient in this case
(why?). A more efficient solution uses the lastprivate pragma:

result = -1;
#pragma omp parallel for lastprivate(result)
for (i=0; i<imax; i++) {
if (a[i]!=0) result = i;

}

You have now solved a slightly different problem: the result variable contains the last location where a[i]
is zero.
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Figure 15.2: Illustration static round-robin scheduling versus dynamic
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Figure 15.3: Illustration of the scheduling strategies of loop iterations
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OpenMP topic 3: Work sharing

The declaration of a parallel region establishes a team of threads. This offers the possibility of parallelism,
but to actually get meaningful parallel activity you need something more. OpenMP uses the concept of a
work sharing construct : a way of dividing parallelizable work over a team of threads. The work sharing
constructs are:

• for/do The threads divide up the loop iterations among themselves; see 15.1.
• sections The threads divide a fixed number of sections between themselves; see section 16.1.
• single The section is executed by a single thread; section 16.2.
• task See section 20.
• workshare Can parallelize Fortran array syntax; section 16.3.

16.1 Sections
The reference for the commands introduced here can be found in section ??.

A parallel loop is an example of independent work units that are numbered. If you have a pre-determined
number of independent work units, the sections is more appropriate. In a sections construct can
be any number of section constructs. These need to be independent, and they can be execute by any
available thread in the current team, including having multiple sections done by the same thread.

#pragma omp sections
{
#pragma omp section

// one calculation
#pragma omp section

// another calculation
}

This construct can be used to divide large blocks of independent work. Suppose that in the following line,
both f(x) and g(x) are big calculations:

y = f(x) + g(x)
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You could then write

double y1,y2;
#pragma omp sections
{
#pragma omp section
y1 = f(x)

#pragma omp section
y2 = g(x)

}
y = y1+y2;

Instead of using two temporaries, you could also use a critical section; see section 19.2.1. However, the best
solution is have a reduction clause on the sections directive:

y = f(x) + g(x)

You could then write

y = 0;
#pragma omp sections reduction(+:y)
{
#pragma omp section
y += f(x)

#pragma omp section
y += g(x)

}

16.2 Single/master
The reference for the commands introduced here can be found in section ??.

master single

The single and master pragma limit the execution of a block to a single thread. This can for instance
be used to print tracing information or doing I/O operations.

#pragma omp parallel
{
#pragma omp single
printf("We are starting this section!\n");
// parallel stuff

}

Another use of single is to perform initializations in a parallel region:
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int a;
#pragma omp parallel
{

#pragma omp single
a = f(); // some computation

#pragma omp sections
// various different computations using a

}

The point of the single directive in this last example is that the computation needs to be done only once,
because of the shared memory. Since it’s a work sharing construct there is an implicit barrier after it, which
guarantees that all threads have the correct value in their local memory (see section 22.3.4.

Exercise 16.1. What is the difference between this approach and how the same computation
would be parallelized in MPI?

The master directive, also enforces execution on a single thread, specifically the master thread of the
team, but it does not have the synchronization through the implicit barrier.

Exercise 16.2. Modify the above code to read:
int a;
#pragma omp parallel
{

#pragma omp master
a = f(); // some computation

#pragma omp sections
// various different computations using a

}

This code is no longer correct. Explain.

Above we motivated the single directive as a way of initializing shared variables. It is also possible to
use single to initialize private variables. In that case you add the copyprivate clause. This is a good
solution if setting the variable takes I/O.

Exercise 16.3. Give two other ways to initialize a private variable, with all threads receiving
the same value. Can you give scenarios where each of the three strategies would be
preferable?

16.3 Fortran array syntax parallelization

The parallel do directive is used to parallelize loops, and this applies to both C and Fortran. However,
Fortran also has implied loops in its array syntax. To parallelize array syntax you can use the workshare
directive.

The workshare directive exists only in Fortran. It can be used to parallelize the implied loops in array
syntax , as well as forall loops.
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OpenMP topic 4: Controlling thread data

In a parallel region there are two types of data: private and shared. In this sections we will see the various
way you can control what category your data falls under; for private data items we also discuss how their
values relate to shared data.

17.1 Shared data

In a parallel region, any data declared outside it will be shared: any thread using a variable x will access
the same memory location associated with that variable.

Example:

int x = 5;
#pragma omp parallel
{

x = x+1;
printf("shared: x is %d\n",x);

}

All threads increment the same variable, so after the loop it will have a value of five plus the number of
threads; or maybe less because of the data races involved. See HPSC-2.6.1.5 for an explanation of the issues
involved; see 19.2.1 for a solution in OpenMP.

Sometimes this global update is what you want; in other cases the variable is intended only for intermediate
results in a computation. In that case there are various ways of creating data that is local to a thread, and
therefore invisible to other threads.

17.2 Private data

The reference for the commands introduced here can be found in section 23.2.2.
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In the C/C++ language it is possible to declare variables inside a lexical scope; roughly: inside curly braces.
This concept extends to OpenMP parallel regions and directives: any variable declared in a block following
an OpenMP directive will be local to the executing thread.

Example:

int x = 5;
#pragma omp parallel

{
int x; x = 3;
printf("local: x is %d\n",x);

}

After the parallel region the outer variable x will still have the value 5: there is no storage association
between the private variable and global one.

The Fortran language does not have this concept of scope, so you have to use a private clause:

!$OMP parallel private(x)

The private directive declares data to have a separate copy in the memory of each thread. Such private
variables are initialized as they would be in a main program. Any computed value goes away at the end of
the parallel region. (However, see below.) Thus, you should not rely on any initial value, or on the value of
the outer variable after the region.

int x = 5;
#pragma omp parallel private(x)

{
x = x+1; // dangerous
printf("private: x is %d\n",x);

}
printf("after: x is %d\n",x); // also dangerous

17.3 Temporary variables in a loop

It is common to have a variable that is set and used in each loop iteration:

#pragma omp parallel for
for ( ... i ... ) {

x = i*h;
s = sin(x); c = cos(x);
a[i] = s+c;
b[i] = s-c;

}
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By the above rules, the variables x,s,c are all shared variables. However, the values they receive in one
iteration are not used in a next iteration, so they behave in fact like private variables to each iteration.

• In both C and Fortran you can declare these variables private in the parallel for directive.
• In C, you can also redefine the variables inside the loop.

Sometimes, even if you forget to declare these temporaries as private, the code may still give the correct
output. That is because the compiler can sometimes eliminate them from the loop body, since it detects that
their values are not otherwise used.

17.4 Default

• Loop variables in an omp for are private;
• Local variables in the parallel region are private.

You can alter this default behaviour with the default clause:

#pragma omp parallel default(shared) private(x)
{ ... }
#pragma omp parallel default(private) shared(matrix)
{ ... }

and if you want to play it safe:

#pragma omp parallel default(none) private(x) shared(matrix)
{ ... }

• The shared clause means that all variables from the outer scope are shared in the parallel
region; any private variables need to be declared explicitly. This is the default behaviour.

• The private clause means that all outer variables become private in the parallel region. They
are not initialized; see the next option. Any shared variables in the parallel region need to be
declared explicitly. This value is not available in C.

• The firstprivate clause means all outer variables are private in the parallel region, and
initialized with their outer value. Any shared variables need to be declared explicitly. This value
is not available in C.

• The none option is good for debugging, because it forces you to specify for each variable in the
parallel region whether it’s private or shared. Also, if your code behaves differently in parallel
from sequential there is probably a data race. Specifying the status of every variable is a good
way to debug this.

17.5 Array data

The rules for arrays are slightly different from those for scalar data:

1. Statically allocated data, that is with a syntax like
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int array[100];
integer,dimension(:) :: array(100}

can be shared or private, depending on the clause you use.
2. Dynamically allocated data, that is, created with malloc or allocate, can only be shared.

Example of the first type: in

// alloc3.c
int array[nthreads];
{

int t = 2;
array += t;
array[0] = t;

}

each thread gets a private copy of the array, properly initialized.

On the other hand, in

// alloc1.c
int *array = (int*) malloc(nthreads*sizeof(int));
#pragma omp parallel firstprivate(array)
{

int t = omp_get_thread_num();
array += t;
array[0] = t;

}

each thread gets a private pointer, but all pointers point to the same object.

17.6 First and last private

Above, you saw that private variables are completely separate from any variables by the same name in the
surrounding scope. However, there are two cases where you may want some storage association between a
private variable and a global counterpart.

First of all, private variables are created with an undefined value. You can force their initialization with
firstprivate.

int t=2;
#pragma omp parallel firstprivate(t)

{
t += f( omp_get_thread_num() );
g(t);

}
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The variable t behaves like a private variable, except that it is initialized to the outside value.

Secondly, you may want a private value to be preserved to the environment outside the parallel region.
This really only makes sense in one case, where you preserve a private variable from the last iteration of a
parallel loop, or the last section in an sections construct. This is done with lastprivate:

#pragma omp parallel for \
lastprivate(tmp)

for (i=0; i<N; i+) {
tmp = ......
x[i] = .... tmp ....

}
..... tmp ....

17.7 Persistent data through threadprivate

Most data in OpenMP parallel regions is either inherited from the master thread and therefore shared, or
temporary within the scope of the region and fully private. There is also a mechanism for thread-private
data , which is not limited in lifetime to one parallel region. The threadprivate pragma is used to
declare that each thread is to have a private copy of a variable:

#pragma omp threadprivate(var)

The variable needs be:

• a file or static variable in C,
• a static class member in C++, or
• a program variable or common block in Fortran.

17.7.1 Thread private initialization

If each thread needs a different value in its threadprivate variable, the initialization needs to happen in a
parallel region.

In the following example a team of 7 threads is created, all of which set their thread-private variable. Later,
this variable is read by a larger team: the variables that have not been set are undefined, though often simply
zero:

// threadprivate.c
#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

static int tp;
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int main(int argc,char **argv) {

#pragma omp threadprivate(tp)

#pragma omp parallel num_threads(7)
tp = omp_get_thread_num();

#pragma omp parallel num_threads(9)
printf("Thread %d has %d\n",omp_get_thread_num(),tp);

return 0;
}

On the other hand, if the thread private data starts out identical in all threads, the copyin clause can be
used:

#pragma omp threadprivate(private_var)

private_var = 1;
#pragma omp parallel copyin(private_var)

private_var += omp_get_thread_num()

If one thread needs to set all thread private data to its value, the copyprivate clause can be used:

#pragma omp parallel
{

...
#pragma omp single copyprivate(private_var)

private_var = read_data();
...

}

17.7.2 Thread private example

The typical application for thread-private variables is in random number generation . A random number
generator needs saved state, since it computes each next value from the current one. To have a parallel
generator, each thread will create and initialize a private ‘current value’ variable. This will persist even
when the execution is not in a parallel region; it gets updated only in a parallel region.

Exercise 17.1. Calculate the area of the Mandelbrot set by random sampling. Initialize the
random number generator separately for each thread; then use a parallel loop to
evaluate the points. Explore performance implications of the different loop
scheduling strategies.

Fortran note Named common blocks can be made thread-private with the syntax
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$!OMP threadprivate( /blockname/ )

Threadprivate variables require OMP_DYNAMIC to be switched off.
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OpenMP topic 5: Reductions

Parallel tasks often produce some quantity that needs to be summed or otherwise combined. In section 14
you saw an example, and it was stated that the solution given there was not very good.

The problem in that example was the race condition involving the result variable. The simplest solution
is to eliminate the race condition by declaring a critical section:

double result = 0;
#pragma omp parallel
{

double local_result;
int num = omp_get_thread_num();
if (num==0) local_result = f(x);
else if (num==1) local_result = g(x);
else if (num==2) local_result = h(x);

#pragma omp critical
result += local_result;

}

This is a good solution if the amount of serialization in the critical section is small compared to computing
the functions f, g, h. On the other hand, you may not want to do that in a loop:

double result = 0;
#pragma omp parallel
{

double local_result;
#pragma omp for

for (i=0; i<N; i++) {
local_result = f(x,i);

#pragma omp critical
result += local_result;

} // end of for loop
}
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Exercise 18.1. Can you think of a small modification of this code, that still uses a critical
section, that is more efficient? Time both codes.

The easiest way to effect a reduction is of course to use the reduction clause. Adding this to an omp
for or an omp sections construct has the following effect:

• OpenMP will make a copy of the reduction variable per thread, initialized to the identity of the
reduction operator, for instance 1 for multiplication.

• Each thread will then reduce into its local variable;
• At the end of the loop, the local results are combined, again using the reduction operator, into

the global variable.

This is one of those cases where the parallel execution can have a slightly different value from the one that
is computed sequentially, because floating point operations are not associative. See HPSC-3.3.7 for more
explanation.

If your code can not be easily structure as a reduction, you can realize the above scheme by hand by
‘duplicating’ the global variable and gather the contributions later. This example presumes three threads,
and gives each a location of their own to store the result computed on that thread:

double result,local_results[3];
#pragma omp parallel
{
int num = omp_get_thread_num();
if (num==0) local_results[num] = f(x)
else if (num==1) local_results[num] = g(x)
else if (num==2) local_results[num] = h(x)

}
result = local_results[0]+local_results[1]+local_results[2]

While this code is correct, it may be inefficient because of a phenomemon called false sharing . Even though
the threads write to separate variables, those variables are likely to be on the same cacheline (see HPSC-
1.4.1.2 for an explanation). This means that the cores will be wasting a lot of time and bandwidth updating
each other’s copy of this cacheline.

False sharing can be prevent by giving each thread its own cacheline:

double result,local_results[3][8];
#pragma omp parallel
{

int num = omp_get_thread_num();
if (num==0) local_results[num][1] = f(x)

// et cetera
}

A more elegant solution gives each thread a true local variable, and uses a critical section to sum these, at
the very end:
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double result = 0;
#pragma omp parallel
{

double local_result;
local_result = .....

#pragam omp critical
result += local_result;

}

18.1 Reduction operators

Arithmetic reductions: +, ∗,−,max,min

Logical operator reductions in C: & && | || ˆ

Logical operator reductions in Fortran: .and. .or. .eqv. .neqv. .iand. .ior. .ieor.

Exercise 18.2. The maximum and minimum reductions were not added to OpenMP until
version 3.1. Write a parallel loop that computes the maximum and minimum values
in an array. Discuss the various options. Do timings to evaluate the speedup that is
attained and to find the best option.

18.2 Initial value for reductions

The initialization values are mostly self-evident, such as zero for addition and one for multiplication. For
min and max they are respectively the maximal and minimal representable value of the result type.

Exercise 18.3. Write a program to test the fact that the partial results are initialized to the unit
of the reduction operator.

18.3 Reductions and floating-point math

The mechanisms that OpenMP uses to make a reduction parallel go against the strict rules for floating point
expression evaluation in C; see HPSC-3.4. OpenMP ignores this issue: it is the programmer’s job to ensure
proper rounding behaviour.
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Chapter 19

OpenMP topic 6: Synchronization

In the constructs for declaring parallel regions above, you had little control over in what order threads
executed the work they were assigned. This section will discuss synchronization constructs: ways of telling
threads to bring a certain order to the sequence in which they do things.

• critical: a section of code can only be executed by one thread at a time; see 23.3.1.
• atomic Update of a single memory location. Only certain specified syntax pattterns are sup-

ported. This was added in order to be able to use hardware support for atomic updates.
• barrier: section 19.1
• ordered
• locks: section 23.3.2
• flush: section 23.4.3
• nowait

19.1 Barrier

A barrier defines a point in the code where all active threads will stop until all threads have arrived at that
point. With this, you can guarantee that certain calculations are finished. For instance, in this code snippet,
computation of y can not proceed until another thread has computed its value of x.

#pragma omp parallel
{
int mytid = omp_get_thread_num();
x[mytid] = some_calculation();
y[mytid] = x[mytid]+x[mytid+1];

}

This can be guaranteed with a barrier pragma:

#pragma omp parallel
{
int mytid = omp_get_thread_num();
x[mytid] = some_calculation();
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#pragma omp barrier
y[mytid] = x[mytid]+x[mytid+1];

}

Apart from the barrier directive, which inserts an explicit barrier, OpenMP has implicit barriers after a load
sharing construct. Thus the following code is well defined:

#pragma omp parallel
{
#pragma omp for

for (int mytid=0; mytid<number_of_threads; mytid++)
x[mytid] = some_calculation();

#pragma omp for
for (int mytid=0; mytid<number_of_threads-1; mytid++)

y[mytid] = x[mytid]+x[mytid+1];
}

You can also put each parallel loop in a parallel region of its own, but there is some overhead associated
with creating and deleting the team of threads in between the regions.

19.1.1 Implicit barriers

At the end of a parallel region the team of threads is dissolved and only the master thread continues.
Therefore, there is an implicit barrier at the end of a parallel region .

There is some barrier behaviour associated with omp for loops and other worksharing constructs (see
section ??). For instance, there is an implicit barrier at the end of the loop. This barrier behaviour can be
cancelled with the nowait clause.

You will often see the idiom

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<N; i++)
a[i] = // some expression

#pragma omp for
for (i=0; i<N; i++)

b[i] = ...... a[i] ......

Here the nowait clause implies that threads can start on the second loop while other threads are still
working on the first. Since the two loops use the same schedule here, an iteration that uses a[i] can
indeed rely on it that that value has been computed.
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19.2 Mutual exclusion

Sometimes it is necessary to let only one thread execute a piece of code. Such a piece of code is called a
critical section , and OpenMP has several mechanisms for realizing this.

The most common use of critical sections is to update a variable. Since updating involves reading the old
value, and writing back the new, this has the possibility for a race condition: another thread reads the current
value before the first can update it; the second thread the updates to the wrong value.

Critical sections are an easy way to turn an existing code into a correct parallel code. However, there are
disadvantages to this, and sometimes a more drastic rewrite is called for.

19.2.1 critical and atomic

The reference for the commands introduced here can be found in section 23.3.1.

There are two pragmas for critical sections: critical and atomic. The second one is more limited but
has performance advantages.

The typical application of a critical section is to update a variable:

#pragma omp parallel
{

int mytid = omp_get_thread_num();
double tmp = some_function(mytid);

#pragma omp critical
sum += tmp;

}

Exercise 19.1. Consider a loop where each iteration updates a variable.
#pragma omp parallel for shared(result)

for ( i ) {
result += some_function_of(i);

}

Discuss qualitatively the difference between:
• turning the update statement into a critical section, versus
• letting the threads accumulate into a private variable tmp as above, and

summing these after the loop.
Do an Ahmdal-style quantitative analysis of the first case, assuming that you do n
iterations on p threads, and each iteration has a critical section that takes a
fraction f . Assume the number of iterations n is a multiple of the number of
threads p. Also assume the default static distribution of loop iterations over the
threads.

A critical section works by acquiring a lock, which carries a substantial overhead. Furthermore, if your
code has multiple critical sections, they are all mutually exclusive: if a thread is in one critical section, the
other ones are all blocked.
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On the other hand, the syntax for atomic sections is limited to the update of a single memory location, but
such sections are not exclusive and they can be more efficient, since they assume that there is a hardware
mechanism for making them critical.

The problem with critical sections being mutually exclusive can be mitigated by naming them:

#pragma omp critical (optional_name_in_parens)

19.3 Locks

lock—(textbf

OpenMP also has the traditional mechanism of a lock . A lock is somewhat similar to a critical section:
it guarantees that some instructions can only be performed by one process at a time. However, a critical
section is indeed about code; a lock is about data. With a lock you make sure that some data elements can
only be touched by one process at a time.

One simple example of the use of locks is generation of a histogram . A histogram consists of a number of
bins, that get updated depending on some data. Here is the basic structure of such a code:

int count[100];
float x = some_function();
int ix = (int)x;
if (ix>=100)

error();
else

count[ix]++;

It would be possible to guard the last line:

#pragma omp critical
count[ix]++;

but that is unnecessarily restrictive. If there are enough bins in the histogram, and if the some_function
takes enough time, there are unlikely to be conflicting writes. The solution then is to create an array of
locks, with one lock for each count location.

Exercise 19.2. In the following code, one process sets array A and then uses it to update B;
the other process sets array B and then uses it to update A. Argue that this code can
deadlock. How could you fix this?

#pragma omp parallel shared(a, b, nthreads, locka, lockb)
#pragma omp sections nowait

{
#pragma omp section
{
omp_set_lock(&locka);
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for (i=0; i<N; i++)
a[i] = ..

omp_set_lock(&lockb);
for (i=0; i<N; i++)

b[i] = .. a[i] ..
omp_unset_lock(&lockb);
omp_unset_lock(&locka);
}

#pragma omp section
{
omp_set_lock(&lockb);
for (i=0; i<N; i++)

b[i] = ...

omp_set_lock(&locka);
for (i=0; i<N; i++)

a[i] = .. b[i] ..
omp_unset_lock(&locka);
omp_unset_lock(&lockb);
}

} /* end of sections */
} /* end of parallel region */

19.3.1 Nested locks

A lock as explained above can not be locked if it is already locked. A nested lock can be locked multiple
times by the same thread before being unlocked.

• omp_init_nest_lock
• omp_destroy_nest_lock
• omp_set_nest_lock
• omp_unset_nest_lock
• omp_test_nest_lock

lock—)

19.4 Example: Fibonacci computation

The Fibonacci sequence is recursively defined as

F (0) = 1, F (1) = 1, F (n) = F (n− 1) + F (n− 2) for n ≥ 2.

We start by sketching the basic single-threaded solution. The naive code looks like:
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int main() {
value = new int[nmax+1];
value[0] = 1;
value[1] = 1;
fib(10);

}

int fib(int n) {
int i, j, result;
if (n>=2) {

i=fib(n-1); j=fib(n-2);
value[n] = i+j;

}
return value[n];

}

Howver, this is inefficienty, since most intermediate values will be computed more than once. We solve this
by keeping track of which results are known:

...
done = new int[nmax+1];
for (i=0; i<=nmax; i++)

done[i] = 0;
done[0] = 1;
done[1] = 1;
...

int fib(int n) {
int i, j;
if (!done[n]) {

i = fib(n-1); j = fib(n-2);
value[n] = i+j; done[n] = 1;

}
return value[n];

}

The OpenMP parallel solution calls for two different ideas. First of all, we parallelize the recursion by using
tasks (section 20:

int fib(int n) {
int i, j;
if (n>=2) {

#pragma omp task shared(i) firstprivate(n)
i=fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j=fib(n-2);
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#pragma omp taskwait
value[n] = i+j;

}
return value[n];

}

This computes the right solution, but, as in the naive single-threaded solution, it recomputes many of the
intermediate values.

A naive addition of the done array leads to data races, and probably an incorrect solution:
int fib(int n) {
int i, j, result;
if (!done[n]) {

#pragma omp task shared(i) firstprivate(n)
i=fib(n-1);

#pragma omp task shared(i) firstprivate(n)
j=fib(n-2);

#pragma omp taskwait
value[n] = i+j;
done[n] = 1;

}
return value[n];

}

For instance, there is no guarantee that the done array is updated later than the value array, so a thread
can think that done[n-1] is true, but value[n-1] does not have the right value yet.

One solution to this problem is to use a lock, and make sure that, for a given index n, the values done[n]
and value[n] are never touched by more than one thread at a time:

int fib(int n)
{
int i, j;
omp_set_lock( &(dolock[n]) );
if (!done[n]) {

#pragma omp task shared(i) firstprivate(n)
i = fib(n-1);

#pragma omp task shared(j) firstprivate(n)
j = fib(n-2);

#pragma omp taskwait
value[n] = i+j;
done[n] = 1;

}
omp_unset_lock( &(dolock[n]) );
return value[n];
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}

This solution is correct, optimally efficient in the sense that it does not recompute anything, and it uses
tasks to obtain a parallel execution.

However, the efficiency of this solution is only up to a constant. A lock is still being set, even if a value
is already computed and therefore will only be read. This can be solved with a complicated use of critical
sections, but we will forego this.
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OpenMP topic 7: Tasks

Tasks are a mechanism that OpenMP uses under the cover: if you specify something as being parallel,
OpenMP will create a ‘block of work’: a section of code plus the data environment in which it occurred.
This block is set aside for execution at some later point.

Let’s look at a simple example using the task directive.

Code Execution
x = f(); the variable x gets a value
#pragma omp task

a task is created with the current value of x{ y = g(x); }
z = h(); the variable z gets a value

The thread that executes this code segment creates a task, which will later be executed, probably by a
different thread. The exact timing of the execution of the task is up to a task scheduler , which operates
invisible to the user.

The task mechanism allows you to do things that are hard or impossible with the loop and section constructs.
For instance, a while loop traversing a linked list can be implemented with tasks:

Code Execution
p = head_of_list(); one thread traverses the list
while (!end_of_list(p)) {
#pragma omp task a task is created,
process( p ); one for each element
p = next_element(p); the generating thread goes on without waiting
} the tasks are executed while more are being generated.

The way tasks and threads interact is different from the worksharing constructs you’ve seen so far. Typically,
one thread will generate the tasks, adding them to a queue, from which all threads can take and execute
them. This leads to the following idiom:

#pragma omp parallel
#pragma omp single
{
...

#pragma omp task
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{ ... }
...

}

1. A parallel region creates a team of threads;
2. a single thread then creates the tasks, adding them to a queue that belongs to the team,
3. and all the threads in that team (possibly including the one that generated the tasks)

With tasks it becomes possible to parallelize processes that did not fit the earlier OpenMP constructs. For
instance, if a certain operation needs to be applied to all elements of a linked list, you can have one thread
go down the list, generating a task for each element of the list.

Another concept that was hard to parallelize earlier is the ‘while loop’. This does not fit the requirement for
OpenMP parallel loops that the loop bound needs to be known before the loop executes.
Exercise 20.1. Use tasks to find the smallest factor of a large number (using 2999 · 3001 as

test case): generate a task for each trial factor. Start with this code:
int factor=0;

#pragma omp parallel
#pragma omp single

for (int f=2; f<4000; f++) {
{ // see if ‘f’ is a factor
if (N%f==0) { // found factor!

factor = f;
}

}
if (factor>0)
break;

}
if (factor>0)

printf("Found a factor: %d\n",factor);

• Turn the factor finding block into a task.
• Run your program a number of times:

for i in ‘seq 1 1000‘ ; do ./taskfactor ; done | grep -v 2999

Does it find the wrong factor? Why? Try to fix this.
• Once a factor has been found, you should stop generating tasks. Let tasks that

should not have been generated, meaning that they test a candidate larger than
the factor found, print out a message.

20.1 Task data

Treatment of data in a task is somewhat subtle. The basic problem is that a task gets created at one time,
and executed at another. Thus, if shared data is accessed, does the task see the value at creation time or at
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execution time? In fact, both possibilities make sense depending on the application, so we need to discuss
the rules when which possibility applies.

The first rule is that shared data is shared in the task, but private data becomes firstprivate. To see
the distinction, consider two code fragments. In the first example:

int count = 100;
#pragma omp parallel
#pragma omp single
{
while (count>0) {

#pragma omp task
{

int countcopy = count;
if (count==50) {

sleep(1);
printf("%d,%d\n",count,countcopy);

} // end if
} // end task
count--;

} // end while
} // end single

the variable count is declared outside the parallel region and is therefore shared. When the print statement
is executed, all tasks will have been generated, and so count will be zero. Thus, the output will likely be
0,50.

In the second example:

#pragma omp parallel
#pragma omp single
{
int count = 100;
while (count>0) {

#pragma omp task
{

int countcopy = count;
if (count==50) {

sleep(1);
printf("%d,%d\n",count,countcopy);

} // end if
} // end task
count--;

} // end while
} // end single
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the count variable is private to the thread creating the tasks, and so it will be firstprivate in the
task, preserving the value that was current when the task was created.

20.2 Task synchronization

Even though the above segment looks like a linear set of statements, it is impossible to say when the code
after the task directive will be executed. This means that the following code is incorrect:

x = f();
#pragma omp task

{ y = g(x); }
z = h(y);

Explanation: when the statement computing z is executed, the task computing y has only been scheduled;
it has not necessarily been executed yet.

In order to have a guarantee that a task is finished, you need the taskwait directive. The following creates
two tasks, which can be executed in parallel, and then waits for the results:

Code Execution
x = f(); the variable x gets a value

#pragma omp task

two tasks are created with the current value of x
{ y1 = g1(x); }

#pragma omp task
{ y2 = g2(x); }

#pragma omp taskwait the thread waits until the tasks are finished
z = h(y1)+h(y2); the variable z is computed using the task results

The task pragma is followed by a structured block. Each time the structured block is encountered, a new
task is generated. On the other hand taskwait is a standalone directive; the code that follows is just code,
it is not a structured block belonging to the directive.

Another aspect of the distinction between generating tasks and executing them: usually the tasks are gen-
erated by one thread, but executed by many threads. Thus, the typical idiom is:

#pragma omp parallel
#pragma omp single
{

// code that generates tasks
}

This makes it possible to execute loops in parallel that do not have the right kind of iteration structure for a
omp parallel for. As an example, you could traverse and process a linked list:

#pragma omp parallel
#pragma omp single
{
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while (!tail(p)) {
p = p->next();

#pragma omp task
process(p)

}
#pragma omp taskwait
}

One task traverses the linked list creating an independent task for each element in the list. These tasks are
then executed in parallel; their assignment to threads is done by the task scheduler.

You can indicate task dependencies in several ways:

1. Using the ‘task wait’ directive you can explicitly indicate the join of the forked tasks. The
instruction after the wait directive will therefore be dependent on the spawned tasks.

2. The taskgroup directive, followed by a structured block, ensures completion of all tasks
created in the block, even if recursively created.

3. Each OpenMP task can have a depend clause, indicating what data dependency of the task.
By indicating what data is produced or absorbed by the tasks, the scheduler can construct the
dependency graph for you.

Another mechanism for dealing with tasks is the taskgroup: a task group is a code block that can contain
task directives; all these tasks need to be finished before any statement after the block is executed.

A task group is somewhat similar to having a taskwait directive after the block. The big difference is
that that taskwait directive does not wait for tasks that are recursively generated, while a taskgroup
does.

20.3 Task dependencies

It is possible to put a partial ordering on tasks through use of the depend clause. For example, in

#pragma omp task
x = f()

#pragma omp task
y = g(x)

it is conceivable that the second task is executed before the first, possibly leading to an incorrect result. This
is remedied by specifying:

#pragma omp task depend(out:x)
x = f()

#pragma omp task depend(in:x)
y = g(x)

Exercise 20.2. Consider the following code:
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for i in [1:N]:
x[0,i] = some_function_of(i)
x[i,0] = some_function_of(i)

for i in [1:N]:
for j in [1:N]:

x[i,j] = x[i-1,j]+x[i,j-1]

• Observe that the second loop nest is not amenable to OpenMP loop
parallelism.
• Can you think of a way to realize the computation with OpenMP loop

parallelism? Hint: you need to rewrite the code so that the same operations are
done in a different order.
• Use tasks with dependencies to make this code parallel without any rewriting:

the only change is to add OpenMP directives.

Tasks dependencies are used to indicated how two uses of one data item relate to each other. Since either
use can be a read or a write, there are four types of dependencies.

RaW (Read after Write) The second task reads an item that the first task writes. The second task has to
be executed after the first:

... omp task depend(OUT:x)
foo(x)

... omp task depend( IN:x)
foo(x)

WaR (Write after Read) The first task reads and item, and the second task overwrites it. The second task
has to be executed second to prevent overwriting the initial value:

... omp task depend( IN:x)
foo(x)

... omp task depend(OUT:x)
foo(x)

WaW (Write after Write) Both tasks set the same variable. Since the variable can be used by an interme-
diate task, the two writes have to be executed in this order.

... omp task depend(OUT:x)
foo(x)

... omp task depend(OUT:x)
foo(x)

RaR (Read after Read) Both tasks read a variable. Since neither tasks has an ‘out’ declaration, they can
run in either order.

... omp task depend(IN:x)
foo(x)

... omp task depend(IN:x)
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foo(x)

20.4 More

20.4.1 Scheduling points

Normally, a task stays tied to the thread that first executes it. However, at a task scheduling point the thread
may switch to the execution of another task created by the same team.

• There is a scheduling point after explicit task creation. This means that, in the above examples,
the thread creating the tasks can also participate in executing them.

• There is a scheduling point at taskwait and taskyield.

On the other hand a task created with them untied clause on the task pragma is never tied to one thread.
This means that after suspension at a scheduling point any thread can resume execution of the task. If you
do this, beware that the value of a thread-id does not stay fixed. Also locks become a problem.

Example: if a thread is waiting for a lock, with a scheduling point it can suspend the task and work on
another task.

while (!omp_test_lock(lock))
#pragma omp taskyield
;

20.4.2 Task cancelling

It is possible (in OpenMP version 4 ) to cancel tasks. This is useful when tasks are used to perform a search:
the task that finds the result first can cancel any outstanding search tasks.

The directive cancel takes an argument of the surrounding construct (parallel, for, sections,
taskgroup) in which the tasks are cancelled.

Exercise 20.3. Modify the prime finding example.

20.5 Examples

20.5.1 Fibonacci

As an example of the use of tasks, consider computing an array of Fibonacci values:

// taskgroup0.c
for (int i=2; i<N; i++)
{

fibo_values[i] = fibo_values[i-1]+fibo_values[i-2];
}
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If you simply turn each calculation into a task, results will be unpredictable (confirm this!) since tasks can
be executed in any sequence. To solve this, we put dependencies on the tasks:

// taskgroup2.c
for (int i=2; i<N; i++)

#pragma omp task \
depend(out:fibo_values[i]) \
depend(in:fibo_values[i-1],fibo_values[i-2])

{
fibo_values[i] = fibo_values[i-1]+fibo_values[i-2];

}

20.5.2 Binomial coefficients

Exercise 20.4. An array of binomial coefficients can be computed as follows:
// binomial1.c
for (int row=1; row<=n; row++)

for (int col=1; col<=row; col++)
if (row==1 || col==1 || col==row)

array[row][col] = 1;
else

array[row][col] = array[row-1][col-1] + array[row-1][col];

Putting a single task group around the double loop, and use depend clauses to
make the execution satisfy the proper dependencies.

20.5.3 Tree traversal

OpenMP tasks are a great way of handling trees.

20.5.3.1 Post-order traversal

In post-order tree traversal you visit the subtrees before visiting the root. This is the traversal that you use
to find summary information about a tree, for instance the sum of all nodes, and the sums of nodes of all
subtrees:

for all children c do
compute the sum sc

s←
∑

c sc

Another example is matrix factorization:

S = A33 −A31A
−1
11 A13 −A32A

−1
22 A23

where the two inverses A−111 , A
−1
22 can be computed indepedently and recursively.
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20.5.3.2 Pre-order traversal

If a property needs to propagate from the root to all subtrees and nodes, you can use pre-order tree traversal :

Update node value s

for all children c do
update c with the new value s
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OpenMP topic 8: Affinity

21.1 Affinity control outside OpenMP

The Intel compiler has an environment variable for affinity control:

export KMP_AFFINITY=verbose,scatter

values: none,scatter,compact

For gcc:

export GOMP_CPU_AFFINITY=0,8,1,9

For the Sun compiler:

SUNW_MP_PROCBIND

OS level commands: taskset, numactl

System calls: sched_setaffinity()

21.2 OpenMP thread affinity control

The matter of thread affinity becomes important on multi-socket nodes; see the example in section 25.3.

Thread placement can be controlled with:

• the environment variable OMP_PROC_BIND. The easiest way is to set
export OMP_PROC_BIND=true

in your environment, which prevents the operating system from migrating a thread . This effect
can be made local by giving the proc bind clause in the parallel directive. Values are:
false, true, master, close, spread.

– false: set no binding
– true: lock threads to a core
– master: collocate threads with the master thread
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– close: place threads close to the master in the places list
– spread: spread out threads as much as possible
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OpenMP topics

22.1 Runtime functions and internal control variables

OpenMP has a number of settings that can be set through environment variables, and both queried and set
through library routines. These settings are called Internal Control Variables (ICVs): an OpenMP imple-
mentation behaves as if there is an internal variable storing this setting.

The runtime functions are:
• omp_set_num_threads
• omp_get_num_threads
• omp_get_max_threads
• omp_get_thread_num
• omp_get_num_procs
• omp_in_parallel
• omp_set_dynamic
• omp_get_dynamic
• omp_set_nested
• omp_get_nested
• omp_get_wtime
• omp_get_wtick
• omp_set_schedule
• omp_get_schedule
• omp_set_max_active_levels
• omp_get_max_active_levels
• omp_get_thread_limit
• omp_get_level
• omp_get_active_level
• omp_get_ancestor_thread_num
• omp_get_team_size

First, there are 4 ICVs that behave as if each thread has its own copy of them. The default is implementation-
defined unless otherwise noted.

• It may be possible to adjust dynamically the number of threads for a parallel region. Variable:
OMP_DYNAMIC; routines: omp_set_dynamic, omp_get_dynamic.
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• If a code contains nested parallel regions , the inner regions may create new teams, or they
may be executed by the single thread that encounters them. Variable: OMP_NESTED; routines
omp_set_nested, omp_get_nested. Allowed values are TRUE and FALSE; the default
is false.
• The number of threads used for an encountered parallel region can be controlled. Variable:
OMP_NUM_THREADS; routines omp_set_num_threads, omp_get_max_threads.
• The schedule for a parallel loop can be set. Variable: OMP_SCHEDULE; routines omp_set_
schedule, omp_get_schedule.

Non-obvious syntax:

export OMP_SCHEDULE="static,100"

Other settings:

• omp_get_num_threads: query the number of threads active at the current place in the code;
this can be lower than what was set with omp_set_num_threads. For a meaningful answer,
this should be done in a parallel region.
• omp_get_thread_num
• omp_in_parallel: test if you are in a parallel region (see for instance section 14).
• omp_get_num_procs: query the physical number of cores available.

Other environment variables:

• OMP_STACKSIZE controls the amount of space that is allocated as per-thread stack ; the space
for private variables.
• OMP_WAIT_POLICY determines the behaviour of threads that wait, for instance for critical

section:
– ACTIVE puts the thread in a spin-lock , where it actively checks whether it can continue;
– PASSIVE puts the thread to sleep until the Operating System (OS) wakes it up.

The ‘active’ strategy uses CPU while the thread is waiting; on the other hand, activating it after
the wait is instantaneous. With the ‘passive’ strategy, the thread does not use any CPU while
waiting, but activating it again is expensive. Thus, the passive strategy only makes sense if
threads will be waiting for a (relatively) long time.
• OMP_PROC_BIND with values TRUE and FALSE can bind threads to a processor. On the one

hand, doing so can minimize data movement; on the other hand, it may increase load imbalance.

22.2 Version 4 functionality

22.2.1 SIMD

You can declare a loop to be executable with vector instructions with simd

The simd pragma has the following clauses:

• safelen(n): limits the number of iterations in a SIMD chunk. Presumably useful if you
combine parallel for simd.
• linear: lists variables that have a linear relation to the iteration parameter.
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• aligned: specifies alignment of variables.

If your SIMD loop includes a function call, you can declare that the function can be turned into vector
instructions with declare simd

If a loop is both multi-threadable and vectorizable, you can combine directives as pragma omp parallel
for simd.

22.3 Stuff

22.3.1 Timing

The reference for the commands introduced here can be found in section 23.4.1.

OpenMP has a wall clock timer routine omp_get_wtime with resolution omp_get_wtick.

Exercise 22.1. Use the timing routines to demonstrate speedup from using multiple threads.
• Write a code segment that takes a measurable amount of time, that is, it should

take a multiple of the tick time.
• Write a parallel loop and measure the speedup. You can for instance do this

for (int use_threads=1; use_threads<=nthreads; use_threads++) {
#pragma omp parallel for num_threads(use_threads)

for (int i=0; i<nthreads; i++) {
.....

}
if (use_threads==1)

time1 = tend-tstart;
else // compute speedup

• In order to prevent the compiler from optimizing your loop away, let the body
compute a result and use a reduction to preserve these results.

22.3.2 Dependency analysis

If two statements refer to the same data item, we say that there is a data dependency between the statements.
Such dependencies limit the extent to which the execution of the statements can be rearranged. The study of
this topic probably started in the 1960s, when processors could execute statements out of order to increase
throughput. The re-ordering of statements was limited by the fact that the execution had to obey the program
order semantics: the result had to be as if the statements were executed strictly in the order in which they
appear in the program.

These issues of statement ordering, and therefore of data dependencies, arise in OpenMP in two main ways:

1. When a loop is parallelized, the iterations are no longer executed in their program order, so we
have to check for dependencies.

2. The introduction of tasks also means that parts of a program can be executed in a different order
from in which they appear in a sequential execution.
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The easiest case of dependency analysis is that of detecting that loop iterations can be executed indepen-
dently. Iterations are of course independent if a data item is read in two different iterations, but if the same
item is read in one iteration and written in another, or written in two different iterations, we need to do
further analysis.

Analysis of data dependencies can be performed by a compiler, but compilers take, of necessity, a conser-
vative approach. This means that iterations may be independent, but can not be recognized as such by a
compiler. Therefore, OpenMP shifts this responsibility to the programmer; see for instance section 15.5.

The three types of dependencies are:
• flow dependencies, or ‘read-after-write’;
• anti dependencies, or ‘write-after-read’; and
• output dependencies, or ‘write-after-write’.
for (i) {
y[i] = t;
x[i+1] = y[i+1];
t = x[i];

}

22.3.2.1 Flow dependencies

Flow dependencies, or read-afer-write, are not a problem if the read and write occur in the same loop
iteration:

for (i=0; i<N; i++) {
x[i] = .... ;
.... = ... x[i] ... ;

}

On the other hand, if the read happens in a later iteration, there is no simple way to parallelize the loop:
for (i=0; i<N; i++) {
.... = ... x[i] ... ;
x[i+1] = .... ;

}

This usually requires rewriting the code.

22.3.2.2 Anti dependencies

The simplest case of write-after-read is a reduction:
for (i=0; i<N; i++) {
t = t + .....

}
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This can be dealt with by explicit declaring the loop to be a reduction, or to use any of the other strategies
in section 18.

If the read and write are on an array the situation is more complicated. The iterations in this fragment

for (i=0; i<N; i++) {
x[i] = ... x[i+1] ... ;

}

can not be executed in arbitrary order as such. However, conceptually there is no dependency. We can solve
this by introducing a temporary array:

for (i=0; i<N; i++)
xtmp[i] = x[i];

for (i=0; i<N; i++) {
x[i] = ... xtmp[i+1] ... ;

}

This is an example of a transformation that a compiler is unlikely to perform, since it can greatly affect the
memory demands of the program. Thus, this is left to the programmer.

22.3.2.3 Output dependencies

The case of write-after-write does not occur by itself: if a variable is written twice in sequence without an
intervening read, the first write can be removed without changing the meaning of the program. Thus, this
case reduces to a flow dependency.

Other output dependencies can easily be removed. In the following code, t can be declared private, thereby
removing the dependency.

for (i=0; i<N; i++) {
t = f(i)
s += t*t;

}

If the final value of t is wanted, the lastprivate can be used.

22.3.3 Thread safety

With OpenMP it is relatively easy to take existing code and make it parallel by introducing parallel sections.
If you’re careful to declare the appropriate variables shared and private, this may work fine. However, your
code may include calls to library routines that include a race condition; such code is said not to be thread-
safe.

For example a routine
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static int isave;
int next_one() {
int i = isave;
isave += 1;
return i;
}

...
for ( .... ) {
int ivalue = next_one();

}

has a clear race condition, as the iterations of the loop may get different next_one values, as they are
supposed to, or not. This can be solved by using an critical pragma for the next_one call; another
solution is to use an threadprivate declaration for isave. This is for instance the right solution if the
next_one routine implements a random number generator .

22.3.4 Relaxed memory model

The reference for the commands introduced here can be found in section 23.4.3.

22.3.4.1 Thread synchronization

Let’s do a producer-consumer model1. This can be implemented with sections, where one section, the
producer, sets a flag when data is available, and the other, the consumer, waits until the flag is set.

#pragma omp parallel sections
{

// the producer
#pragma omp section
{
... do some producing work ...
flag = 1;

}
// the consumer
#pragma omp section
{
while (flag==0) { }
... do some consuming work ...

}
}

1. This example is from Intel’s excellent OMP course by Tim Mattson
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One reason this doesn’t work, is that the compiler will see that the flag is never used in the producing
section, and that is never changed in the consuming section, so it may optimize these statements, to the
point of optimizing them away.

The producer then needs to do:

... do some producing work ...
#pragma omp flush
#pragma atomic write

flag = 1;
#pragma omp flush(flag)

and the consumer does:

#pragma omp flush(flag)
while (flag==0) {

#pragma omp flush(flag)
}
#pragma omp flush

This code strictly speaking has a race condition on the flag variable. It is better to use an atomic pragma
here: the producer has

#pragma atomic write
flag = 1;

and the consumer:

while (1) {
#pragma omp flush(flag)
#pragma omp atomic read

flag_read = flag
if (flag_read==1) break;

}

22.3.5 Accelerators

In OpenMP 4.0 there is support for offloading work to an accelerator or co-processor:

#pragma omp target [clauses]

with clauses such as

• data: place data
• update: make data consistent between host and device
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22.3.6 SIMD

OpenMP 4.0 has a way of indicating that a loop should not be arbitrarily divided over threads, but should
be executed over simd lanes:

#pragma omp simd [clauses]

22.3.7 Overhead costs

Code parallelization ideally divides the running time of your program by the number of parallel processing
entities. In practice, the following factors counteract this.

22.3.7.1 Amdahl effects

Any code will have parts that are not parallelizable. Amdahl’s law (see HPSC-2.2.3) quantizes the effect
this has on parallel speedup. In an OpenMP code, the sections that are executed by a single thread will play
the role of the sequential part.

22.3.7.2 Thread overhead

At the start of an OpenMP program, a pool of threads is created. This incurs a one-time overhead that will
probably be amortized over the total runtime.

Work sharing constructs act as if they create a new team of threads every time. In practice, the program
probably keeps a pool of threads around that are dormant in between parallel sections. This means that
there is no thread creation overhead associated with the start of a parallel section.

22.3.7.3 Load balance

On the other hand, at the end of a work sharing construct there is a barrier, so an unbalanced load distribution
will decrease the parallel efficiency. If loop iterations are not uniform in their running time, it may pay off
to use dynamic rather than static scheduling.

On the other other hand, dynamic scheduling has overhead of its own, since it involves the operating system.

22.3.7.4 Synchronization

Various synchronization constructs, such as critical sections, as well as dynamic loop scheduling, are re-
alized through operating system functions. These are often quite costly, taking many thousands of cycles.
Thus, the cost of a critical sections goes far beyond the Amdahl cost of the loss of paralellism. Critical
sections should be used only if the parallel work far outweighs it.
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22.4 Performance

The performance of an OpenMP code can be influenced by the following2::

• Amdahl effects
• Communication
• Data affinity
• Load imbalance
• Synchronization

Sequential code must clearly be kept to a minimum.

Cache coherence induces communication. Some of that is unavoidable, but see the next point.

Data is cached, so to minimize communication access to it should be as much as possible on the same core.
This is known as affinity.

Load imbalance can be counteracted by using different loop schedules. The loop should be on as high a
level as possible.

Barriers are a form of synchronization. They are expensive by themselves, and they expose load imbalance.
Implicit barriers happen at the end of worksharing constructs; they can be removed with nowait.

2. This section is inspired by a presentation by Alexei Strelchenko.
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This section gives reference information and illustrative examples of the use of OpenMP. While the code
snippets given here should be enough, full programs can be found in the repository for this book https:
//bitbucket.org/VictorEijkhout/parallel-computing-book.

The definitive information on OpenMP can be found on http://openmp.org/; more tutorials can
be found at http://openmp.org/wp/resources/ where the one by Tim Mattson is particularly
recommended.

23.1 Reference stuff

23.2 Controlling thread data

23.2.1 Shared data

Data that existed in the master thread of a team is shared between the team. This is default behaviour. The
clause shared can be used for completeness, for instance if default(none) is declared.

While shared data is readable and writable by every thread, their view of data may not always be consistent.
Therefore, reads should be preceded by a flush command. Fortunately, in many cases this is done by
default; see section 23.4.3.

23.2.2 Private data

This reference section gives the syntax for routines introduced in section 17.2.

Data that is declared private with the private directive is put on a separate stack per thread . The OpenMP
standard does not dictate the size of these stacks, but beware of stack overflow. A typical default is a few
megabyte; you can control it with the environment variable OMP_STACKSIZE. Its values can be literal or
with suffixes:

123 456k 567K 678m 789M 246g 357G

A normal Unix process also has a stack, but this is independent of the OpenMP stacks for private data. You
can query or set the Unix stack with ulimit:
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[] ulimit -s
64000
[] ulimit -s 8192
[] ulimit -s
8192

The Unix stack can grow dynamically as space is needed. This does not hold for the OpenMP stacks: they
are immediately allocated at their requested size. Thus it is important not too make them too large.

23.2.3 Data in dynamic scope

Functions that are called from a parallel region fall in the dynamic scope of that parallel region. The rules
for variables in that function are as follows:

• Any variables locally defined to the function are private.
• static variables in C and save variables in Fortran are shared.
• The function arguments inherit their status from the calling environment.

23.3 Synchronization

23.3.1 Critical sections

This reference section gives the syntax for routines introduced in section 19.2.1.

The pragmas critical and atomic are two ways to indicate that a section of code can only be executed
by one thread at a time.

#pragma omp critical [(name)] new-line
structured-block

Not required to be in a parallel region?

23.3.2 Locks

Create/destroy:

void omp_init_lock(omp_lock_t *lock);
void omp_destroy_lock(omp_lock_t *lock);

Set and release:

void omp_set_lock(omp_lock_t *lock);
void omp_unset_lock(omp_lock_t *lock);

Since the set call is blocking, there is also
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omp_test_lock();

Unsetting a lock needs to be done by the thread that set it.

Lock operations implicitly have a flush.

23.4 Stuff

23.4.1 Timing

This reference section gives the syntax for routines introduced in section 22.3.1.

To do OpenMP timing you can use any system utility; however there is a dedicated routine omp_get_
wtime that express the time since some starting point as a double:

double omp_get_wtime(void);

The starting point is arbitrary and is different for each program run; however, in one run it is identical for
all threads.

To measure a time difference:

double tstart,tend,duration;
tstart = omp_get_wtime();
// do stuff
tend = omp_get_wtime();
duration = tend-tstart;

The timer resolution is given by:

double omp_get_wtick(void);

23.4.2 Affinity

For performance it can be a good idea to bind threads to specific processors or cores. OpenMP (as of version
3.1 ) has a mechanism for thread affinity: OMP_PROC_BIND

export OMP_PROC_BIND=true

Apart from this, compilers can have proprietary mechanism; e.g., for the intel compiler the variable is

export KMP_AFFINITY=compact,0

for the sun compiler:

export SUNW_MP_PROCBIND=TRUE
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for gcc (pre-openmp 3.1)

export GOMP_CPU_AFFINITY=0-63

23.4.3 Relaxed memory model

This reference section gives the syntax for routines introduced in section 22.3.4.

flush

• There is an implicit flush of all variables at the start and end of a parallel region .
• There is a flush at each barrier, whether explicit or implicit, such as at the end of a work sharing .
• At entry and exit of a critical section
• When a lock is set or unset.
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OpenMP Review

24.1 Concepts review

24.1.1 Basic concepts

• process / thread / thread team
• threads / cores / tasks
• directives / library functions / environ-

ment variables

24.1.2 Parallel regions

execution by a team

24.1.3 Work sharing

• loop / sections / single / workshare
• implied barrier
• loop scheduling, reduction
• sections
• single vs master
• (F) workshare

24.1.4 Data scope

• shared vs private, C vs F
• loop variables and reduction variables
• default declaration
• firstprivate, lastprivate

24.1.5 Synchronization

• barriers, implied and explicit
• nowait
• critical sections
• locks, difference with critical

24.1.6 Tasks

• generation vs execution
• dependencies
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24.2 Review questions

24.2.1 Directives

What do the following program output?

i n t main ( ) {
p r i n t f ( ” p r o c s %d\n ” ,

omp ge t num procs ( ) ) ;
p r i n t f ( ” t h r e a d s %d\n ” ,

o m p g e t n u m t h r e a d s ( ) ) ;
p r i n t f ( ”num %d\n ” ,

o m p g e t t h r e a d n u m ( ) ) ;
re turn 0 ;

}

i n t main ( ) {
#pragma omp p a r a l l e l
{
p r i n t f ( ” p r o c s %d\n ” ,

omp ge t num procs ( ) ) ;
p r i n t f ( ” t h r e a d s %d\n ” ,

o m p g e t n u m t h r e a d s ( ) ) ;
p r i n t f ( ”num %d\n ” ,

o m p g e t t h r e a d n u m ( ) ) ;
}
re turn 0 ;

}

Program main
use o m p l ib
p r i n t ∗ , ” P r o c s : ” ,&

omp ge t num procs ( )
p r i n t ∗ , ” Threads : ” ,&

o m p g e t n u m t h r e a d s ( )
p r i n t ∗ , ”Num: ” ,&

o m p g e t t h r e a d n u m ( )
End Program

Program main
use o m p l ib

!$OMP p a r a l l e l
p r i n t ∗ , ” P r o c s : ” ,&

omp ge t num procs ( )
p r i n t ∗ , ” Threads : ” ,&

o m p g e t n u m t h r e a d s ( )
p r i n t ∗ , ”Num: ” ,&

o m p g e t t h r e a d n u m ( )
!$OMP end p a r a l l e l
End Program
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24.2.2 Parallelism

Can the following loops be parallelized? If so, how? (Assume that all arrays are already filled in, and that
there are no out-of-bounds errors.)

/ / v a r i a n t #1
f o r ( i =0 ; i<N; i ++) {

x [ i ] = a [ i ]+ b [ i + 1 ] ;
a [ i ] = 2∗x [ i ] + c [ i + 1 ] ;

}

/ / v a r i a n t #2
f o r ( i =0 ; i<N; i ++) {

x [ i ] = a [ i ]+ b [ i + 1 ] ;
a [ i ] = 2∗x [ i +1] + c [ i + 1 ] ;

}

/ / v a r i a n t #3
f o r ( i =1 ; i<N; i ++) {

x [ i ] = a [ i ]+ b [ i + 1 ] ;
a [ i ] = 2∗x [ i −1] + c [ i + 1 ] ;

}

/ / v a r i a n t #4
f o r ( i =1 ; i<N; i ++) {

x [ i ] = a [ i ]+ b [ i + 1 ] ;
a [ i +1] = 2∗x [ i −1] + c [ i + 1 ] ;

}

! v a r i a n t #1
do i =1 ,N

x ( i ) = a ( i )+ b ( i +1)
a ( i ) = 2∗x ( i ) + c ( i +1)

end do

! v a r i a n t #2
do i =1 ,N

x ( i ) = a ( i )+ b ( i +1)
a ( i ) = 2∗x ( i +1) + c ( i +1)

end do

! v a r i a n t #3
do i =2 ,N

x ( i ) = a ( i )+ b ( i +1)
a ( i ) = 2∗x ( i −1) + c ( i +1)

end do

! v a r i a n t #3
do i =2 ,N

x ( i ) = a ( i )+ b ( i +1)
a ( i +1) = 2∗x ( i −1) + c ( i +1)

end do
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24.2.3 Data and synchronization

24.2.3.1

What is the output of the following fragments? Assume that there are four threads.

/ / v a r i a n t #1
i n t n t ;
#pragma omp p a r a l l e l
{
n t = o m p g e t t h r e a d n u m ( ) ;
p r i n t f ( ” t h r e a d number : %d\n ” , n t ) ;
}

/ / v a r i a n t #2
i n t n t ;
#pragma omp p a r a l l e l p r i v a t e ( n t )
{
n t = o m p g e t t h r e a d n u m ( ) ;
p r i n t f ( ” t h r e a d number : %d\n ” , n t ) ;
}

/ / v a r i a n t #3
i n t n t ;
#pragma omp p a r a l l e l
{

#pragma omp s i n g l e
{
n t = o m p g e t t h r e a d n u m ( ) ;
p r i n t f ( ” t h r e a d number : %d\n ” , n t ) ;
}

}

/ / v a r i a n t #4
i n t n t ;
#pragma omp p a r a l l e l
{

#pragma omp m a s t e r
{
n t = o m p g e t t h r e a d n u m ( ) ;
p r i n t f ( ” t h r e a d number : %d\n ” , n t ) ;
}

}

/ / v a r i a n t #5
i n t n t ;
#pragma omp p a r a l l e l
{

#pragma omp c r i t i c a l
{
n t = o m p g e t t h r e a d n u m ( ) ;
p r i n t f ( ” t h r e a d number : %d\n ” , n t ) ;
}

}

! v a r i a n t #1
i n t e g e r n t

!$OMP p a r a l l e l
n t = o m p g e t t h r e a d n u m ( )
p r i n t ∗ , ” t h r e a d number : ” , n t

!$OMP end p a r a l l e l

! v a r i a n t #2
i n t e g e r n t

!$OMP p a r a l l e l p r i v a t e ( n t )
n t = o m p g e t t h r e a d n u m ( )
p r i n t ∗ , ” t h r e a d number : ” , n t

!$OMP end p a r a l l e l

! v a r i a n t #3
i n t e g e r n t

!$OMP p a r a l l e l
!$OMP s i n g l e

n t = o m p g e t t h r e a d n u m ( )
p r i n t ∗ , ” t h r e a d number : ” , n t

!$OMP end s i n g l e
!$OMP end p a r a l l e l
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! v a r i a n t #4
i n t e g e r n t

!$OMP p a r a l l e l
!$OMP ma s t e r

n t = o m p g e t t h r e a d n u m ( )
p r i n t ∗ , ” t h r e a d number : ” , n t

!$OMP end ma s t e r
!$OMP end p a r a l l e l

! v a r i a n t #5
i n t e g e r n t

!$OMP p a r a l l e l
!$OMP c r i t i c a l

n t = o m p g e t t h r e a d n u m ( )
p r i n t ∗ , ” t h r e a d number : ” , n t

!$OMP end c r i t i c a l
!$OMP end p a r a l l e l

24.2.3.2

The following is an attempt to parallelize a serial code. Assume that all variables and arrays are defined.
What errors and potential problems do you see in this code? How would you fix them?

#pragma omp p a r a l l e l
{

x = f ( ) ;
# pragma omp f o r
f o r ( i =0 ; i<N; i ++)

y [ i ] = g ( x , i ) ;
z = h ( y ) ;

}

!$OMP p a r a l l e l
x = f ( )

!$OMP do
do i =1 ,N

y ( i ) = g ( x , i )
end do

!$OMP end do
z = h ( y )

!$OMP end p a r a l l e l
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24.2.3.3

Assume two threads. What does the following program output?

i n t a ;
# pragma omp p a r a l l e l p r i v a t e ( a ) {

. . .
a = 0 ;
# pragma omp f o r
f o r ( i n t i = 0 ; i < 1 0 ; i ++)
{

# pragma omp a to mi c
a ++; }

# pragma omp s i n g l e
p r i n t f ( ” a=%e\n ” , a ) ;

}

24.2.4 Reductions

24.2.4.1

Is the following code correct? Is it efficient? If not, can you improve it?

#pragma omp parallel shared(r)
{

int x;
x = f(omp_get_thread_num());

#pragma omp critical
r += f(x);

}

24.2.4.2

Compare two fragments:

/ / v a r i a n t 1
#pragma omp p a r a l l e l r e d u c t i o n ( + : s )
#pragma omp f o r

f o r ( i =0 ; i<N; i ++)
s += f ( i ) ;

/ / v a r i a n t 2
#pragma omp p a r a l l e l
#pragma omp f o r r e d u c t i o n ( + : s )

f o r ( i =0 ; i<N; i ++)
s += f ( i ) ;
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! v a r i a n t 1
!$OMP p a r a l l e l r e d u c t i o n (+: s )
!$OMP do

do i =1 ,N
s += f ( i ) ;

end do
!$OMP end do
!$OMP end p a r a l l e l

! v a r i a n t 2
!$OMP p a r a l l e l
!$OMP do r e d u c t i o n (+: s )

do i =1 ,N
s += f ( i ) ;

end do
!$OMP end do
!$OMP end p a r a l l e l

Do they compute the same thing?
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24.2.5 Barriers

Are the following two code fragments well defined?

#pragma omp p a r a l l e l
{
#pragma omp f o r
f o r ( myt id =0; mytid<n t h r e a d s ; myt id ++)

x [ myt id ] = s o m e c a l c u l a t i o n ( ) ;
#pragma omp f o r
f o r ( myt id =0; mytid<n t h r e a d s −1; myt id ++)

y [ myt id ] = x [ myt id ]+ x [ myt id + 1 ] ;
}

#pragma omp p a r a l l e l
{
#pragma omp f o r
f o r ( myt id =0; mytid<n t h r e a d s ; myt id ++)

x [ myt id ] = s o m e c a l c u l a t i o n ( ) ;
#pragma omp f o r no wa i t
f o r ( myt id =0; mytid<n t h r e a d s −1; myt id ++)

y [ myt id ] = x [ myt id ]+ x [ myt id + 1 ] ;
}

24.2.6 Data scope

The following program is supposed to initialize as many rows of the array as there are threads.

i n t main ( ) {
i n t i , i c o u n t , i a r r a y [ 1 0 0 ] [ 1 0 0 ] ;
i c o u n t = −1;

#pragma omp p a r a l l e l p r i v a t e ( i )
{

#pragma omp c r i t i c a l
{ i c o u n t ++; }
f o r ( i =0 ; i <100; i ++)

i a r r a y [ i c o u n t ] [ i ] = 1 ;
}
re turn 0 ;

}

Program main
i n t e g e r : : i , i c o u n t , i a r r a y ( 1 0 0 , 1 0 0 )
i c o u n t = 0

!$OMP p a r a l l e l p r i v a t e ( i )
!$OMP c r i t i c a l

i c o u n t = i c o u n t + 1
!$OMP end c r i t i c a l

do i =1 ,100
i a r r a y ( i c o u n t , i ) = 1

end do
!$OMP end p a r a l l e l
End program

Describe the behaviour of the program, with argumentation,

• as given;
• if you add a clause private(icount) to the parallel directive;
• if you add a clause firstprivate(icount).

What do you think of this solution:

#pragma omp p a r a l l e l p r i v a t e ( i ) s h a r e d ( i c o u n t )
{

#pragma omp c r i t i c a l
{ i c o u n t ++;

f o r ( i =0 ; i <100; i ++)
i a r r a y [ i c o u n t ] [ i ] = 1 ;

}
}
re turn 0 ;
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}
!$OMP p a r a l l e l p r i v a t e ( i ) sh ar ed ( i c o u n t )
!$OMP c r i t i c a l

i c o u n t = i c o u n t +1
do i =1 ,100

i a r r a y ( i c o u n t , i ) = 1
end do

!$OMP c r i t i c a l
!$OMP end p a r a l l e l

24.2.7 Tasks

Fix two things in the following example:

#pragma omp p a r a l l e l
#pragma omp s i n g l e
{

i n t x , y , z ;
#pragma omp t a s k

x = f ( ) ;
#pragma omp t a s k

y = g ( ) ;
#pragma omp t a s k

z = h ( ) ;
p r i n t f ( ”sum=%d\n ” , x+y+z ) ;

}

i n t e g e r : : x , y , z
!$OMP p a r a l l e l
!$OMP s i n g l e

!$OMP t a s k
x = f ( )

!$OMP end t a s k

!$OMP t a s k
y = g ( )

!$OMP end t a s k

!$OMP t a s k
z = h ( )

!$OMP end t a s k

p r i n t ∗ , ” sum=” , x+y+z
!$OMP end s i n g l e
!$OMP end p a r a l l e l

24.2.8 Scheduling

Compare these two fragments. Do they compute the same result? What can you say about their efficiency?

# pragma omp p a r a l l e l
# pragma omp s i n g l e
{

f o r ( i =0 ; i<N; i ++) {
# pragma omp t a s k

x [ i ] = f ( i )

}
# pragma omp t a s k w a i t

}
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# pragma omp p a r a l l e l
# pragma omp f o r s c h e d u l e ( dynamic )
{

f o r ( i =0 ; i<N; i ++) {

x [ i ] = f ( i )
}

}

How would you make the second loop more efficient? Can you do something similar for the first loop?
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Chapter 25

Process and thread affinity

In the preceeding chapters we mostly considered all MPI nodes or OpenMP thread as being in one flat pool.
However, for high performance you need to worry about affinity: the question of which process or thread
is placed where, and how efficiently they can interact.

Figure 25.1: The NUMA structure of a Ranger node

Here are some situations where you affinity becomes a concern.
• In pure MPI mode processes that are on the same node can typically communicate faster than

processes on different nodes. Since processes are typically placed sequentially, this means that
a scheme where process p interacts mostly with p + 1 will be efficient, while communication
with large jumps will be less so.
• If the cluster network has a structure (processor grid as opposed to fat-tree), placement of pro-

cesses has an effect on program efficiency. MPI tries to address this with graph topology; sec-
tion ??.
• Even on a single node there can be asymmetries. Figure 25.1 illustrates the structure of the

four sockets of the Ranger supercomputer (no longer in production). Two cores have no direct
connection.
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This asymmetry affects both MPI processes and threads on that node.
• Another problem with multi-socket designs is that each socket has memory attached to it. While

every socket can address all the memory on the node, its local memory is faster to access. This
asymmetry becomes quite visible in the first-touch phenomemon; section 25.3.

• If a node has fewer MPI processes than there are cores, you want to be in control of their place-
ment. Also, the operating system can migrate processes, which is detrimental to performance
since it negates data locality. For this reason, utilities such as numactl (and at TACC tacc_
affinity) can be used to pin a thread or process to a specific core.

• Processors with hyperthreading or hardware threads introduce another level or worry about
where threads go.

25.1 What does the hardware look like?

If you want to optimize affinity, you should first know what the hardware looks like. The hwloc utility is
valuable here [2] (https://www.open-mpi.org/projects/hwloc/).
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Machine (32GB)

Socket P#0

NUMANode P#1 (16GB)

NUMANode P#0 (16GB)

Socket P#1

L3 (20MB)

L3 (20MB)

PCI 8086:1d02

L2 (256KB)

L2 (256KB) L2 (256KB)

sda

L2 (256KB) L2 (256KB)

PCI 8086:225c

PCI 8086:1521

PCI 8086:1521

PCI 15b3:1003

L2 (256KB)L2 (256KB)L2 (256KB)L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L2 (256KB)

L1d (32KB)L1d (32KB) L1d (32KB)

ib0

mlx4_0

eth0

eth1L1d (32KB)

PCI 1a03:2000

L1d (32KB)L1d (32KB)L1d (32KB)L1d (32KB)

L1d (32KB) L1d (32KB)

L1d (32KB)

L1d (32KB) L1d (32KB)

L1d (32KB) L1d (32KB)

L1d (32KB)

L1i (32KB)

L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)

L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)

Core P#4

Core P#4 Core P#5 Core P#6 Core P#7

Core P#7Core P#6Core P#5Core P#3

Core P#0

Core P#2

Core P#1

Core P#1

Core P#2

Core P#0

Core P#3

PU P#0 PU P#4

PU P#15PU P#14PU P#8

PU P#2

PU P#11

PU P#7

PU P#13PU P#9

PU P#1 PU P#5 PU P#6

PU P#12PU P#10

PU P#3

Figure 25.2: Structure of a Stampede compute node

Figure 25.2 depicts a Stampede compute node , which is a two-socket Intel SandyBridge design; figure 25.3
shows a Stampede largemem node , which is a four-socket design. Finally, figure 25.4 shows a Lonestar5
compute node, a two-socket design with 12-core Intel Haswell processors with two hardware threads each.
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Figure 25.3: Structure of a Stampede largemem four-socket compute node
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Figure 25.4: Structure of a Lonestar5 compute node

25.2 Affinity control

There are various utilities to control process and thread placement.

Process placement can be controlled on the Operating system level by numactl (the TACC utility tacc_
affinity is a wrapper around this) on Linux (also taskset); Windows start/affinity.

Corresponding system calls: pbing on Solaris, sched_setaffinity on Linux, SetThreadAffinityMask
on Windows.

Corresponding environment variables: SUNW_MP_PROCBIND on Solaris, KMP_AFFINITY on Intel.

25.3 First-touch

The affinity issue shows up in the first-touch phenomemon. Memory allocated with malloc and like
routines is not actually allocated; that only happens when data is written to it. In light of this, consider the
following OpenMP code:

double *x = (double*) malloc(N*sizeof(double));

for (i=0; i<N; i++)
x[i] = 0;

#pragma omp parallel for
for (i=0; i<N; i++)
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.... something with x[i] ...

Since the initialization loop is not parallel it is executed by the master thread, making all the memory
associated with the socket of that thread. Subsequent access by the other socket will then access data from
memory not attached to that socket.

Exercise 25.1. Finish the following fragment and run it with first all the cores of one socket,
then all cores of both sockets. (If you know how to do explicit placement, you can
also try fewer cores.)

for (int i=0; i<nlocal+2; i++)
in[i] = 1.;

for (int i=0; i<nlocal; i++)
out[i] = 0.;

for (int step=0; step<nsteps; step++) {
#pragma omp parallel for schedule(static)

for (int i=0; i<nlocal; i++) {
out[i] = ( in[i]+in[i+1]+in[i+2] )/3.;

}
#pragma omp parallel for schedule(static)

for (int i=0; i<nlocal; i++)
in[i+1] = out[i];

in[0] = 0; in[nlocal+1] = 1;
}

Exercise 25.2. How do the OpenMP dynamic schedules relate to this?

C++ valarray does initialization, so it will allocate memory on thread 0.

You could move pages with move_pages.
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Hybrid computing

So far, you have learned to use MPI for distributed memory and OpenMP for shared memory parallel
programming. However, distribute memory architectures actually have a shared memory component, since
each cluster node is typically of a multicore design. Accordingly, you could program your cluster using
MPI for inter-node and OpenMP for intra-node parallelism.

Say you use 100 cluster nodes, each with 16 cores. You could then start 1600 MPI processes, one for each
core, but you could also start 100 processes, and give each access to 16 OpenMP threads.

In your slurm scripts, the first scenario would be specified -N 100 -n 1600, and the second as

#$ SBATCH -N 100
#$ SBATCH -n 100

export OMP_NUM_THREADS=16

There is a third choice, in between these extremes, that makes sense. A cluster node often has more than
one socket, so you could put one MPI process on each socket , and use a number of threads equal to the
number of cores per socket.

The script for this would be:

#$ SBATCH -N 100
#$ SBATCH -n 200

export OMP_NUM_THREADS=8
ibrun tacc_affinity yourprogram

The tacc_affinity script unsets the following variables:

export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0
export VIADEV_USE_AFFINITY=0
export VIADEV_ENABLE_AFFINITY=0
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If you don’t use tacc_affinity you may want to do this by hand, otherwise mvapich2 will use its
own affinity rules.

Figure 26.1: Three modes of MPI/OpenMP usage on a multi-core cluster

Figure 26.1 illustrates these three modes: pure MPI with no threads used; one MPI process per node and
full multi-threading; two MPI processes per node, one per socket, and multiple threads on each socket.

26.1 Discussion

The performance implications of the pure MPI strategy versus hybrid are subtle.

• First of all, we note that there is no obvious speedup: in a well balanced MPI application all
cores are busy all the time, so using threading can give no immediate improvement.
• Both MPI and OpenMP are subject to Amdahl’s law that quantifies the influence of sequential

code; in hybrid computing there is a new version of this law regarding the amount of code that
is MPI-parallel, but not OpenMP-parallel.
• MPI processes run unsynchronized, so small variations in load or in processor behaviour can

be tolerated. The frequent barriers in OpenMP constructs make a hybrid code more tightly syn-
chronized, so load balancing becomes more critical.
• On the other hand, in OpenMP codes it is easier to divide the work into more tasks than there

are threads, so statistically a certain amount of load balancing happens automatically.
• Each MPI process has its own buffers, so hybrid takes less buffer overhead.

Exercise 26.1. Review the scalability argument for 1D versus 2D matrix decomposition in
HPSC-6.2. Would you get scalable performance from doing a 1D decomposition
(for instance, of the rows) over MPI processes, and decomposing the other
directions (the columns) over OpenMP threads?

Another performance argument we need to consider concerns message traffic. If let all threads make MPI
calls (see section 26.3) there is going to be little difference. However, in one popular hybrid computing
strategy we would keep MPI calls out of the OpenMP regions and have them in effect done by the master
thread. In that case there are only MPI messages between nodes, instead of between cores. This leads to a
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decrease in message traffic, though this is hard to quantify. The number of messages goes down approxi-
mately by the number of cores per node, so this is an advantage if the average message size is small. On the
other hand, the amount of data sent is only reduced if there is overlap in content between the messages.

Limiting MPI traffic to the master thread also means that no buffer space is needed for the on-node com-
munication.

26.2 Recognizing shared memory in MPI
MPI’s one-sided routines take a very symmetric view of processes: each process can access the window
of every other process (within a communicator). Of course, in practice there will be a difference in per-
formance depending on whether the origin and target are actually on the same shared memory, or whether
they can only communicate through the network. For this reason MPI makes it easy to group processes by
shared memory domains using MPI_Comm_split_type.

C:
int MPI_Comm_split_type(

MPI_Comm comm, int split_type, int key,
MPI_Info info, MPI_Comm *newcomm)

Fortran:
MPI_Comm_split_type(comm, split_type, key, info, newcomm, ierror)
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, INTENT(IN) :: split_type, key
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Comm), INTENT(OUT) :: newcomm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Python:
MPI.Comm.Split_type(

self, int split_type, int key=0, Info info=INFO_NULL)

How to read routine prototypes: 1.5.4.

In the following example, CORES_PER_NODE is a platform-dependent constant:
// commsplittype.c
MPI_Comm_split(MPI_COMM_WORLD,MPI_COMM_TYPE_SHARED,mytid,&sharedcomm);
MPI_Comm_rank(sharedcomm,&new_nprocs);
MPI_Comm_rank(sharedcomm,&new_procno);

ASSERT(new_procno<CORES_PER_NODE);

26.3 Hybrid MPI-plus-threads execution
In hybrid execution, the main question is whether all threads are allowed to make MPI calls. To determine
this, replace the MPI_Init call by
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C:
int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

Fortran:
MPI_Init_thread(required, provided, ierror)
INTEGER, INTENT(IN) :: required
INTEGER, INTENT(OUT) :: provided
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

How to read routine prototypes: 1.5.4.

Here the required and provided parameters can take the following values:

MPI THREAD SINGLE Only a single thread will execute.
MPI THREAD FUNNELLED The program may use multiple threads, but only the main thread will make

MPI calls.
The main thread is usually the one selected by the master directive, but technically it is the
only that executes MPI_Init_thread. If you call this routine in a parallel region, the main
thread may be different from the master.

MPI THREAD SERIAL The program may use multiple threads, all of which may make MPI calls, but
there will never be simultaneous MPI calls in more than one thread.

MPI THREAD MULTIPLE Multiple threads may issue MPI calls, without restrictions.

The mpirun program usually propagates environment variables , so the value of OMP_NUM_THREADS
when you call mpirun will be seen by each MPI process.

• It is possible to use blocking sends in threads, and let the threads block. This does away with
the need for polling.
• You can not send to a thread number: use the MPI message tag to send to a specific thread.

Exercise 26.2. Consider the 2D heat equation and explore the mix of MPI/OpenMP
parallelism:
• Give each node one MPI process that is fully multi-threaded.
• Give each core an MPI process and don’t use multi-threading.

Discuss theoretically why the former can give higher performance. Implement both
schemes as special cases of the general hybrid case, and run tests to find the optimal
mix.
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Random number generation

Here is how you initialize the random number generator uniquely on each process:
C:

// Initialize the random number generator
srand((int)(mytid*(double)RAND_MAX/ntids));
// compute a random number
randomfraction = (rand() / (double)RAND_MAX);

Fortran:

integer :: randsize
integer,allocatable,dimension(:) :: randseed
real :: random_value

call random_seed(size=randsize)
allocate(randseed(randsize))
do i=1,randsize

randseed(i) = 1023*mytid
end do
call random_seed(put=randseed)
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Parallel I/O

Parallel I/O is a tricky subject. You can try to let all processors jointly write one file, or to write a file per
process and combine them later. With the standard mechanisms of your programming language there are
the following considerations:

• On clusters where the processes have individual file systems, the only way to write a single file
is to let it be generated by a single processor.
• Writing one file per process is easy to do, but

– You need a post-processing script;
– if the files are not on a shared file system (such as Lustre), it takes additional effort to bring

them together;
– if the files are on a shared file system, writing many files may be a burden on the metadata

server.
• On a shared file system it is possible for all files to open the same file and set the file pointer

individually. This can be difficult if the amount of data per process is not uniform.

Illustrating the last point:

// pseek.c
FILE *pfile;
pfile = fopen("pseek.dat","w");
fseek(pfile,procid*sizeof(int),SEEK_CUR);
fseek(pfile,procid*sizeof(char),SEEK_CUR);
fprintf(pfile,"%d\n",procid);
fclose(pfile);

MPI also has its own portable I/O: MPI I/O .

Alternatively, one could use a library such as hdf5 .
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Support libraries

ParaMesh

Global Arrays

PETSc

Hdf5 and Silo
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here are some tutorials
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29.1. Debugging

29.1 Debugging

When a program misbehaves, debugging is the process of finding out why. There are various strategies of
finding errors in a program. The crudest one is debugging by print statements. If you have a notion of where
in your code the error arises, you can edit your code to insert print statements, recompile, rerun, and see if
the output gives you any suggestions. There are several problems with this:

• The edit/compile/run cycle is time consuming, especially since
• often the error will be caused by an earlier section of code, requiring you to edit, compile, and

rerun repeatedly. Furthermore,
• the amount of data produced by your program can be too large to display and inspect effectively,

and
• if your program is parallel, you probably need to print out data from all proccessors, making the

inspection process very tedious.
For these reasons, the best way to debug is by the use of an interactive debugger , a program that allows
you to monitor and control the behaviour of a running program. In this section you will familiarize yourself
with gdb , which is the open source debugger of the GNU project. Other debuggers are proprietary, and
typically come with a compiler suite. Another distinction is that gdb is a commandline debugger; there are
graphical debuggers such as ddd (a frontend to gdb) or DDT and TotalView (debuggers for parallel codes).
We limit ourselves to gdb, since it incorporates the basic concepts common to all debuggers.

In this tutorial you will debug a number of simple programs with gdb and valgrind. The files can be down-
loaded from http://tinyurl.com/ISTC-debug-tutorial.

29.1.1 Step 0: compiling for debug

You often need to recompile your code before you can debug it. A first reason for this is that the binary code
typically knows nothing about what variable names corresponded to what memory locations, or what lines
in the source to what instructions. In order to make the binary executable know this, you have to include
the symbol table in it, which is done by adding the -g option to the compiler line.

Usually, you also need to lower the compiler optimization level : a production code will often be compiled
with flags such as -O2 or -Xhost that try to make the code as fast as possible, but for debugging you
need to replace this by -O0 (‘oh-zero’). The reason is that higher levels will reorganize your code, making
it hard to relate the execution to the source1.

29.1.2 Invoking gdb

There are three ways of using gdb: using it to start a program, attaching it to an already running program,
or using it to inspect a core dump . We will only consider the first possibility.

Here is an exaple of how to start gdb with program that has no arguments (Fortran users, use hello.F):

tutorials/gdb/c/hello.c

1. Typically, actual code motion is done by -O3, but at level -O2 the compiler will inline functions and make other simplifi-
cations.
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%% cc -g -o hello hello.c
# regular invocation:
%% ./hello
hello world
# invocation from gdb:
%% gdb hello
GNU gdb 6.3.50-20050815 # ..... version info
Copyright 2004 Free Software Foundation, Inc. .... copyright info ....
(gdb) run
Starting program: /home/eijkhout/tutorials/gdb/hello
Reading symbols for shared libraries +. done
hello world

Program exited normally.
(gdb) quit
%%

Important note: the program was compiled with the debug flag -g. This causes the symbol table (that is,
the translation from machine address to program variables) and other debug information to be included in
the binary. This will make your binary larger than strictly necessary, but it will also make it slower, for
instance because the compiler will not perform certain optimizations2.

To illustrate the presence of the symbol table do
%% cc -g -o hello hello.c
%% gdb hello
GNU gdb 6.3.50-20050815 # ..... version info
(gdb) list

and compare it with leaving out the -g flag:
%% cc -o hello hello.c
%% gdb hello
GNU gdb 6.3.50-20050815 # ..... version info
(gdb) list

For a program with commandline input we give the arguments to the run command (Fortran users use
say.F):

tutorials/gdb/c/say.c

%% cc -o say -g say.c
%% ./say 2

2. Compiler optimizations are not supposed to change the semantics of a program, but sometimes do. This can lead to the
nightmare scenario where a program crashes or gives incorrect results, but magically works correctly with compiled with debug
and run in a debugger.
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hello world
hello world
%% gdb say
.... the usual messages ...
(gdb) run 2
Starting program: /home/eijkhout/tutorials/gdb/c/say 2
Reading symbols for shared libraries +. done
hello world
hello world

Program exited normally.

29.1.3 Finding errors

Let us now consider some programs with errors.

29.1.3.1 C programs

tutorials/gdb/c/square.c

%% cc -g -o square square.c
%% ./square
5000
Segmentation fault

The segmentation fault (other messages are possible too) indicates that we are accessing memory that we
are not allowed to, making the program abort. A debugger will quickly tell us where this happens:

%% gdb square
(gdb) run
50000

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0x000000000000eb4a
0x00007fff824295ca in __svfscanf_l ()

Apparently the error occurred in a function __svfscanf_l, which is not one of ours, but a system
function. Using the backtrace (or bt, also where or w) command we quickly find out how this came
to be called:

(gdb) backtrace
#0 0x00007fff824295ca in __svfscanf_l ()
#1 0x00007fff8244011b in fscanf ()
#2 0x0000000100000e89 in main (argc=1, argv=0x7fff5fbfc7c0) at square.c:7

Victor Eijkhout 259



We take a close look at line 7, and see that we need to change nmax to &nmax.

There is still an error in our program:

(gdb) run
50000

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_PROTECTION_FAILURE at address: 0x000000010000f000
0x0000000100000ebe in main (argc=2, argv=0x7fff5fbfc7a8) at square1.c:9
9 squares[i] = 1./(i*i); sum += squares[i];

We investigate further:

(gdb) print i
$1 = 11237
(gdb) print squares[i]
Cannot access memory at address 0x10000f000

and we quickly see that we forgot to allocate squares.

By the way, we were lucky here: this sort of memory errors is not always detected. Starting our programm
with a smaller input does not lead to an error:

(gdb) run
50
Sum: 1.625133e+00

Program exited normally.

29.1.3.2 Fortran programs

Compile and run the following program:

tutorials/gdb/f/square.F It should abort with a message such as ‘Illegal instruction’. Running the program
in gdb quickly tells you where the problem lies:

(gdb) run
Starting program: tutorials/gdb//fsquare
Reading symbols for shared libraries ++++. done

Program received signal EXC_BAD_INSTRUCTION, Illegal instruction/operand.
0x0000000100000da3 in square () at square.F:7
7 sum = sum + squares(i)

We take a close look at the code and see that we did not allocate squares properly.
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29.1.4 Memory debugging with Valgrind

Insert the following allocation of squares in your program:

squares = (float *) malloc( nmax*sizeof(float) );

Compile and run your program. The output will likely be correct, although the program is not. Can you see
the problem?

To find such subtle memory errors you need a different tool: a memory debugging tool. A popular (because
open source) one is valgrind ; a common commercial tool is purify.

tutorials/gdb/c/square1.c Compile this program with cc -o square1 square1.c and run it with
valgrind square1 (you need to type the input value). You will lots of output, starting with:

%% valgrind square1
==53695== Memcheck, a memory error detector
==53695== Copyright (C) 2002-2010, and GNU GPL’d, by Julian Seward et al.
==53695== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info
==53695== Command: a.out
==53695==
10
==53695== Invalid write of size 4
==53695== at 0x100000EB0: main (square1.c:10)
==53695== Address 0x10027e148 is 0 bytes after a block of size 40 alloc’d
==53695== at 0x1000101EF: malloc (vg_replace_malloc.c:236)
==53695== by 0x100000E77: main (square1.c:8)
==53695==
==53695== Invalid read of size 4
==53695== at 0x100000EC1: main (square1.c:11)
==53695== Address 0x10027e148 is 0 bytes after a block of size 40 alloc’d
==53695== at 0x1000101EF: malloc (vg_replace_malloc.c:236)
==53695== by 0x100000E77: main (square1.c:8)

Valgrind is informative but cryptic, since it works on the bare memory, not on variables. Thus, these error
messages take some exegesis. They state that a line 10 writes a 4-byte object immediately after a block of
40 bytes that was allocated. In other words: the code is writing outside the bounds of an allocated array. Do
you see what the problem in the code is?

Note that valgrind also reports at the end of the program run how much memory is still in use, meaning not
properly freed.

If you fix the array bounds and recompile and rerun the program, valgrind still complains:
==53785== Conditional jump or move depends on uninitialised value(s)
==53785== at 0x10006FC68: __dtoa (in /usr/lib/libSystem.B.dylib)
==53785== by 0x10003199F: __vfprintf (in /usr/lib/libSystem.B.dylib)
==53785== by 0x1000738AA: vfprintf_l (in /usr/lib/libSystem.B.dylib)
==53785== by 0x1000A1006: printf (in /usr/lib/libSystem.B.dylib)
==53785== by 0x100000EF3: main (in ./square2)
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Although no line number is given, the mention of printf gives an indication where the problem lies.
The reference to an ‘uninitialized value’ is again cryptic: the only value being output is sum, and that is
not uninitialized: it has been added to several times. Do you see why valgrind calls is uninitialized all the
same?

29.1.5 Stepping through a program

Often the error in a program is sufficiently obscure that you need to investigate the program run in detail.
Compile the following program

tutorials/gdb/c/roots.c and run it:

%% ./roots
sum: nan

Start it in gdb as follows:

%% gdb roots
GNU gdb 6.3.50-20050815 (Apple version gdb-1469) (Wed May 5 04:36:56 UTC 2010)
Copyright 2004 Free Software Foundation, Inc.
....
(gdb) break main
Breakpoint 1 at 0x100000ea6: file root.c, line 14.
(gdb) run
Starting program: tutorials/gdb/c/roots
Reading symbols for shared libraries +. done

Breakpoint 1, main () at roots.c:14
14 float x=0;

Here you have done the following:

• Before calling run you set a breakpoint at the main program, meaning that the execution will
stop when it reaches the main program.
• You then call run and the program execution starts;
• The execution stops at the first instruction in main.

If execution is stopped at a breakpoint, you can do various things, such as issuing the step command:

Breakpoint 1, main () at roots.c:14
14 float x=0;
(gdb) step
15 for (i=100; i>-100; i--)
(gdb)
16 x += root(i);
(gdb)
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(if you just hit return, the previously issued command is repeated). Do a number of steps in a row by
hitting return. What do you notice about the function and the loop?

Switch from doing step to doing next. Now what do you notice about the loop and the function?

Set another breakpoint: break 17 and do cont. What happens?

Rerun the program after you set a breakpoint on the line with the sqrt call. When the execution stops
there do where and list.

• If you set many breakpoints, you can find out what they are with info breakpoints.
• You can remove breakpoints with delete n where n is the number of the breakpoint.
• If you restart your program with run without leaving gdb, the breakpoints stay in effect.
• If you leave gdb, the breakpoints are cleared but you can save them: save breakpoints
<file>. Use source <file> to read them in on the next gdb run.

29.1.6 Inspecting values

Run the previous program again in gdb: set a breakpoint at the line that does the sqrt call before you
actually call run. When the program gets to line 8 you can do print n. Do cont. Where does the
program stop?

If you want to repair a variable, you can do set var=value. Change the variable n and confirm that the
square root of the new value is computed. Which commands do you do?

If a problem occurs in a loop, it can be tedious keep typing cont and inspecting the variable with print.
Instead you can add a condition to an existing breakpoint: the following:

condition 1 if (n<0)

or set the condition when you define the breakpoint:

break 8 if (n<0)

Another possibility is to use ignore 1 50, which will not stop at breakpoint 1 the next 50 times.

Remove the existing breakpoint, redefine it with the condition n<0 and rerun your program. When the
program breaks, find for what value of the loop variable it happened. What is the sequence of commands
you use?

29.1.7 Parallel debugging

Debugging parallel programs is harder than than sequential programs, because every sequential bug may
show up, plus a number of new types, caused by the interaction of the various processes.

Here are a few possible parallel bugs:

• Processes can deadlock because they are waiting for a message that never comes. This typically
happens with blocking send/receive calls due to an error in program logic.
• If an incoming message is unexpectedly larger than anticipated, a memory error can occur.
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• A collective call will hang if somehow one of the processes does not call the routine.

There are few low-budget solutions to parallel debugging. The main one is to create an xterm for each
process. We will describe this next. There are also commercial packages such as DDT and TotalView,
that offer a GUI. They are very convenient but also expensive. The Eclipse project has a parallel package,
Eclipse PTP , that includes a graphic debugger.

29.1.7.1 MPI debugging with gdb

You can not run parallel programs in gdb, but you can start multiple gdb processes that behave just like
MPI processes! The command

mpirun -np <NP> xterm -e gdb ./program

create a number of xterm windows, each of which execute the commandline gdb ./program. And
because these xterms have been started with mpirun, they actually form a communicator.

29.1.7.2 Full-screen parallel debugging with DDT

In this tutorial you will run and diagnose a few incorrect MPI programs using DDT. You can start a session
with ddt yourprogram &, or use File > New Session > Run to specify a program name, and
possibly parameters. In both cases you get a dialog where you can specify program parameters. It is also
important to check the following:

• You can specify the number of cores here;
• It is usually a good idea to turn on memory checking;
• Make sure you specify the right MPI.

When DDT opens on your main program, it halts at the MPI_Init statement, and need to press the forward
arrow, top left of the main window.

29.1.7.2.1 Problem1 This program has every process independently generate random numbers, and if
the number meets a certain condition, stops execution. There is no problem with this code as such, so let’s
suppose you simply want to monitor its execution.

• Compile abort.c. Don’t forget about the -g -O0 flags; if you use the makefile they are
included automatically.
• Run the program with DDT, you’ll see that it concludes succesfully.
• Set a breakpoint at the Finalize statement in the subroutine, by clicking to the left of the line

number. Now if you run the program you’ll get a message that all processes are stopped at a
breakpoint. Pause the execution.
• The ‘Stacks’ tab will tell you that all processes are the same point in the code, but they are not

in fact in the same iteration.
• You can for instance use the ‘Input/Output’ tabs to see what every process has been doing.
• Alternatively, use the variables pane on the right to examine the it variable. You can do that for

individual processes, but you can also control click on the it variable and choose View as
Array. Set up the display as a one-dimensional array and check the iteration numbers.
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• Activate the barrier statement and rerun the code. Make sure you have no breakpoints. Reason
that the code will not complete, but just hang.

• Hit the general Pause button. Now what difference do you see in the ‘Stacks’ tab?

29.1.7.2.2 Problem2 Compile problem1.c and run it in DDT. You’ll get a dialog warning about an
abort.

• Pause the program in the dialog. Notice that only the root process is paused. If you want to
inspect other processes, press the general pause button. Do this.

• In the bottom panel click on Stacks. This gives you the ‘call stack’, which tells you what the
processes were doing when you paused them. Where is the root process in the execution? Where
are the others?

• From the call stack it is clear what the error was. Fix it and rerun with File > Restart
Session.

29.1.7.2.3 Problem2

29.1.8 Further reading

A good tutorial: http://www.dirac.org/linux/gdb/.

Reference manual: http://www.ofb.net/gnu/gdb/gdb_toc.html.
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29.2 Tracing

29.2.1 TAU profiling and tracing

TAU http://www.cs.uoregon.edu/Research/tau/home.php is a utility for profiling and
tracing your parallel programs. Profiling is the gathering and displaying of bulk statistics, for instance
showing you which routines take the most time, or whether communication takes a large portion of your
runtime. When you get concerned about performance, a good profiling tool is indispensible.

Tracing is the construction and displaying of time-dependent information on your program run, for instance
showing you if one process lags behind others. For understanding a program’s behaviour, and the reasons
behind profiling statistics, a tracing tool can be very insightful.

TAU works by adding instrumentation to your code: in effect it is a source-to-source translator that takes
your code and turns it into one that generates run-time statistics. Doing this instrumentation is fortunately
simple: start by having this code fragment in your makefile:

ifdef TACC_TAU_DIR
CC = tau_cc.sh

else
CC = mpicc

endif

% : %.c
${CC} -o $@ $ˆ

To use TAU, do module load tau. You have to set the environment variable TAU_TRACE to 1; it’s
advisable to set TRACEDIR to some directory for all the TAU output. Likewise set TAU_PROFILE to 1
and set PROFILEDIR.

266 Parallel Computing – r428

http://www.cs.uoregon.edu/Research/tau/home.php


PART V

PROJECTS, INDEX



Chapter 30

Class projects

30.1 A Style Guide to Project Submissions

Here are some guidelines for how to submit assignments and projects. As a general rule, consider program-
ming as an experimental science, and your writeup as a report on some tests you have done: explain the
problem you’re addressing, your strategy, your results.

Structure of your writeup Most of the exercises in this book test whether you are able to code the
solution to a certain problem. That does not mean that turning in the code is sufficient, nor code plus
sample output. Turn in a writeup in pdf form that was generated from a text processing program such as
Word or (preferably) LATEX (for a tutorial, see HPSC-35). Your writeup should have

• The relevant fragments of your code,
• an explanation of your algorithms or solution strategy,
• a discussion of what you observed,
• graphs of runtimes and TAU plots; see 29.2.

Observe, measure, hypothesize, deduce In most applications of computing machinery we care about the
efficiency with which we find the solution. Thus, make sure that you do measurements. In general, make
observations that allow you to judge whether your program behaves the way you would expect it to.

Quite often your program will display unexpected behaviour. It is important to observe this, and hypothesize
what the reason might be for your observed behaviour.

Including code If you include code samples in your writeup, make sure they look good. For starters, use a
mono-spaced font. In LATEX, you can use the verbatim environment or the verbatiminput command.
In that section option the source is included automatically, rather than cut and pasted. This is to be preferred,
since your writeup will stay current after you edit the source file.

Including whole source files makes for a long and boring writeup. The code samples in this book were
generated as follows. In the source files, the relevant snippet was marked as
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... boring stuff
#pragma samplex
.. interesting! ..

#pragma end
... more boring stuff

The files were then processed with the following command line (actually, included in a makefile, which
requires doubling the dollar signs):

for f in *.{c,cxx,h} ; do
cat $x | awk ’BEGIN {f=0}

/#pragma end/ {f=0}
f==1 {print $0 > file}
/pragma/ {f=1; file=$2 }

’
done

which gives (in this example) a file samplex. Other solutions are of course possible.

Code formatting Code without proper indentation is very hard to read. Fortunately, most editors have
some knowledge of the syntax of the most popular languages. The emacs editor will, most of the time,
automatically activate the appropriate mode based on the file extension. If this does not happen, you can
activate a mode by ESC x fortran-mode et cetera, or by putting the string -*- fortran -*- in a
comment on the first line of your file.

The vi editor also has syntax support: use the commands :synxtax on to get syntax colouring, and
:set cindent to get automatic indentation while you’re entering text. Some of the more common ques-
tions are addressed in http://stackoverflow.com/questions/97694/auto-indent-spaces-with-c-in-vim.

Running your code A single run doesn’t prove anything. For a good report, you need to run your code
for more than one input dataset (if available) and in more than one processor configuration. When you
choose problem sizes, be aware that an average processor can do a billion operations per second: you need
to make your problem large enough for the timings to rise above the level of random variations and startup
phenomena.

When you run a code in parallel, beware that on clusters the behaviour of a parallel code will always
be different between one node and multiple nodes. On a single node the MPI implementation is likely
optimized to use the shared memory. This means that results obtained from a single node run will be
unrepresentative. In fact, in timing and scaling tests you will often see a drop in (relative) performance
going from one node to two. Therefore you need to run your code in a variety of scenarios, using more than
one node.

Reporting scaling If you do a scaling analysis, a graph reporting runtimes should not have a linear time
axis: a logarithmic graph is much easier to read. A speedup graph can also be informative.
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Some algorithms are mathematically equivalent in their sequential and parallel versions. Others, such as
iterative processes, can take more operations in parallel than sequentially, for instance because the number
of iterations goes up. In this case, report both the speedup of a single iteration, and the total improvement
of running the full algorithm in parallel.

Repository organization If you submit your work through a repository, make sure you organize your
submissions in subdirectories, and that you give a clear name to all files. Object files and binaries should
not be in a repository since they are dependent on hardware and things like compilers.
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30.2 Warmup Exercises

We start with some simple exercises.

30.2.1 Hello world

The exercises in this section are about the routines introduced in section 2.3; for the reference
information see section ??.

First of all we need to make sure that you have a working setup for parallel jobs. The example program
helloworld.c does the following:

// helloworld.c
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&ntids);
MPI_Comm_rank(MPI_COMM_WORLD,&mytid);
printf("Hello, this is processor %d out of %d\n",mytid,ntids);
MPI_Finalize();

Compile this program and run it in parallel. Make sure that the processors do not all say that they are
processor 0 out of 1!

30.2.2 Trace output

We want to make trace files of the parallel runs, for which we’ll use the TAU utility of the University
of Oregon. (For documentation, go to http://www.cs.uoregon.edu/Research/tau/docs.
php.) Here are the steps:

• Load two modules:
module load tau
module load jdk64

• Recompile your program with make yourprog. You’ll notice a lot more output: that is the
TAU preprocessor.

• Now run your program, setting environment variables TAU_TRACE and TAU_PROFILE to 1,
and TRACEDIR and PROFILEDIR to where you want the output to be. Big shortcut: do

make submit EXECUTABLE=yourprog

for a batch job or
make idevrun EXECUTABLE=yourprog

for an interactive parallel run. These last two set all variables for you. See if you can find where
the output went. . .
• Now you need to postprocess the TAU output. Do make tau EXECUTABLE=yourprog

and you’ll get a file taulog_yourprog.slog2 which you can view with the jumpshot
program.
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30.2.3 Collectives

It is a good idea to be able to collect statistics, so before we do anything interesting, we will look at MPI
collectives; section ??.

Take a look at time_max.cxx. This program sleeps for a random number of seconds:

// time_max.cxx
wait = (int) ( 6.*rand() / (double)RAND_MAX );
tstart = MPI_Wtime();
sleep(wait);
tstop = MPI_Wtime();
jitter = tstop-tstart-wait;

and measures how long the sleep actually was:

if (mytid==0)
sendbuf = MPI_IN_PLACE;

else sendbuf = (void*)&jitter;
MPI_Reduce(sendbuf,(void*)&jitter,1,MPI_DOUBLE,MPI_MAX,0,comm);

In the code, this quantity is called ‘jitter’, which is a term for random deviations in a system.

Exercise 30.1. Change this program to compute the average jitter by changing the reduction
operator.

Exercise 30.2. Now compute the standard deviation

σ =

√∑
i(xi −m)2

n

where m is the average value you computed in the previous exercise.
• Solve this exercise twice: once by following the reduce by a broadcast

operation and once by using an Allreduce.
• Run your code both on a single cluster node and on multiple nodes, and

inspect the TAU trace. Some MPI implementations are optimized for shared
memory, so the trace on a single node may not look as expected.
• Can you see from the trace how the allreduce is implemented?

Exercise 30.3. Finally, use a gather call to collect all the values on processor zero, and print
them out. Is there any process that behaves very differently from the others?

For each exercise, submit code, a TAU trace, and an analysis of what you see in the traces. Submit your
work by leaving a code, graphics, and a writeup in your repository.

30.2.4 Linear arrays of processors

In this section you are going to write a number of variations on a very simple operation: all processors pass
a data item to the processor with the next higher number.
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• In the file linear-serial.c you will find an implementation using blocking send and re-
ceive calls.

• You will change this code to use non-blocking sends and receives; they require an MPI_Wait
call to finalize them.

• Next, you will use MPI_Sendrecv to arrive at a synchronous, but deadlock-free implementa-
tion.

• Finally, you will use two different one-sided scenarios.

In the reference code linear-serial.c, each process defines two buffers:

// linear-serial.c
int my_number = mytid, other_number=-1.;

where other_number is the location where the data from the left neighbour is going to be stored.

To check the correctness of the program, there is a gather operation on processor zero:

int *gather_buffer=NULL;
if (mytid==0) {
gather_buffer = (int*) malloc(ntids*sizeof(int));
if (!gather_buffer) MPI_Abort(comm,1);

}
MPI_Gather(&other_number,1,MPI_INT,

gather_buffer,1,MPI_INT, 0,comm);
if (mytid==0) {
int i,error=0;
for (i=0; i<ntids; i++)

if (gather_buffer[i]!=i-1) {
printf("Processor %d was incorrect: %d should be %d\n",

i,gather_buffer[i],i-1);
error =1;

}
if (!error) printf("Success!\n");
free(gather_buffer);

}

30.2.4.1 Coding with blocking calls

Passing data to a neighbouring processor should be a very parallel operation. However, if we code this
naively, with MPI_Send and MPI_Recv, we get an unexpected serial behaviour, as was explained in
section 4.2.2.

if (mytid<ntids-1)
MPI_Ssend( /* data: */ &my_number,1,MPI_INT,

/* to: */ mytid+1, /* tag: */ 0, comm);
if (mytid>0)
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MPI_Recv( /* data: */ &other_number,1,MPI_INT,
/* from: */ mytid-1, 0, comm, &status);

(Note that this uses an Ssend; see section 9.10 for the explanation why.)

Exercise 30.4. Compile and run this code, and generate a TAU trace file. Confirm that the
execution is serial. Does replacing the Ssend by Send change this?

Let’s clean up the code a little.

Exercise 30.5. First write this code more elegantly by using MPI_PROC_NULL.

30.2.4.2 A better blocking solution

The easiest way to prevent the serialization problem of the previous exercises is to use the MPI_Sendrecv
call. This routine acknowledges that often a processor will have a receive call whenever there is a send. For
border cases where a send or receive is unmatched you can use MPI_PROC_NULL.

Exercise 30.6. Rewrite the code using MPI_Sendrecv. Confirm with a TAU trace that
execution is no longer serial.

Note that the Sendrecv call itself is still blocking, but at least the ordering of its constituent send and
recv are no longer ordered in time.

30.2.4.3 Non-blocking calls

The other way around the blocking behaviour is to use Isend and Irecv calls, which do not block.
Of course, now you need a guarantee that these send and receive actions are concluded; in this case, use
MPI_Waitall.

Exercise 30.7. Implement a fully parallel version by using MPI_Isend and MPI_Irecv.

30.2.4.4 One-sided communication

Another way to have non-blocking behaviour is to use one-sided communication. During a Put or Get
operation, execution will only block while the data is being transferred out of or into the origin process,
but it is not blocked by the target. Again, you need a guarantee that the transfer is concluded; here use
MPI_Win_fence.

Exercise 30.8. Write two versions of the code: one using MPI_Put and one with MPI_Get.
Make TAU traces.

Investigate blocking behaviour through TAU visualizations.

Exercise 30.9. If you transfer a large amount of data, and the target processor is occupied,
can you see any effect on the origin? Are the fences synchronized?
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30.3 Mandelbrot set

If you’ve never heard the name Mandelbrot set , you probably recognize the picture; figure 30.1 Its formal

Figure 30.1: The Mandelbrot set

definition is as follows:
A point c in the complex plane is part of the Mandelbrot set if the series xn defined
by {

x0 = 0

xn+1 = x2n + c

satisfies

∀n : |xn| ≤ 2.

It is easy to see that only points c in the bounding circle |c| < 2 qualify, but apart from that it’s hard to say
much without a lot more thinking. Or computing; and that’s what we’re going to do.

In this set of exercises you are going to take an example program mandel_main.cxx and extend it to
use a variety of MPI programming constructs. This program has been set up as a master-worker model:
there is one master processor (for a change this is the last processor, rather than zero) which gives out work
to, and accepts results from, the worker processors. It then takes the results and constructs an image file
from them.

30.3.1 Invocation

The mandel_main program is called as
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mpirun -np 123 mandel_main steps 456 iters 789

where the steps parameter indicates how many steps in x, y direction there are in the image, and iters
gives the maximum number of iterations in the belong test.

If you forget the parameter, you can call the program with

mandel_serial -h

and it will print out the usage information.

30.3.2 Tools

The driver part of the Mandelbrot program is simple. There is a circle object that can generate coordinates

// mandel.h
class circle {
public :
circle(int pxls,int bound,int bs);
void next_coordinate(struct coordinate& xy);
int is_valid_coordinate(struct coordinate xy);
void invalid_coordinate(struct coordinate& xy);

and a global routine that tests whether a coordinate is in the set, at least up to an iteration bound. It returns
zero if the series from the given starting point has not diverged, or the iteration number in which it diverged
if it did so.

int belongs(struct coordinate xy,int itbound) {
double x=xy.x, y=xy.y; int it;
for (it=0; it<itbound; it++) {

double xx,yy;
xx = x*x - y*y + xy.x;
yy = 2*x*y + xy.y;
x = xx; y = yy;
if (x*x+y*y>4.) {

return it;
}

}
return 0;
}

In the former case, the point could be in the Mandelbrot set, and we colour it black, in the latter case we
give it a colour depending on the iteration number.

if (iteration==0)
memset(colour,0,3*sizeof(float));
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else {
float rfloat = ((float) iteration) / workcircle->infty;
colour[0] = rfloat;
colour[1] = MAX((float)0,(float)(1-2*rfloat));
colour[2] = MAX((float)0,(float)(2*(rfloat-.5)));

}

We use a fairly simple code for the worker processes: they execute a loop in which they wait for input,
process it, return the result.

void queue::wait_for_work(MPI_Comm comm,circle *workcircle) {
MPI_Status status; int ntids;
MPI_Comm_size(comm,&ntids);
int stop = 0;

while (!stop) {
struct coordinate xy;
int res;

MPI_Recv(&xy,1,coordinate_type,ntids-1,0, comm,&status);
stop = !workcircle->is_valid_coordinate(xy);
if (stop) break; //res = 0;
else {

res = belongs(xy,workcircle->infty);
}
MPI_Send(&res,1,MPI_INT,ntids-1,0, comm);

}
return;
}

A very simple solution using blocking sends on the master is given:
// mandel_serial.cxx
class serialqueue : public queue {
private :
int free_processor;

public :
serialqueue(MPI_Comm queue_comm,circle *workcircle)
: queue(queue_comm,workcircle) {
free_processor=0;

};
/**

The ‘addtask’ routine adds a task to the queue. In this
simple case it immediately sends the task to a worker
and waits for the result, which is added to the image.
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This routine is only called with valid coordinates;
the calling environment will stop the process once
an invalid coordinate is encountered.

*/
int addtask(struct coordinate xy) {

MPI_Status status; int contribution, err;

err = MPI_Send(&xy,1,coordinate_type,
free_processor,0,comm); CHK(err);
err = MPI_Recv(&contribution,1,MPI_INT,
free_processor,0,comm, &status); CHK(err);

coordinate_to_image(xy,contribution);
total_tasks++;
free_processor = (free_processor+1)%(ntids-1);

return 0;
};

Exercise 30.10. Explain why this solution is very inefficient. Make a trace of its execution
that bears this out.

Figure 30.2: Trace of a serial Mandelbrot calculation
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30.3.3 Bulk task scheduling

The previous section showed a very inefficient solution, but that was mostly intended to set up the code
base. If all tasks take about the same amount of time, you can give each process a task, and then wait on
them all to finish. A first way to do this is with non-blocking sends.

Exercise 30.11. Code a solution where you give a task to all worker processes using
non-blocking sends and receives, and then wait for these tasks with
MPI_Waitall to finish before you give a new round of data to all workers. Make
a trace of the execution of this and report on the total time.
You can do this by writing a new class that inherits from queue, and that provides
its own addtask method:

// mandel_bulk.cxx
class bulkqueue : public queue {
public :

bulkqueue(MPI_Comm queue_comm,circle *workcircle)
: queue(queue_comm,workcircle) {

You will also have to override the complete method: when the circle object
indicates that all coordinates have been generated, not all workers will be busy, so
you need to supply the proper MPI_Waitall call.

Figure 30.3: Trace of a bulk Mandelbrot calculation
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30.3.4 Collective task scheduling

Another implementation of the bulk scheduling of the previous section would be through using collectives.
Exercise 30.12. Code a solution which uses scatter to distribute data to the worker tasks, and

gather to collect the results. Is this solution more or less efficient than the previous?

30.3.5 Asynchronous task scheduling

At the start of section 30.3.3 we said that bulk scheduling mostly makes sense if all tasks take similar time
to complete. In the Mandelbrot case this is clearly not the case.
Exercise 30.13. Code a fully dynamic solution that uses MPI_Probe or MPI_Waitany.

Make an execution trace and report on the total running time.

Figure 30.4: Trace of an asynchronous Mandelbrot calculation

30.3.6 One-sided solution

Let us reason about whether it is possible (or advisable) to code a one-sided solution to computing the
Mandelbrot set. With active target synchronization you could have an exposure window on the host to
which the worker tasks would write. To prevent conflicts you would allocate an array and have each worker
write to a separate location in it. The problem here is that the workers may not be sufficiently synchronized
because of the differing time for computation.

Consider then passive target synchronization. Now the worker tasks could write to the window on the master
whenever they have something to report; by locking the window they prevent other tasks from interfering.
After a worker writes a result, it can get new data from an array of all coordinates on the master.
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It is hard to get results into the image as they become available. For this, the master would continuously have
to scan the results array. Therefore, constructing the image is easiest done when all tasks are concluded.
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Figure 30.5: A grid divided over processors, with the ‘ghost’ region indicated

30.4 Data parallel grids

In this section we will gradually build a semi-realistic example program. To get you started some pieces
have already been written: as a starting point look at code/mpi/c/grid.cxx.

30.4.1 Description of the problem

With this example you will investigate several strategies for implementing a simple iterative method. Let’s
say you have a two-dimensional grid of datapoints G = {gij : 0 ≤ i < ni, 0 ≤ j < nj} and you want to
compute G′ where

g′ij = 1/4 · (gi+1,j + gi−1,j + gi,j+1 + gi,j−1). (30.1)

This is easy enough to implement sequentially, but in parallel this requires some care.

Let’s divide the gridG and divide it over a two-dimension grid of pi×pj processors. (Other strategies exist,
but this one scales best; see section HPSC-6.5.) Formally, we define two sequences of points

0 = i0 < · · · < ipi < ipi+1 = ni, 0 < j0 < · · · < jpj < ipj+1 = nj

and we say that processor (p, q) computes gij for

ip ≤ i < ip+1, jq ≤ j < jq+1.

From formula (30.1) you see that the processor then needs one row of points on each side surrounding its
part of the grid. A picture makes this clear; see figure 30.5. These elements surrounding the processor’s
own part are called the halo or ghost region of that processor.

The problem is now that the elements in the halo are stored on a different processor, so communication is
needed to gather them. In the upcoming exercises you will have to use different strategies for doing so.
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30.4.2 Code basics

The program needs to read the values of the grid size and the processor grid size from the commandline, as
well as the number of iterations. This routine does some error checking: if the number of processors does
not add up to the size of MPI_COMM_WORLD, a nonzero error code is returned.

ierr = parameters_from_commandline
(argc,argv,comm,&ni,&nj,&pi,&pj,&nit);

if (ierr) return MPI_Abort(comm,1);

From the processor parameters we make a processor grid object:

processor_grid *pgrid = new processor_grid(comm,pi,pj);

and from the numerical parameters we make a number grid:

number_grid *grid = new number_grid(pgrid,ni,nj);

Number grids have a number of methods defined. To set the value of all the elements belonging to a
processor to that processor’s number:

grid->set_test_values();

To set random values:

grid->set_random_values();

If you want to visualize the whole grid, the following call gathers all values on processor zero and prints
them:

grid->gather_and_print();

Next we need to look at some data structure details.

The definition of the number_grid object starts as follows:

class number_grid {
public:
processor_grid *pgrid;
double *values,*shadow;

where values contains the elements owned by the processor, and shadow is intended to contain the
values plus the ghost region. So how does shadow receive those values? Well, the call looks like

grid->build_shadow();

and you will need to supply the implementation of that. Once you’ve done so, there is a routine that prints
out the shadow array of each processor
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grid->print_shadow();

This routine does the sequenced printing that you implemented in exercise ??.

In the file code/mpi/c/grid_impl.cxx you can see several uses of the macro INDEX. This trans-
lates from a two-dimensional coordinate system to one-dimensional. Its main use is letting you use (i, j)
coordinates for indexing the processor grid and the number grid: for processors you need the translation to
the linear rank, and for the grid you need the translation to the linear array that holds the values.

A good example of the use of INDEX is in the number_grid::relax routine: this takes points from
the shadow array and averages them into a point of the values array. (To understand the reason for this
particular averaging, see HPSC-4.2.3 and HPSC-5.5.3.) Note how the INDEX macro is used to index in a
ilength× jlength target array values, while reading from a (ilength + 2)× (jlength + 2) source
array shadow.

for (i=0; i<ilength; i++) {
for (j=0; j<jlength; j++) {

int c=0;
double new_value=0.;
for (c=0; c<5; c++) {

int ioff=i+1+ioffsets[c],joff=j+1+joffsets[c];
new_value += coefficients[c] *
shadow[ INDEX(ioff,joff,ilength+2,jlength+2) ];

}
values[ INDEX(i,j,ilength,jlength) ] = new_value/8.;

}
}
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30.5 N-body problems

N-body problems describe the motion of particles under the influence of forces such as gravity. There are
many approaches to this problem, some exact, some approximate. Here we will explore a number of them.

For background reading see HPSC-10.

30.5.1 Solution methods

It is not in the scope of this course to give a systematic treatment of all methods for solving the N-body
problem, whether exactly or approximately, so we will just consider a representative selection.

1. Full N2 methods. These compute all interactions, which is the most accurate strategy, but also
the most computationally demanding.

2. Cutoff-based methods. These use the basic idea of the N2 interactions, but reduce the complex-
ity by imposing a cutoff on the interaction distance.

3. Tree-based methods. These apply a coarsening scheme to distant interactions to lower the com-
putational complexity.

30.5.2 Shared memory approaches

30.5.3 Distributed memory approaches
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AVX Advanced Vector Extensions
BSP Bulk Synchronous Parallel
CAF Co-array Fortran
CUDA Compute-Unified Device Architecture
DAG Directed Acyclic Graph
DSP Digital Signal Processing
FPU Floating Point Unit
FFT Fast Fourier Transform
FSA Finite State Automaton
GPU Graphics Processing Unit
HPC High-Performance Computing
HPF High Performance Fortran
ICV Internal Control Variable
MIC Many Integrated Cores
MIMD Multiple Instruction Multiple Data
MPI Message Passing Interface
MTA Multi-Threaded Architecture
NUMA Non-Uniform Memory Access
OS Operating System
PGAS Partitioned Global Address Space

PDE Partial Diffential Equation
PRAM Parallel Random Access Machine
RDMA Remote Direct Memory Access
RMA Remote Memory Access
SAN Storage Area Network
SaaS Software as-a Service
SFC Space-Filling Curve
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SM Streaming Multiprocessor
SMP Symmetric Multi Processing
SOR Successive Over-Relaxation
SP Streaming Processor
SPMD Single Program Multiple Data
SPD symmetric positive definite
SSE SIMD Streaming Extensions
TLB Translation Look-aside Buffer
UMA Uniform Memory Access
UPC Unified Parallel C
WAN Wide Area Network

Victor Eijkhout 287



31.3 Index

Bold reference: defining passage; italic reference: illustration.

_OPENMP, 168

active target synchronization, 116, 119, 128
affinity, 242

process and thread, 242–246
thread

on multi-socket nodes, 216
all-to-all, 27
allocate

and private/shared data, 192
anti dependency, see data dependencies
argc, 21, 22
argv, 21, 22
atomic operation, 129
atomic operations, 129

bandwidth, 48
barrier, 134

in MPI, 131
batch

job, 13
scheduler, 13

Beowulf cluster, 12
Boolean satisfiability, 24
boost, 15
breakpoint, 262
broadcast, 27

C
bindings, 14–15

C++
bindings, 14–15
standard library, 99

vector, 99
C99, 85
cacheline, 197
Charmpp, 13
chunk, 180
chunk, 180
collectives, 26–50

non-blocking, 47

column-major storage, 84
communication

asynchronous, 78
blocking, 54–57
non-blocking, 68–75
one-sided, 116–130
one-sided, implementation of, 130
overlap with computation, 78
persistent, 80–82
synchronous, 78
two-sided, 83

communicator, 104–111
compare-and-swap, 59
compiler, 100

optimization level, 257
contiguous

data type, 86
core, 18, 165
core dump, 257
cpp, 168
Cray

T3E, 137
critical section

flush at, 230
critical section, 147, 196, 201, 219
critical sections

cost of a , 225
curly braces, 169

Dalcin
Lisandro, 15

data dependencies, 220–222
data dependency, 211
datatype, 84–103

big, 101–102
derived, 86–100
different on sender and receiver, 87
elementary, 85
signature, 100–101

datatypes
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derived, 84
elementary, 84

ddd, 257
DDT, 257, 264–265
deadlock, 55, 136, 263
debug flag, 258
debugger, 257
debugging, 257–265

parallel, 263
dense linear algebra, 108
directive

end-of, 169
directives, 169, 169

cpp, 172
distributed array, 51
distributed shared memory, 116
dynamic mode, 166

eager limit, 55, 62, 157
Eclipse, 264

PTP, 264
emacs, 269
environment variables, 250
epoch, 119

access, 121, 126, 128
exposure, 121, 126, 128

error return, 15
ethernet, 14

false sharing, 177, 197
fat-tree, 242
fence, 119
Fibonacci sequence, 203–206
first-touch, 243, 245
flow dependency, see data dependencies
fork/join model, 165, 211
Fortran

1-based indexing, 75
array syntax, 188
bindings, 15
fixed-form source, 169
forall loops, 188
Fortran90, 20

gather, 27

gcc
thread affinity, 216

gdb, 257–264
ghost region, 282
GNU, 257

gdb, see gdb
graph topology, 242
grid

Cartesian, 111
periodic, 111
processor, 242

group, 126
group of

processors, 128

halo, 282
update, 125

handshake, 136
hdf5, 252
histogram, 202
hostname, 144
hwloc, 243
hyperthreading, 243

I/O
in OpenMP, 187

ibrun, 13
implicit barrier, 200

after single directive, 188
indexed

data type, 86
inner product, 52
instrumentation, 266
Intel

compiler
thread affinity, 216

Haswell, 243
Knight’s Landing, 165
SandyBridge, 243
Sandybridge, 165

intercommunicator, 112
Internal Control Variable (ICV), 218–219

KMP_AFFINITY, 245
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latency, 48
hiding, 70

lexical scope, 190
linked list, 207
load balancing, 178
load imbalance, 178
lock, 202, 202–203

flush at, 230
nested, 203

Lonestar5, 243
LU factorization, 179
Lustre, 252

malloc
and private/shared data, 192

malloc, 245
Mandelbrot set, 25, 194, 275
master-worker, 129, 275
master-worker model, 71, 78
matching, 136
matrix

sparse, 47
transposition, 108

matrix-vector product
sparse, 44

message
tag, 250

Monte Carlo codes, 24
motherboard, 164
move_pages, 246
MPI

3, 101
C/C++ bindings, see C/C++, bindings
Fortran issues, 133, 142–143
I/O, 133, 252
initialization, 21
Python issues, 143
semantics, 135–136
version, 133

mpi.h, 20
mpi.h, 15
mpi4py, 15
MPI_Abort, 21
MPI_Accumulate, 122

MPI_Aint
in Fortran, 142

MPI_Aint, 85
MPI_Allgather, 28, 36
MPI_Allgatherv, 28, 37, 40
MPI_Alloc_mem, 118, 118
MPI_Allreduce, 27, 33, 52
MPI_Alltoall, 28, 44
MPI_Alltoallv, 28, 37, 38
MPI_ANY_SOURCE, 44, 45, 64, 66, 77, 136, 143
MPI_ANY_TAG, 64, 78
MPI_APPNUM, 146
MPI_Attr_get, 145
MPI_BAND, 32
MPI_Barrier, 131, 134
MPI_Bcast, 28
MPI_BOR, 32
MPI_BOTTOM, 85
MPI_Bsend, 79, 80
MPI_Bsend_init, 82
MPI_BSEND_OVERHEAD, 79, 103
MPI_Buffer_attach, 79
MPI_Buffer_detach, 79
MPI_BXOR, 32
MPI_Cancel, 143, 149
MPI_Cart..., 150
MPI_Cart_coord, 141
MPI_Cart_create, 141
MPI_Cart_rank, 141
MPI_Close_port, 115
MPI_Comm_accept, 115
MPI_Comm_connect, 115
MPI_Comm_create, 109
MPI_Comm_disconnect, 115
MPI_Comm_dup, 105, 106, 139, 139, 150
MPI_Comm_free, 105, 139
MPI_Comm_get_parent, 115
MPI_Comm_group, 109
MPI_Comm_join, 115
MPI_COMM_NULL, 105
MPI_Comm_rank, 23, 24
MPI_Comm_remote_size, 115, 115
MPI_COMM_SELF, 105
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MPI_Comm_set_errhandler, 132
MPI_Comm_set_name, 109
MPI_Comm_size, 23, 23
MPI_Comm_spawn, 112, 112, 133
MPI_Comm_spawn_multiple, 115, 146
MPI_Comm_split, 46, 107, 140, 140, 151
MPI_Comm_split_type, 140, 140, 249, 249
MPI_COMM_TYPE_SHARED, 141
MPI_COMM_WORLD, 104, 105
MPI_Datatype, 36
MPI_DATATYPE_NULL, 95
MPI_DOUBLE_INT, 32
MPI_ERR_BUFFER, 79
MPI_ERR_INTERN, 79
MPI_ERRCODES_IGNORE, 113
MPI_ERROR, 60, 132
MPI_Error_string, 132
MPI_ERRORS_ARE_FATAL, 132
MPI_ERRORS_RETURN, 132, 144
MPI_Exscan, 41, 42, 42, 43
MPI_Fetch_and_op, 127, 127, 129, 152
MPI_Finalize, 20, 21
MPI_Finalized, 22
MPI_Gather, 28, 36, 37, 153
MPI_Gatherv, 28, 37, 37, 38, 39
MPI_Get, 122, 153
MPI_Get_count, 60, 64, 77, 91, 94, 101
MPI_Get_elements, 101
MPI_Get_elements_x, 102
MPI_Get_processor_name, 20, 144
MPI_Get_version, 133
MPI_Group_difference, 109
MPI_Group_excl, 109
MPI_Group_incl, 109
MPI_Ibarrier, 47
MPI_Ibcast, 47
MPI_Ibsend, 80
MPI_IN_PLACE, 31, 34, 36
MPI_Info, 118
MPI_INFO_ENV, 22
MPI_INFO_NULL, 117
MPI_Init

in Fortran, 133

MPI_Init, 20, 21, 22, 144, 147
MPI_Init_thread, 144, 147, 154, 249, 250
MPI_Initialized, 21
MPI_Iprobe, 77
MPI_Irecv, 69, 73, 75, 76
MPI_Is_thread_main, 148
MPI_Isend, 69, 73, 75
MPI_LAND, 32
MPI_LOCK_EXCLUSIVE, 129
MPI_LOCK_SHARED, 129
MPI_LOR, 32
MPI_LXOR, 32
MPI_MAX, 30, 32
MPI_MAX_PROCESSOR_NAME, 145
MPI_MAXLOC, 32, 32
MPI_MIN, 32
MPI_MINLOC, 32
MPI_OP, 50
MPI_Op, 144
MPI_Op_create, 41
MPI_Open_port, 115
MPI_PACK, 102
MPI_Pack, 102
MPI_Pack_size, 79
MPI_PACKED, 102
MPI_Probe, 77
MPI_PROC_NULL, 58, 59, 142, 274
MPI_PROD, 30, 32
MPI_Publish_name, 115
MPI_Put, 121, 155, 155, 157, 158
MPI_Query_thread, 148
MPI_Raccumulate, 124
MPI_Recv, 54, 61, 65, 66, 68
MPI_Recv_init, 80, 81, 156
MPI_Reduce, 27, 30, 37
MPI_Reduce_scatter, 44, 44, 46
MPI_REPLACE, 123
MPI_Request, 47, 73, 83
MPI_Request_free, 80, 83
MPI_Request_get_status, 83
MPI_Rget, 124
MPI_Rput, 123
MPI_Rsend, 136

Victor Eijkhout 291



INDEX

MPI_Rsend_init, 82
MPI_Scan, 41, 41, 43
MPI_Scatter, 35, 36
MPI_Scatter_reduce, 130
MPI_Scatterv, 37, 44
MPI_Send, 54, 60, 64, 65, 68
MPI_Send_init, 80, 80, 156, 156
MPI_Sendrecv, 57, 57, 58, 67, 68, 274
MPI_Sendrecv_replace, 59
MPI_Sizeof, 133, 143
MPI_SOURCE, 60, 64, 64, 66, 76, 77
MPI_Ssend, 78, 136, 157
MPI_Ssend_init, 82
MPI_Start, 80, 81
MPI_Start_all, 81
MPI_Startall, 80, 81, 156
MPI_Status, 54, 60, 63, 63, 64, 66, 73
MPI_STATUS_IGNORE, 54, 60, 64, 74
MPI_STATUSES_IGNORE, 60, 64, 74
MPI_SUBVERSION, 133
MPI_SUM, 30, 32, 37
MPI_TAG, 60
MPI_Test, 83
MPI_Test...., 71
MPI_Testall, 72
MPI_Testany, 72
MPI_THREAD_FUNNELED, 147
MPI_THREAD_FUNNELLED, 250
MPI_THREAD_MULTIPLE, 147, 250
MPI_THREAD_SERIAL, 250
MPI_THREAD_SERIALIZED, 147
MPI_THREAD_SINGLE, 147, 250
MPI_Type_commit, 86, 95
MPI_Type_contiguous, 86, 90, 96, 96, 142
MPI_Type_create_hindexed, 99
MPI_Type_create_struct, 89, 99
MPI_Type_create_subarray, 86, 88
MPI_Type_extent, 95, 101
MPI_Type_free, 86, 95
MPI_Type_get_extent, 101
MPI_Type_hindexed, 86, 90
MPI_Type_indexed, 86, 89, 91, 98, 98
MPI_Type_struct, 86, 93

MPI_Type_vector, 86, 87, 94, 97, 97
MPI_UNIVERSE_SIZE, 114, 146
MPI_UNPACK, 102
MPI_Unpack, 102
MPI_Unpublish_name, 115
MPI_VERSION, 133
MPI_Wait, 47, 64, 70, 80
MPI_Wait..., 69, 83
MPI_Waitall, 64, 70, 70, 75
MPI_Waitany, 60, 64, 71, 71, 74, 76
MPI_Waitsome, 64, 71
MPI_Win_complete, 126, 157
MPI_Win_create, 117, 117, 143, 153, 158
MPI_Win_fence, 119, 153, 158, 274
MPI_Win_flush..., 124
MPI_Win_lock, 127, 152, 157
MPI_Win_post, 126, 157
MPI_Win_start, 126, 157, 157
MPI_Win_unlock, 127
MPI_Win_wait, 126, 157
MPI_Wtick, 135, 146, 146
MPI_Wtime, 134, 146, 146
MPI_WTIME_IS_GLOBAL, 147
mpiexec, 13, 22
mpiexec, 20
mpif.h, 20
mpirun, 13, 14, 22, 105

and environment variables, 250
MPL, 15
multicore, 166
mvapich2, 248

nested parallelism, 173–174
node, 18

cluster, 164
numactl, 216, 243, 245
numerical integration, 176
numpy, 15, 143

omp
atomic, 201, 224, 228
barrier, 199

implicit, 200
cancel, 213
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critical, 201, 223, 228
declare simd, 220
flush, 227, 230
for

barrier behaviour, 200
lastprivate, 183, 222
master, 187, 250
ordered, 181
parallel, 169, 171, 216
parallel for, 175
private, 190, 227
section, 186
sections, 186, 193
simd, 219, 219
single, 187
task, 207, 210, 211
taskgroup, 211
taskwait, 210, 211, 213
taskyield, 213
threadprivate, 193, 223
workshare, 188

omp clause
aligned, 220
collapse, 181
copyin, 194
copyprivate, 188, 194
default, 191

firstprivate, 191
none, 191
private, 191
shared, 191

depend, 211
firstprivate, 192, 209
lastprivate, 193
linear, 219
nowait, 182, 200
ordered, 181
private, 190
proc bind, 216
safelen(n), 219
schedule

auto, 178
chunk, 178

guided, 178
runtime, 178

shared, 227
untied, 213

omp_destroy_nest_lock, 203
OMP_DYNAMIC, 195, 218
omp_get_active_level, 218
omp_get_ancestor_thread_num, 218
omp_get_dynamic, 218, 218
omp_get_level, 218
omp_get_max_active_levels, 218
omp_get_max_threads, 218, 219
omp_get_nested, 218, 219
omp_get_num_procs, 218, 219
omp_get_num_threads, 171, 218, 219
omp_get_schedule, 180, 218, 219
omp_get_team_size, 218
omp_get_thread_limit, 218
omp_get_thread_num, 171, 218, 219
omp_get_wtick, 218, 220
omp_get_wtime, 218, 220, 229
omp_in_parallel, 174, 218, 219
omp_init_nest_lock, 203
OMP_NESTED, 219
OMP_NUM_THREADS, 168, 219, 250
OMP_PROC_BIND, 216, 219, 229
omp_sched_affinity, 180
omp_sched_auto, 180
omp_sched_dynamic, 180
omp_sched_guided, 180
omp_sched_runtime, 180
omp_sched_static, 180
OMP_SCHEDULE, 178, 180, 219
omp_set_dynamic, 218, 218
omp_set_max_active_levels, 218
omp_set_nest_lock, 203
omp_set_nested, 218, 219
omp_set_num_threads, 218, 219
omp_set_schedule, 180, 218, 219
OMP_STACKSIZE, 219, 227
omp_test_nest_lock, 203
omp_unset_nest_lock, 203
OMP_WAIT_POLICY, 173, 219
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OpenMP
accelerator support in, 224
co-processor support in, 224
compiling, 167–168
environment variables, 168, 218–219
library routines, 218–219
running, 168
tasks, 207–215

data, 208–210
dependencies, 211–213
synchronization, 210–211

version 3.1
thread affinity, 229

version 4, 213
operating system, 225
origin, 116, 127, 128
out-of-order execution, 220
output dependency, see data dependencies
overlapping computation and communication, see

latency, hiding
owner computes, 53

packing, 102
parallel region, 166, 171–174, 186

barrier at the end of, 200
dynamic scope, 174, 228
flush at, 230

parallel regions
nested, 219

passive target synchronization, 116, 129, 152
pbing, 245
persistent communication, see communication, per-

sistent
pin a thread, 243
ping-pong, 53, 134
PMPI_..., 135
point-to-point, 53
pragma, 169
prefix, 41
prefix operation, 41
process, 18
producer-consumer, 223
program order, 220
progress, 136

purify, 261
PVM, 13, 112
Python

bindings, 15

race condition, 129, 196, 201, 222, 224
random number generation, 194
random number generator, 223
Ranger, 242
reduction, 27
reduction, 197
Riemann sums, 176
RMA

active, 116
passive, 116

root process, 26

scan, 27
exclusive, 41
inclusive, 41

scatter, 27
sched_setaffinity, 245
sched_setaffinity(), 216
schedule

clause, 180
schedule, 177
scope

lexical, 166
of variables, 166

segmentation fault, 259
segmented scan, 41
sentinel, 169, 172
serialization, 56
SetThreadAffinityMask, 245
shared data, 166
shmem, 137
Single Program Multiple Data (SPMD), 169, 171
sizeof, 118, 133
socket, 18, 164, 247
sort

exchange, 59
sparse matrix vector product, 41
spin-lock, 219
ssh, 13
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stack, 219
overflow, 227
per thread, 227

Stampede
compute node, 243
largemem node, 243
node, 165

start/affinity, 245
status

of receive call, 77
storage association, 190, 192
stride, 84
struct

data type, 86
Sun

compiler, 216
SUNW_MP_PROCBIND, 245
symbol table, 257, 258
synchronization

in MPI, 131
in OpenMP, 199–206

tacc_affinity, 243, 245, 247
target, 116, 126, 128

active synchronization, see active target syn-
chronization

passive synchronization, see passive target syn-
chronization

task
scheduler, 207
scheduling point, 213

taskset, 216, 245
TAU, 266
thread

affinity, 216–217, 229
migrating a, 216
private data, 193

thread-safe, 222–223
threads, 165

hardware, 166, 243
initial, 172
master, 166, 172
team of, 165, 172

time slicing, 166
time-slicing, 114
timing

MPI, 134–135
OpenMP, 229

topology, 110
TotalView, 257, 264
tree

traversal
post-order, 214
pre-order, 215

ulimit, 227
Unix

process, 227

valarray, 246
valgrind, 261–262
vector

data type, 86
instructions, 219

vi, 269
virtual shared memory, 116

wall clock, 146
wall clock time, 134
while loop, 207
while loops, 183
window, 116–121
work sharing, 166
work sharing construct, 186
workshare

flush after, 230
worksharing constructs

implied barriers at, 200
wraparound connections, 111
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