
Introduction to The
Intel® Xeon PHI™ processor
(codename “Knights Landing”)

Dr. Harald Servat - HPC Software Engineer
Data Center Group – Innovation Performing and Architecture Group

Summer School in Advanced Scientific Computing 2016
February 21st, 2016 – Braga, Portugal

Legal Disclaimers
Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies

depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at

[intel.com].

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as

SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors

may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and

roadmaps.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes.

Any differences in your system hardware, software or configuration may affect your actual performance.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies

depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at

https://www-ssl.intel.com/content/www/us/en/high-performance-computing/path-to-aurora.html.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual

performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance

and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo, Xeon, Intel Xeon Phi, Intel Optane and 3D XPoint are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the

United States or other countries.

*Other names and brands may be claimed as the property of others.

© 2016 Intel Corporation. All rights reserved.

2

https://www-ssl.intel.com/content/www/us/en/high-performance-computing/path-to-aurora.html
http://www.intel.com/performance

3

Agenda
1. Introduction

2. Micro-architecture

i. Tile architecture

ii. Untile architecture

3. AVX512 Instruction set

4. High-Bandwidth memory

Introduction

5

Moore’s Law and Parallelism

TBA

Symbiotic Extension
of Intel® Xeon®
processor stack

Intel® Xeon®

processor

5100
series

Intel® Xeon®

processor

5500
series

Intel® Xeon®

processor

5600
series

Intel® Xeon® processor
code-named

Sandy
Bridge EP

Intel® Xeon® processor
code-named

Ivy Bridge
EP

Intel® Xeon® processor
code-named

Haswell
EP

2 4 6 8 12 18

2 8 12 16 24 36

128 128 128 256 256 256

Intel® Xeon Phi™

coprocessor

Knights
Corner

Intel® Xeon Phi™ processor

& coprocessor

Knights
Landing

61 72

244 288

512 512

Core(s)

Threads

SIMD Width

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause

the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Configurations: Intel Performance Projections as of Q1 2015. For more information go to

http://www.intel.com/performance . Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. Copyright © 2015, Intel Corporation

Chart illustrates relative performance of the Binomial Options DP workload running on an Intel® Xeon® processor from the adjacent generation.

*Product specification for launched and shipped products available on ark.intel.com.
1Not launched

Vectorized & Parallelized

Scalar & Parallelized

Vectorized & Single-Threaded
Scalar & Single-Threaded

>100x

3

CPU parallelism is already a must

7

Peak GFLOP/s in Single Precision

 Clock Rate x Cores x Ops/Cycle x SIMD

2 x Intel® Xeon® Processor E5-2670v2

 2.5 GHz x 2 x 10 cores x 2 ops x 8 SIMD
= 800 GFLOP/s

Intel® Xeon Phi™ Coprocessor 7120P

 1.24 GHz x 61 cores x 2 ops x 16 SIMD
= 2420.48 GFLOP/s

5

40

100

800

1,24

19,84

151,28

2420,48

1

10

100

1000

Scalar & ST Vector & STScalar & MT Vector &
MT

G
F

L
O

P
/s

2 x Processor Coprocessor

Parallelism and Performance

8

 On modern hardware,
Performance = Parallelism

 Flat programming model on parallel
hardware is not effective.

 Parallel programming is not optional.

 Codes need to be made parallel
(“modernized”) before they can be tuned for
the hardware (“optimized”).

5

40

100

800

1,24

19,84

151,28

2420,48

1

10

100

1000

Scalar & ST Vector & STScalar & MT Vector &
MT

G
F

L
O

P
/s

2 x Processor Coprocessor

Parallelism and Performance

A Paradigm Shift

9

Coprocessor

Fabric

Memory

Memory Bandwidth
400+ GB/s STREAM

Memory Capacity
Over 25x KNC

Power Efficiency
Over 25% better than card

I/O
200 Gb/s/dir with int fabric

Cost
Less costly than discrete parts

Flexibility
Limitless configurations

Density
3+ KNL with fabric in 1U

Knights Landing

Server Processor

Host Processor

Knights Landing

Host Processor
w/ integrated Fabric

Knights Landing

+F

Knights Landing PCIe Coprocessors
Ingredient of Grantley & Purley Platforms

Solution for general purpose servers and workstations

Knights Landing Processors
Host Processor for Groveport Platform

Solution for future clusters with both Xeon and Xeon Phi

Knights Landing (Host or PCIe)

5

Stampede-knl (or Stampede1.5)

5

Intel S7200AP Cluster

484x Intel Xeon Phi 7250 68C 1.4GHz

• 32,912 total cores

• 1,474 teraFLOP/s

Intel Omni-Path

Intel® Xeon Phi™ x200 processor:

micro-Architecture

DDR4

MCDRAM MCDRAM

MCDRAM MCDRAM

DDR4

Tile IMC (integrated memory controller)EDC (embedded DRAM controller) IIO (integrated I/O controller)

KNL
Package

Enhanced Intel® Atom™ cores based on
Silvermont Microarchitecture

2VPU

Core

2VPU

Core
1MB
L2

HUB

Intel® Xeon Phi™ Processor Family Architecture Overview
Codenamed “Knights Landing” or KNL

13

Comprises 38 physical tiles, at which at most 36 active

• Remaining for yield recovery

Introduces new 2D cache-coherent mesh interconnect
(Untile)

• Tiles

• Memory controllers

• I/O controllers

• Other agents

Tile architecture

KNL processor Tile
Tile

• 2 cores, each with 2 vector processing units (VPU)

• 1 MB L2-cache shared between the cores

Core

• Binary compatible with Xeon

• Enhanced Silvermont (Atom)-based for HPC w/ 4 threads

• Out-of-order core

• 2-wide decode, 6-wide execute (2 int, 2 fp, 2 mem), 2-wide retire

2 VPU

• 512-bit SIMD (AVX512) 32SP/16DP per unit

• Legacy X87, SSE, AVX and AVX2 support

15

2VPUs

Core

2VPUs

Core

1MB
L2

HUB

KNL processor Tile

16

Structure Characteristics

Cache
L1

32 KB 8-way Icache

32 KB 8-way Dcache

L2 1 MB 16-way Unified cache

TLB

L1
48-entry fully-associative ITLB

64-entry 8-way DTLB 4KB pages

L2

256-entry 8-way DTLB 4KB pages

128-entry 8-way DTLB 2/4MB pages

16-entry fully-associative DTLB 1GB pages

2VPUs

Core

2VPUs

Core

1MB
L2

HUB

KNL processor Tile

CHA Caching/Home Agent (or HUB)

• 2D-Mesh connections for Tile

• Distributed Tag Directory to keep L2s coherent

• MESIF protocol

… More to come in the UNTILE section!

17

2VPUs

Core

2VPUs

Core

1MB
L2

HUB

Intel® XEON PHI™ PROCESSOR EARLY SHIP TURBO SPECS

18

SKU TDP (W)
Active
Tiles

Active
Cores

Single Tile
Turbo
GHz

All Tile
Turbo
GHz

TDP Freq
GHz

AVX Freq
GHz

Mesh Freq
GHz

OPIO
GT/s

DDR
MHz

7250 215 34 68 1.6 1.5 1.4 1.2 1.7 7.2 2400

7230 215 32 64 1.5 1.4 1.3 1.1 1.7 7.2 2400

7210 215 32 64 1.5 1.4 1.3 1.1 1.6 6.4 2133

Turbo is an opportunistic increase in frequency over TDP frequency

• KNL has two turbo modes

• Single tile turbo – any one tile increases frequency while all other tiles are in the C6 idle state

• All tile turbo – all tiles run at an increased frequency

• Frequency varies, depending on the workload, power budget and SKU

• When running AVX intense code frequency may decrease

• UNHALTED_CORE_CYCLES vs UNHALTED_REFERENCE_CYCLES performance counters

OPIO is Intel’s On Package IO technology for high speed connections between multiple chips on a single
package.

Intel® Xeon Phi™ x200 vs silvermont Comparison

19

FEATURE SILVERMONT KNL

Vector ISA Up to Intel® SSE4.2 Up to Intel® AVX-512

Enhanced (VPU) Vector processing Unit 2x 128-bit VPU / Core 2x 512-bit VPU / Core

Physical/Virtual addressing 36 bits / 48 bits 46 bits / 48 bits

HW based Gather/Scatter No Yes

Reorder buffer entries 32 72

Threads / Core 1 4

Memory operations per cycle 1 (16 bytes each) 2 (64 bytes each)

Vector/FP reservation station policy In-Order Out-of-Order

L1 cache size 24K 32K

L2 cache to D-cache BW 1X 2X

Micro-TLB 32 64

Data TLB
4K pages: 128
2M pages: 16
1G pages: N/A

4K pages: 256
2M pages: 128
1G pages: 16

Knights Landing vs. Knights Corner Feature Comparison

20

FEATURE INTEL® XEON PHI™ COPROCESSOR 7120P KNIGHTS LANDING PRODUCT FAMILY

Processor Cores Up to 61 enhanced P54C Cores Up to 72 enhanced Silvermont cores

Key Core Features
In order
4 threads / core (back-to-back scheduling restriction)
2 wide

Out of order
4 threads / core
2 wide

Peak FLOPS1 SP: 2.416 TFLOPs • DP: 1.208 TFLOPs Up to 3x higher

Scalar Performance1 1X Up to 3x higher

Vector ISA x87, (no Intel® SSE or MMX™), Intel IMIC
x87, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, Intel® AVX,
AVX2, AVX-512 (no Intel® TSX)

Interprocessor Bus Bidirectional Ring Interconnect Mesh of Rings Interconnect

1- Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes.
Any differences in your system hardware, software or configuration may affect your actual performance.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. See benchmark tests and configurations in the speaker notes. For more information go to http://www.intel.com/performance

http://www.intel.com/performance

KNL Core organization
Front-End Unit (FEU)

Decode, allocate 2 instructions/cycle

32-entry instruction queue

Gskew-style branch predictor

21

KNL Core organization
Allocation Unit

72-entry ROB buffer

72-entry rename buffers

16 store data buffers

4 gather scatter data tables

22

KNL Core organization

23

Integer Execution Unit (IEU)

2 IEUs per core

• 2 uops dispatched / cycle

• 12-entries each

Out-of-order

Most operations take 1 cycle

• Some operations take 3-5 and are
supported on only one IEU (e.g muls)

KNL Core organization

24

Memory Execution Unit (MEU)

Dispatches 2 uops (either LD/ST)

• in-order

• but can complete in any order

2 64B load & 1 64B store port for
Dcache

L2 supports 1 Line Read and ½ Line
Write per cycle

L1 - L2 prefetcher

• Track up to 48 access patterns

Fast unaligned and cache-line split
support

Fast gather/scatter support

KNL Core organization
Vector Processing Unit (VPU)

2 VPUs tightly integrated with core
pipeline

• 20-entry FP RS

• executed out-of-order

2 512-bit FMA / cycle

Most FP operations take 6 cycles

1 VPU provides legacy x87, MMX
support a subset of SSE instructions

25

KNL Core organization
Retire

2 instructions / cycle

26

27

4 threads per core SMT

Resources dynamically partitioned

• Re-order buffer, Rename buffers,
Reservation station

• Partitioning changes as threads wake
up and go to sleep

Resources shared

• Caches

• TLB

Several Thread Selection points in
the pipeline ()

• Maximize throughput while
being fair

• Account for available resources,
stalls and forwards progress

KNL Hardware Threading
Thread
selection
point

Taking benefit of the core
Threading

• Ensure that thread affinities are set.

• Understand affinity and how it affects your application (i.e. which threads share data?).

• Understand how threads share core resources.

• An individual thread has the highest performance when running alone in a core.

• Running 2 or 4 threads in a core may result in higher per core performance but lower per
thread performance.

• Due to resource partitioning, 3 thread configuration will have fewer aggregative
resources than 1, 2 or 4 threads per core. 3 threads in a core is unlikely to perform better
than 2 or 4 threads.

Vectorization
• Prefer AVX512 instructions and avoid mixing SSE, AVX and AVX512 instructions.

• Avoid cache-line splits; align data structures to 64 bytes.

• Avoid gathers/scatters; replace with shuffles/permutes for known sequences.

• Use hardware trascendentals (fast-math) whenever possible.

• AVX512 achieves best performance when not using masking

• KNC intrinsic code is unlikely to generate optimal KNL code, recompile from HL language.

28

Data Locality: Nested Parallelism
• Recall that KNL cores are grouped into tiles, with two cores sharing an L2.

• Effective capacity depends on locality:

• 2 cores sharing no data => 2 x 512 KB

• 2 cores sharing all data => 1 x 1 MB

• Ensuring good locality (e.g. through blocking or nested parallelism)

is likely to improve performance.

29

#pragma omp parallel for num_threads(ntiles)
for (int i = 0; i < N; ++i)
{

#pragma omp parallel for num_threads(8)
for (int j = 0; j < M; ++j)
{

…
}

}

unTile architecture

KNL PROCESSOR UNTILE
Comprises a mesh connecting the tiles (in red)
with the MCDRAM and DDR memories.

• Also with I/O controllers and other agents

Caching Home Agent (CHA) holds portion of the
distributed tag directory and serves as
connection point between tile and mesh

• No L3 cache as in Xeon

Cache coherence uses MESIF protocol
(Modified, Exclusive, Shared, Invalid, Forward)

31

Tile IMC (integrated memory controller)EDC (embedded DRAM controller) IIO (integrated I/O controller)

KNL MESH INTERCONNECT Mesh of Rings

• Every row and column is a ring

• YX routing: Go in Y Turn Go in X

• 1 cycle to go in Y, 2 cycles to go in X

• Messages arbitrate at injection and on turn

Mesh at fixed frequency of 1.7 GHz

Distributed Directory Coherence protocol

KNL supports Three Cluster Modes

1) All-to-all

2) Quadrant

3) Sub-NUMA Clustering

Selection done at boot time.

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

Cluster mode: all-to-all
Address uniformly hashed across all
distributed directories

No affinity between Tile, Directory and
Memory

Lower performance mode, compared to
other modes. Mainly for fall-back

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

33

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

Chip divided into four Quadrants

Affinity between the Directory and
Memory

Lower latency and higher BW than all-to-
all

SW Transparent

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

34

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

Cluster mode: quadrant

Cluster mode: sub-numa clustering (SNC4)
Each Quadrant (Cluster) exposed as a

separate NUMA domain to OS

Analogous to 4-socket Xeon

SW Visible

Typical Read L2 miss

1. L2 miss encountered

2. Send request to the distributed directory

3. Miss in the directory. Forward to memory

4. Memory sends the data to the requestor

35

Misc

IIOEDC EDC

Tile Tile

Tile Tile Tile

EDC EDC

Tile Tile

Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

Tile Tile Tile Tile Tile Tile

EDC EDC EDC EDC

iMC Tile Tile Tile Tile iMC

OPIO OPIO OPIO OPIO

OPIO OPIO OPIO OPIO

PCIe

DDR DDR

1

2

3

4

How to DETECT / USE the cluster modes?
Detection

• CPUID instruction
• /proc/cpuinfo

• hwloc command
• lstopo –no-io

• numactl / libnuma

Use

• numactl / libnuma

• Memkind

• MPI/OpenMP

36

Diagram for Xeon
2-socket 8-core w/ HT and 16GB per socket

Implications for Parallel Runtimes
OpenMP
• No changes for All-2-All or Quadrant modes

• In SNC4 and using multiple MPI ranks per processor, use descriptors

• compact, scatter

• In SNC4 with no MPI, need to manually handle NUMA bindings

MPI
• Use existing (Intel) MPI mechanisms for affinity control

- I_MPI_PIN, I_MPI_PIN_MODE, I_MPI_PIN_PROCESSOR_LIST, I_MPI_PIN_DOMAIN

• Don’t limit yourself to 1 MPI Rank per SNC

37

Intel® Xeon Phi™ x200 processor:

AVX512 Instruction set

SIMD: Single Instruction, Multiple Data

• Scalar mode
– one instruction produces one result

– E.g. vaddss, (vaddsd)

• Vector (SIMD) mode
– one instruction can produce multiple

results

– E.g. vaddps, (vaddpd)

+

X

Y

X + Y

+

X

Y

X + Y

= =

x7+y7 x6+y6 x5+y5 x4+y4 x3+y3 x2+y2 x1+y1 x0+y0

y7 y6 y5 y4 y3 y2 y1 y0

x7 x6 x5 x4 x3 x2 x1 x0

SSE
AVX

for (i=0; i<n; i++)

z[i] = x[i] + y[i];

E5-2600
(SNB1)

SSE

AVX

E5-2600v3
(HSW1)

SSE

AVX

AVX2

AVX-512CD

x87/MMX x87/MMX

KNL
(Xeon Phi2)

SSE

AVX

AVX2

x87/MMX

AVX-512F

BMI

AVX-512ER

AVX-512PF

BMI

TSX

KNL implements all legacy instructions

• Legacy binary runs w/o recompilation

• KNC binary requires recompilation

KNL introduces AVX-512 Extensions

• 512-bit FP/Integer Vectors

• 32 registers & 8 mask registers

• Gather/Scatter

Conflict Detection: Improves Vectorization

Prefetch: Gather and Scatter Prefetch

Exponential and Reciprocal Instructions

LE
G

A
C

Y

No TSX. Under
separate CPUID bit

1. Previous Code name Intel® Xeon® processors
2. Xeon Phi = Intel® Xeon Phi™ processor

KNL Hardware instruction set

40

41

KNL avx512 Instruction Set

Intel AVX-512
Prefetch

Instructions (PFI)

Prefetch sparse
vector memory

locations in
advance

Intel AVX-512
Exponential and

Reciprocal
Instructions (ERI)

Fast math
functions for

transcendental
sequences

Intel AVX-512
Conflict Detection
Instructions (CDI)

Auto-conflict
detection for

alias
disambiguation

CPUID Instructions Description

A
V

X
5

1
2

P
F

PREFETCHWT1
Prefetch cache line into the L2 cache with
intent to write

VGATHERPF{D,Q}{0,1}P
S

Prefetch vector of D/Qword indexes into
the L1/L2 cache

VSCATTERPF{D,Q}{0,1}
PS

Prefetch vector of D/Qword indexes into
the L1/L2 cache with intent to write

A
V

X
5

1
2

E
R

VEXP2{PS,PD}
Computes approximation of 2x with
maximum relative error of 2-23

VRCP28{PS,PD}
Computes approximation of reciprocal with
max relative error of 2-28 before rounding

VRSQRT28{PS,PD}
Computes approximation of reciprocal
square root with max relative error of 2-28

before rounding
A

V
X

5
1

2
C

D VPCONFLICT{D,Q}
Detect duplicate values within a mask and
create conflict-free subsets

VPLZCNT{D,Q}
Count the number of leading zero bits in
each element

VPBROADCASTM{B2Q,
W2D}

Broadcast vector mask into vector
elements

Motivation for Conflict Detection
Sparse computations are common in HPC, but hard to vectorize due to race conditions

Consider the “scatter” or “histogram” problem:

index = vload &B[i] // Load 16 B[i] indices
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++; }

• Problem if two vector lanes try to increment the same histogram bin

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence gather-
op-scatter with vector of indexes that contain conflicts

Intel Confidential

Conflict Detection Instructions (CDI)

43

AVX-512 CDI introduces three new instructions:

• vpconflict{d,q} zmm1 {k1}, zmm2/mem
Compares (for equality) each element in zmm2 with “earlier” elements and outputs bit vector.

• vpbroadcastm{b2q,w2d} zmm1 {k0}, to_do

• vplzcnt{d,q}

• vptestnm{d,q} k2 {k1}, zmm1, zmm2/mem
(from AVX-512F)

Manipulate bit vector
from vpconflict to
construct a useful mask.

Conflict Detection Instructions (CDI)

44

Vectorization with these instructions looks like this:

for (int i = 0; i < N; i += 16)
{

__m512i indices = vload &B[i]
vpconflictd comparisons, indices // comparisons = __m512i
__mmask to_do = 0xffff;

do
{

vpbroadcastmd tmp, to_do // tmp = __m512i
vptestnmd mask {to_do}, comparisons, tmp
do_work(mask); // gather-compute-scatter
to_do ^= mask;

} while(to_do);
}

Do work for element if no
conflicts on remaining
earlier elements.

Conflict Detection Instructions (CDI) - Example

45

0101 0001 0000 0000

2 2 1 2

2 2 1 2Index Register:

Bit Vector:

1) Compare (for equality)
each element in zmm2 with
“earlier” elements and output
bit vector.

2) Combine bit vector and
todo to work out which
elements can be updated in
this iteration.

vpconflict

vpbroadcast

0101 0001 0000 0000

1111 1111 1111 1111

0101 0001 0000 0000

0011

0011

vptest

0101 0001 0000 0000

1100 1100 1100 1100

0100 0000 0000 0000

0111

0100

0101 0001 0000 0000

1000 1000 1000 1000

0000 0000 0000 0000

1111

1000

3) Loop until todo is 0000.

Conflict Detection Instructions (CDI) – Compiler

46

The Intel® compiler (15.0 onwards) will recognise potential run-time conflicts and
generate vpconflict loops automatically:

for (int i = 0; i < N; ++i)
{

histogram[index[i]]++;
}

Such loops would originally have resulted in:
remark #15344: loop was not vectorized: vector dependence prevents vectorization
remark #15346: vector dependence: assumed FLOW dependence between histogram line 22 and histogram line 22
remark #15346: vector dependence: assumed ANTI dependence between histogram line 22 and histogram line 22

If you know that conflicts cannot occur, you should still specify this:
(e.g. #pragma ivdep, #pragma simd, #pragma omp simd)

Prefer simple “for” or “DO” loops

Write straight line code. Try to avoid:
• function calls (unless inlined or SIMD-enabled functions)
• branches that can’t be treated as masked assignments.

Avoid dependencies between loop iterations
• Or at least, avoid read-after-write dependencies

Prefer arrays to the use of pointers
• Without help, the compiler often cannot tell whether it is safe to vectorize code containing pointers.
• Try to use the loop index directly in array subscripts, instead of incrementing a separate counter for use as an

array address.
• Disambiguate function arguments, e.g. -fargument-noalias

Use efficient memory accesses
• Favor inner loops with unit stride
• Minimize indirect addressing a[i] = b[ind[i]]
• Align your data consistently where possible (to 16, 32 or 64 byte boundaries)

Guidelines for writing vectorizable code

Processor Dispatch (fat binaries)
Compiler can generate multiple code paths

• Optimized for different processors

• Only when likely to help performance

• One default code path, one or more optimized paths

• Optimized paths are for Intel processors only

Examples:

• -axavx

• default path optimized for Intel® SSE2 (Intel or non-Intel) (-msse2)

• Second path optimized for Intel® AVX (code name Sandy Bridge, etc.)

• -axcore-avx2,avx -xsse4.2

• Default path optimized for Intel® SSE4.2 (code name Nehalem, Westmere)

• Second path optimized for Intel® AVX (code name Sandy Bridge, etc)

• Third path optimized for Intel® AVX2 (code name Haswell)

49

Intel® Compiler Switches Targeting Intel® AVX-512

Switch Description

-xmic-avx512
KNL only
Not a fat binary.

-xcore-avx512
Future Xeon only
Not a fat binary.

-xcommon-avx512
AVX-512 subset common to both.
Not a fat binary.

-axmic-avx512 etc.
Fat binaries. Allows to target KNL and other
Intel® Xeon® processors

Don’t use –mmic with KNL !

Best would be to use –axcore-avx512,mic-avx512 –xcommon-avx512

All supported in 16.0 and forthcoming 17.0 compilers

Binaries built for earlier Intel® Xeon® processors will run unchanged on KNL
Binaries built for Intel® Xeon Phi™ coprocessors will not.

Intel® Xeon Phi™ x200 processor:

High-Bandwidth memory

Intel® Xeon Phi™ x200 processor Overview

51

…

…

.
.

.

.
.

.

Integrated Fabric

up to 72 Cores

Processor Package

Compute
 Intel® Xeon® Processor Binary-Compatible

 3+ TFLOPS, 3X ST (single-thread) perf. vs KNC

 2D Mesh Architecture

Out-of-Order Cores

On-Package Memory (MCDRAM)
 Up to 16 GB at launch

 Over 5x STREAM vs. DDR4 at launch

Platform Memory
Up to 384 GB DDR4

Knights
Landing

…

Heterogenous memory Architecture
Intel® Xeon Phi™ x200 processor uses two types of memory

• standard DDR4 (DIMM)

• high-bandwidth MCDRAM (on-package)

What are the usage models?

How software can benefit from them?

52

MCDRAM Modes
Cache mode
• Direct mapped cache
• Inclusive cache
• Misses have higher latency

• Needs MCDRAM access + DDR access
• No source changes needed to use,

automatically managed by hw as if LLC

Flat mode
• MCDRAM mapped to physical address space
• Exposed as a NUMA node

• Use numactl --hardware, lscpu to display configuration

• Accessed through memkind library or numactl

Hybrid
• Combination of the above two

• E.g., 8 GB in cache + 8 GB in Flat Mode

53

DRAM
8 or 4 GB
MCDRAM

8 or 12GB
MCDRAM

KNL Cores +
Uncore (L2)

8GB/ 16GB
MCDRAM

Up to
384 GB

DRAM

P
h

ys
ic

a
l A

d
d

re
ss

KNL Cores +
Uncore (L2)

DRAM
16GB

MCDRAM
KNL Cores +
Uncore (L2)

64B cache lines
direct-mapped

Split Options:
25/75% or 50/50%

MCDRAM as Cache
Upside

• No software modifications required

• Bandwidth benefit (over DDR)

Downside

• Higher latency for DDR access

• i.e., for cache misses

• Sustained misses limited by DDR BW

• All memory is transferred as:

• DDR -> MCDRAM -> L2

• Less addressable memory

Upside
• Isolation of MCDRAM for high-performance

application use only
• OS and applications use DDR memory

• No software modifications required if data fits in
MCDRAM

• Lower latency

• i.e., no MCDRAM cache misses

• Maximum addressable memory

Downside
• Generally, software modifications (or

interposer library) required
• to use DDR and MCDRAM in the same app

• Which data structures should go where?

• MCDRAM is a finite resource and tracking it
adds complexity

54

MCDRAM as FLAT MODE

55

Take away message: Cache vs Flat Mode

DDR
Only

MCDRAM
as Cache

MCDRAM
Only

Flat DDR +
MCDRAM

Hybrid

Software
Effort

Performance

No software changes required
Change allocations for

bandwidth-critical data.

Not peak
performance.

Best performance.

DDR
Only

MCDRAM
as Cache

Hybrid

Not peak
performance.

Recommended

Limited
memory
capacity

Optimal HW
utilization +

opportunity for
new algorithms

How to ACCESS MCDRAM in Flat Mode?
New mechanisms proposed by Intel:

• Memkind Library

• User space library

• C/C++ language interface

• Needs source modification

• Fortran FASTMEM compiler directives

• Internally uses memkind library

• Ongoing language standardization efforts

• AutoHBW for C/C++

• interposer library based on memkind

• No source modification needed (based on size of allocations)

• No fine control over individual allocations

Use standard OS mechanisms

• Using numactl

• Direct OS system calls

• mmap(1), mbind(1)

• Not the preferred method

• Page-only granularity, OS serialization, no pool management
*Other names and brands may be claimed as the property of others.

56

Scope of
this presentation

Memkind library Architecture

57

A Heterogeneous Memory Management Framework
The memkind library

– Defines a plug-in architecture

– Each plug-in is called a “kind” of memory

– Built on top of jemalloc

– High level memory management
functions can be overridden

– Available via github:
https://github.com/memkind

The hbwmalloc interface

– The high bandwidth memory interface

– Implemented on top of memkind

– Simplifies memkind plug-in (kind)
selection

– Uses all kinds featuring on package
memory on the Knights Landing
architecture

– Provides support for 2MB and 1GB pages

– Select fallback behavior when on package
memory does not exist or is exhausted

– Check for existence of on package
memory

https://github.com/memkind

memkind – “Kinds” of Memory

59

Many “kinds” of memory supported by memkind:

– MEMKIND_DEFAULT
Default allocation using standard memory and default page size.

– MEMKIND_HBW
Allocate from the closest high-bandwidth memory NUMA node at time of allocation.

– MEMKIND_HBW_PREFERRED
If there is not enough HBW memory to satisfy the request, fall back to standard memory.

– MEMKIND_HUGETLB
Allocate using 2MB pages.

– MEMKIND_GBTLB
Allocate using GB pages.

– MEMKIND_INTERLEAVE
Allocate pages interleaved across all NUMA nodes.

– MEMKIND_PMEM
Allocate from file-backed heap.

These can all be used with HBW
(e.g. MEMKIND_HBW_HUGETLB);
all but INTERLEAVE can be used with
HBW_PREFERRED.

memkind & hbwmalloc – Early Experiments

60

AutoHBW: Interposer Library that comes with memkind

• Automatically allocates memory from MCDRAM

• If a heap allocation (e.g., malloc/calloc) is larger than a given threshold

LD_PRELOAD=libautohbw.so ./application

Run-time configuration options are passed through environment variables:

– AUTO_HBW_SIZE=x[:y]
Any allocation larger than x and smaller than y should be allocated in HBW memory.

– AUTO_HBW_MEM_TYPE
Sets the “kind” of HBW memory that should be allocated (e.g. MEMKIND_HBW)

– AUTO_HBW_LOG and AUTO_HBW_DEBUG for extra information.

Easy to integrate similar functionality into other libraries, C++ allocators, etc.

memkind – C “Hello World!” Example

61

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <memkind.h>

int main(int argc, char **argv)
{

const size_t size = 512;
char *default_str = NULL;
char *hbw_str = NULL;

default_str = (char *)memkind_malloc(MEMKIND_DEFAULT, size);
if (default_str == NULL) {

perror("memkind_malloc()");
fprintf(stderr, "Unable to allocate default string\n");
return errno ? -errno : 1;

}

hbw_str = (char *)memkind_malloc(MEMKIND_HBW, size);
if (hbw_str == NULL) {

perror("memkind_malloc()");
fprintf(stderr, "Unable to allocate hbw string\n");
return errno ? -errno : 1;

}

sprintf(default_str, "Hello world from standard memory\n");
sprintf(hbw_str, "Hello world from high bandwidth memory\n");
fprintf(stdout, "%s", default_str);
fprintf(stdout, "%s", hbw_str);

memkind_free(MEMKIND_DEFAULT, hbw_str);
memkind_free(MEMKIND_DEFAULT, default_str);

return 0;
}

Based on:
https://github.com/memkind/memkind/blob/dev/examples/hello_memkind_example.c

+ Link w/ memkind library
(otherwise won’t link due to

unresolved references)

62

Using Memkind Library to Access MCDRAM (Fortran)

c Declare arrays to be dynamic

REAL, ALLOCATABLE :: A(:), B(:), C(:)

!DEC$ ATTRIBUTES FASTMEM :: A

NSIZE=1024

c allocate array ‘A’ from MCDRAM

ALLOCATE (A(1:NSIZE))

c Allocate arrays that will come from DDR

ALLOCATE (B(NSIZE), C(NSIZE))

• Unlike C, Fortran does not rely on a malloc –type API to perform
allocations of dynamic memory

• Intrinsic ALLOCATE statement used for all dynamic allocations

• Intrinsic DEALLOCATE for deallocation of memory

• NOTE: Fortran 2003 standard requires ALLOCATABLE variables to be
automatically deallocated when they go out of scope

+ Link w/ memkind library
(otherwise silently
allocated in DDR)

Fortran FASTMEM STATUS
• To have ATTRIBUTES FASTMEM, ALLOCATABLE –attribute is required

• In version 16 of the Intel compiler, FASTMEM is not allowed for

• Variables with the POINTER –attribute
REAL, POINTER :: array(:)

• Automatic (stack) variables
SUBROUTINE SUB1(n)

INTEGER :: n

REAL :: A(n,n)

...

END SUBROUTINE

• Components of derived types
TYPE mytype

REAL, ALLOCATABLE :: array(:)

END TYPE mytype

• COMMON blocks
INTEGER, PARAMETER :: NARR = 1000

REAL ARRAY(NARR,NARR)

COMMON /MATRIX/ ARRAY, N

63

Running memkind

64

The following command allocates all the data from the application into DDR (NUMA
node 0) except for the MEMKIND allocations on HBW (NUMA node 1)

export MEMKIND_HBW_NODES=1

numactl --membind=0 --cpunodebind=0 <binary>

hbwmalloc – C “Hello World!” Example

65

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <hbwmalloc.h>

int main(int argc, char **argv)
{

const size_t size = 512;
char *default_str = NULL;
char *hbw_str = NULL;

default_str = (char *)malloc(size);
if (default_str == NULL) {

perror("malloc()");
fprintf(stderr, "Unable to allocate default string\n");
return errno ? -errno : 1;

}

hbw_str = (char *)hbw_malloc(size);
if (hbw_str == NULL) {

perror("hbw_malloc()");
fprintf(stderr, "Unable to allocate hbw string\n");
return errno ? -errno : 1;

}

sprintf(default_str, "Hello world from standard memory\n");
sprintf(hbw_str, "Hello world from high bandwidth memory\n");
fprintf(stdout, "%s", default_str);
fprintf(stdout, "%s", hbw_str);

hbw_free(hbw_str);
free(default_str);

return 0;
}

Based on:
https://github.com/memkind/memkind/blob/dev/examples/hello_hbw_example.c

Fallback policy is controlled with hbw_set_policy:
– HBW_POLICY_BIND
– HBW_POLICY_PREFERRED
– HBW_POLICY_INTERLEAVE

Page sizes can be passed to
hbw_posix_memalign_psize:
– HBW_PAGESIZE_4KB
– HBW_PAGESIZE_2MB
– HBW_PAGESIZE_1GB

+ Link w/ memkind library
(otherwise won’t link due to

unresolved references)

Hbwmalloc – c++ STL allocator example

66

#include <iostream>
#include <vector>

#include <hbw_allocator.h>

int main(int argc, char **argv)
{

const int length = 10;

std::vector<double, hbw::allocator<double> > data(10);

for (int i = 0; i < length; ++i) {
data[i] = (double)(i);

}

std::cout << data[length-1] << std::endl;
return 0;

}

+ Link w/ memkind library
(otherwise won’t link due to

unresolved references)

STANDARD WAYS OF AccessING MCDRAM
MCDRAM is exposed to OS/software as a NUMA node

Utility numactl is standard utility for NUMA system control
• See “man numactl”

• Do “numactl --hardware” to see the NUMA configuration of your system

If the total memory footprint of your app is smaller than the size of MCDRAM
• Use numactl to allocate all of its memory from MCDRAM
• numactl --membind=mcdram_id <command>

• Where mcdram_id is the ID of MCDRAM “node”

• Allocations that don’t fit into MCDRAM make application fail

If the total memory footprint of your app is larger than the size of MCDRAM
• You can still use numactl to allocate part of your app in MCDRAM

• numactl --preferred=mcdram_id <command>

• Allocations that don’t fit into MCDRAM spill over to DDR

67

Node 0

Xeon Xeon DDRDDRKNL
MC

DRAM
DDR

Node 1Node 0 Node 1

Intel® Xeon® with 2 NUMA nodesKNL with 2 NUMA nodes

≈

Software visible memory configuration

68

1. Cache mode / Quadrant

2. Flat mode / Quadrant

3. Cache mode / SNC-4

4
. F

la
t

m
o

d
e

 w
it

h
 s

u
b

-N
U

M
A

 c
lu

st
e

ri
n

g
 (

S
N

C
-4

)

DDR
MCDRAM

Obtaining Memkind Library
Homepage: http://memkind.github.io/memkind

Download package

• On RHEL* 7

• yum install epel-release; yum install memkind

• For other distros: install from
http://download.opensuse.org/repositories/home:/cmcantalupo/

Alternatively, you can build from source

• git clone https://github.com/memkind.git

• See CONTRIBUTING file for build instructions

• Must use this option to get AutoHBW library

• Requires libnuma (development files and libraries)

• yum install numactl-devel

*Other names and brands may be claimed as the property of others.

69

http://memkind.github.io/memkind
http://download.opensuse.org/repositories/home:/cmcantalupo/
https://github.com/memkind.git

Mkl and HBM
Intel MKL 2017 memory manager tries to allocate memory to MCDRAM through the
Memkind library.

By default the amount of MCDRAM available for Intel MKL is unlimited. To control the
amount of MCDRAM available for Intel MK use either of the following:

• Call mkl_set_memory_limit (MKL_MEM_MCDRAM, <limit in mbytes>)

• Set the MKL_FAST_MEMORY_LIMIT=<limit in mbytes> environment var

70

The environment variable is to control memory policy for MPI processes.
There are three kinds of memory we can control:

• User code memory (emulates “numactl –m” command)

• MPI buffers

• User’s buffers but allocated by IMPI for MPI_Win_allocate_shared/MPI_Win_allocate

The suggested format for the environment variable is the following:

I_MPI_HBW_POLICY=<user buffers policy>[,[mpi buffers policy][,win_allocate policy]]
Where each of comma separated values can be the following:

71

hbw_preferred
Memory allocation go first to local for a process
MCDRAM, then to local DRAM

hbw_bind
Only allocate memory on local for a process
MCDRAM

hbw_interleave
Memory will be interleaved between the MCDRAM
and DRAM on the local SNC node

PSXE 2017
Beta U1

MPI and HBM

Take-away messages
Intel Xeon Phi X200 is a highly capable processor

• Can run your already built applications for Xeon

• w/ Highly parallel system to execute many processes/threads at the same time

• w/ Highly vectorized architecture to generate multiple operations per instruction

• w/ High-Bandwidth Memory to shorten the memory gap

• … with low energy consumption footprint

Intel tools / libraries / compilers are here to help on taking advantage of all these
properties.

72

Thank you!
Questions?

